coriolis/anabatic/src/AnabaticEngine.cpp

1139 lines
34 KiB
C++
Raw Normal View History

// -*- C++ -*-
//
// This file is part of the Coriolis Software.
// Copyright (c) UPMC 2016-2016, All Rights Reserved
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | A n a b a t i c - Global Routing Toolbox |
// | |
// | Author : Jean-Paul CHAPUT |
// | E-mail : Jean-Paul.Chaput@lip6.fr |
// | =============================================================== |
// | C++ Module : "./AnabaticEngine.cpp" |
// +-----------------------------------------------------------------+
#include <sstream>
#include <iostream>
#include "hurricane/Bug.h"
#include "hurricane/Error.h"
#include "hurricane/Breakpoint.h"
#include "hurricane/RegularLayer.h"
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
#include "hurricane/Horizontal.h"
#include "hurricane/RoutingPad.h"
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
#include "hurricane/Vertical.h"
#include "hurricane/Cell.h"
#include "hurricane/DebugSession.h"
#include "hurricane/UpdateSession.h"
#include "crlcore/RoutingGauge.h"
#include "anabatic/GCell.h"
#include "anabatic/AnabaticEngine.h"
namespace Anabatic {
using std::cerr;
using std::cout;
using std::endl;
using std::ostringstream;
using Hurricane::Bug;
using Hurricane::Error;
using Hurricane::Breakpoint;
using Hurricane::RegularLayer;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
using Hurricane::Component;
using Hurricane::Horizontal;
using Hurricane::Vertical;
using Hurricane::NetRoutingExtension;
using Hurricane::Cell;
using Hurricane::DebugSession;
using Hurricane::UpdateSession;
using CRL::RoutingGauge;
using CRL::RoutingLayerGauge;
// -------------------------------------------------------------------
// Error messages.
const char* missingAnbt =
"%s :\n\n"
" Cell %s do not have any Anabatic (or not yet created).\n";
const char* badMethod =
"%s :\n\n"
" No method id %ud (Cell %s).\n";
const char* lookupFailed =
"Anabatic::Extension::getDatas(Segment*) :\n\n"
" Cannot find AutoSegment associated to %s (internal error).\n";
// -------------------------------------------------------------------
// Class : "Anabatic::RawGCellsUnder".
RawGCellsUnder::RawGCellsUnder ( const AnabaticEngine* engine, Segment* segment )
{
cdebug_log(112,1) << "RawGCellsUnder::RawGCellsUnder(): " << segment << endl;
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
Box gcellsArea = engine->getCell()->getAbutmentBox();
Point sourcePosition = segment->getSourcePosition();
Point targetPosition = segment->getTargetPosition();
if ( (sourcePosition.getX() > gcellsArea.getXMax())
or (sourcePosition.getY() > gcellsArea.getYMax())
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
or (targetPosition.getX() <= gcellsArea.getXMin())
or (targetPosition.getY() <= gcellsArea.getYMin()) ) {
cerr << Error( "RawGCellsUnder::RawGCellsUnder(): %s is completly outside the GCells area (ignored)."
, getString(segment).c_str()
) << endl;
cdebug_tabw(112,-1);
DebugSession::close();
return;
}
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
DbU::Unit xsource = std::max( sourcePosition.getX(), gcellsArea.getXMin() );
DbU::Unit ysource = std::max( sourcePosition.getY(), gcellsArea.getYMin() );
DbU::Unit xtarget = std::min( targetPosition.getX(), gcellsArea.getXMax() );
DbU::Unit ytarget = std::min( targetPosition.getY(), gcellsArea.getYMax() );
if (xtarget == gcellsArea.getXMax()) --xtarget;
if (ytarget == gcellsArea.getYMax()) --ytarget;
GCell* gsource = engine->getGCellUnder( xsource, ysource );
GCell* gtarget = engine->getGCellUnder( xtarget, ytarget );
if (not gsource) {
cerr << Bug( "RawGCellsUnder::RawGCellsUnder(): %s source not under a GCell (ignored)."
, getString(segment).c_str()
) << endl;
cdebug_tabw(112,-1);
DebugSession::close();
return;
}
if (not gtarget) {
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
cerr << Bug( "RawGCellsUnder::RawGCellsUnder(): %s target not under a GCell (ignored)."
, getString(segment).c_str()
) << endl;
cdebug_tabw(112,-1);
DebugSession::close();
return;
}
if (gsource == gtarget) {
_elements.push_back( Element(gsource,NULL) );
cdebug_tabw(112,-1);
DebugSession::close();
return;
}
Flags side = Flags::NoFlags;
DbU::Unit axis = 0;
Horizontal* horizontal = dynamic_cast<Horizontal*>( segment );
if (horizontal) {
side = Flags::EastSide;
axis = horizontal->getY();
if (horizontal->getSourceX() > horizontal->getTargetX())
std::swap( gsource, gtarget );
} else {
Vertical* vertical = dynamic_cast<Vertical*>( segment );
side = Flags::NorthSide;
axis = vertical->getX();
if (vertical->getSourceY() > vertical->getTargetY())
std::swap( gsource, gtarget );
}
Edge* edge = gsource->getEdgeAt( side, axis );
while ( edge ) {
_elements.push_back( Element(edge->getSource(),edge) );
if (edge->getTarget() == gtarget) break;
edge = edge->getTarget()->getEdgeAt( side, axis );
}
_elements.push_back( Element(gtarget,NULL) );
cdebug_tabw(112,-1);
}
// -------------------------------------------------------------------
// Class : "Anabatic::NetData".
NetData::NetData ( Net* net )
: _net (net)
, _state (NetRoutingExtension::get(net))
, _searchArea()
, _rpCount (0)
, _sparsity (0)
, _flags ()
{
if (_state and _state->isMixedPreRoute()) return;
for ( RoutingPad* rp : _net->getRoutingPads() ) {
_searchArea.merge( rp->getBoundingBox() );
++_rpCount;
}
_update();
}
// -------------------------------------------------------------------
// Class : "Anabatic::AnabaticEngine".
Name AnabaticEngine::_toolName = "Anabatic";
AnabaticEngine* AnabaticEngine::get ( const Cell* cell )
{ return static_cast<AnabaticEngine*>(ToolEngine::get(cell,staticGetName())); }
const Name& AnabaticEngine::staticGetName ()
{ return _toolName; }
const Name& AnabaticEngine::getName () const
{ return _toolName; }
AnabaticEngine::AnabaticEngine ( Cell* cell )
: Super(cell)
, _timer ()
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
, _configuration (new Configuration())
, _chipTools (cell)
, _state (EngineCreation)
, _matrix ()
, _gcells ()
, _ovEdges ()
, _netOrdering ()
, _netDatas ()
, _viewer (NULL)
, _flags (Flags::DestroyBaseContact)
, _stamp (-1)
, _densityMode (MaxDensity)
, _autoSegmentLut ()
, _autoContactLut ()
, _blockageNet (cell->getNet("blockagenet"))
{
_matrix.setCell( cell, _configuration->getSliceHeight() );
Edge::unity = _configuration->getSliceHeight();
if (not _blockageNet) _blockageNet = Net::create( cell, "blockagenet" );
}
void AnabaticEngine::_postCreate ()
{
Super::_postCreate();
UpdateSession::open();
GCell::create( this );
UpdateSession::close();
}
AnabaticEngine* AnabaticEngine::create ( Cell* cell )
{
if (not cell) throw Error( "AnabaticEngine::create(): NULL cell argument." );
if (cell->getAbutmentBox().isEmpty())
throw Error( "AnabaticEngine::create(): %s has no abutment box." , getString(cell).c_str() );
AnabaticEngine* engine = new AnabaticEngine ( cell );
engine->_postCreate();
return engine;
}
AnabaticEngine::~AnabaticEngine ()
{
delete _configuration;
for ( pair<unsigned int,NetData*> data : _netDatas ) delete data.second;
}
void AnabaticEngine::_preDestroy ()
{
cdebug_log(145,1) << "Anabatic::_preDestroy ()" << endl;
if (getState() < EngineGutted)
setState( EnginePreDestroying );
_gutAnabatic();
_state = EngineGutted;
cdebug_log(145,0) << "About to delete base class ToolEngine." << endl;
Super::_preDestroy();
//cmess2 << " - GCells := " << GCell::getAllocateds() << endl;
cmess2 << " - AutoContacts := " << AutoContact::getAllocateds() << endl;
cmess2 << " - AutoSegments := " << AutoSegment::getAllocateds() << endl;
cdebug_log(145,0) << "Exiting Anabatic::_preDestroy()." << endl;
cdebug_tabw(145,-1);
}
void AnabaticEngine::_gutAnabatic ()
{
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
openSession();
_flags.reset( Flags::DestroyBaseContact|Flags::DestroyBaseSegment );
if (_state == EngineDriving) {
cdebug_log(145,1) << "Saving AutoContacts/AutoSegments." << endl;
size_t fixedSegments = 0;
size_t sameLayerDoglegs = 0;
for ( auto isegment : _autoSegmentLut ) {
if (isegment.second->isFixed()) ++fixedSegments;
if (isegment.second->reduceDoglegLayer()) ++sameLayerDoglegs;
}
cmess1 << " o Driving Hurricane data-base." << endl;
cmess1 << Dots::asSizet(" - Active AutoSegments",AutoSegment::getAllocateds()-fixedSegments) << endl;
cmess1 << Dots::asSizet(" - Active AutoContacts",AutoContact::getAllocateds()-fixedSegments*2) << endl;
cmess1 << Dots::asSizet(" - AutoSegments" ,AutoSegment::getAllocateds()) << endl;
cmess1 << Dots::asSizet(" - AutoContacts" ,AutoContact::getAllocateds()) << endl;
cmess1 << Dots::asSizet(" - Same Layer doglegs" ,sameLayerDoglegs) << endl;
//for ( Net* net : _cell->getNets() ) _saveNet( net );
cdebug_tabw(145,-1);
}
if (_state < EngineGutted ) {
cdebug_log(145,0) << "Gutting Anabatic." << endl;
_state = EngineGutted;
_flags |= Flags::DestroyBaseContact;
_destroyAutoSegments();
_destroyAutoContacts();
_flags |= Flags::DestroyGCell;
for ( GCell* gcell : _gcells ) gcell->_destroyEdges();
for ( GCell* gcell : _gcells ) gcell->destroy();
_gcells.clear();
_ovEdges.clear();
}
Session::close();
}
Configuration* AnabaticEngine::getConfiguration ()
{ return _configuration; }
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
Interval AnabaticEngine::getUSide ( Flags direction ) const
{
Interval side;
Box bBox ( getCell()->getBoundingBox() );
if (direction & Flags::Horizontal) side = Interval( bBox.getXMin(), bBox.getXMax() );
else if (direction & Flags::Vertical ) side = Interval( bBox.getYMin(), bBox.getYMax() );
else {
cerr << Error( "AnabaticEngine::getUSide(): Unknown direction flag \"%i\""
, getString(direction).c_str() ) << endl;
}
return side;
}
int AnabaticEngine::getCapacity ( Interval span, Flags flags ) const
{
int capacity = 0;
Box ab = getCell()->getAbutmentBox();
RoutingGauge* rg = _configuration->getRoutingGauge();
span.inflate( 0, -1 );
if (span.isEmpty()) return 0;
const vector<RoutingLayerGauge*>& layerGauges = rg->getLayerGauges();
for ( size_t depth=0 ; depth <= _configuration->getAllowedDepth() ; ++depth ) {
if (layerGauges[depth]->getType() != Constant::Default) continue;
if (flags & Flags::Horizontal) {
if (layerGauges[depth]->getDirection() != Constant::Horizontal) continue;
capacity += layerGauges[depth]->getTrackNumber( span.getVMin() - ab.getYMin()
, span.getVMax() - ab.getYMin() );
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
//cdebug_log(110,0) << "Horizontal edge capacity:" << capacity << endl;
}
if (flags & Flags::Vertical) {
if (layerGauges[depth]->getDirection() != Constant::Vertical) continue;
capacity += layerGauges[depth]->getTrackNumber( span.getVMin() - ab.getXMin()
, span.getVMax() - ab.getXMin() );
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
//cdebug_log(110,0) << "Vertical edge capacity:" << capacity << endl;
}
}
return capacity;
}
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
void AnabaticEngine::openSession ()
{ Session::_open(this); }
void AnabaticEngine::reset ()
{
_gutAnabatic();
_flags.reset( Flags::DestroyMask );
_state = EngineCreation;
UpdateSession::open();
GCell::create( this );
UpdateSession::close();
}
void AnabaticEngine::setupNetDatas ()
{
size_t oindex = _netOrdering.size();
for ( Net* net : _cell->getNets() ) {
if (_netDatas.find(net->getId()) != _netDatas.end()) continue;
_netOrdering.push_back( new NetData(net) );
}
for ( ; oindex < _netOrdering.size() ; ++oindex ) {
_netDatas.insert( make_pair( _netOrdering[oindex]->getNet()->getId()
, _netOrdering[oindex] ) );
}
sort( _netOrdering.begin(), _netOrdering.end(), SparsityOrder() );
}
void AnabaticEngine::updateMatrix()
{
_matrix.setCell( getCell(), Session::getSliceHeight() );
for ( GCell* gcell : _gcells ){
gcell->_revalidate();
}
}
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
size_t AnabaticEngine::getNetsFromEdge ( const Edge* edge, NetSet& nets )
{
size_t count = 0;
GCell* source = edge->getSource();
GCell* target = edge->getTarget();
const vector<Contact*>& contacts = source->getGContacts();
for ( Contact* contact : contacts ) {
for ( Component* component : contact->getSlaveComponents() ) {
if (edge->isHorizontal()) {
Horizontal* horizontal = dynamic_cast<Horizontal*>( component );
if (horizontal
and (horizontal->getSource() == contact)
and (target->hasGContact(dynamic_cast<Contact*>(horizontal->getTarget())))) {
nets.insert( horizontal->getNet() );
++count;
}
}
if (edge->isVertical()) {
Vertical* vertical = dynamic_cast<Vertical*>( component );
if (vertical
and (vertical->getSource() == contact)
and (target->hasGContact(dynamic_cast<Contact*>(vertical->getTarget())))) {
nets.insert( vertical->getNet() );
++count;
}
}
}
}
return count;
}
NetData* AnabaticEngine::getNetData ( Net* net, unsigned int flags )
{
NetData* data = NULL;
NetDatas::iterator idata = _netDatas.find( net->getId() );
if (idata == _netDatas.end()) {
data = new NetData( net );
_netDatas.insert( make_pair(net->getId(),data) );
_netOrdering.push_back( data );
// cerr << Bug( "AnabaticEngine::getNetData() - %s is missing in NetDatas table."
// , getString(net->getName()).c_str()
// ) << endl;
// return NULL;
} else
data = idata->second;
if ((flags & Flags::Create) and not data->getNetRoutingState()) {
data->setNetRoutingState( NetRoutingExtension::create(net) );
}
return data;
}
Contact* AnabaticEngine::breakAt ( Segment* segment, GCell* breakGCell )
{
size_t i = 0;
GCellsUnder gcells ( new RawGCellsUnder(this,segment) );
for ( ; i<gcells->size() ; ++i ) {
if (gcells->gcellAt(i) == breakGCell) break;
}
Contact* breakContact = breakGCell->getGContact( segment->getNet() );
if (i == gcells->size()) {
cerr << Error( "AnabaticEngine::breakAt(): %s is *not* over %s."
, getString(segment).c_str()
, getString(breakGCell).c_str()
) << endl;
return breakContact;
}
Component* targetContact = segment->getTarget();
segment->getTargetHook()->detach();
segment->getTargetHook()->attach( breakContact->getBodyHook() );
Segment* splitted = NULL;
Horizontal* horizontal = dynamic_cast<Horizontal*>(segment);
if (horizontal) {
splitted = Horizontal::create( breakContact
, targetContact
, getConfiguration()->getGHorizontalLayer()
, horizontal->getY()
, DbU::fromLambda(2.0)
);
} else {
Vertical* vertical = dynamic_cast<Vertical*>(segment);
if (vertical) {
splitted = Vertical::create( breakContact
, targetContact
, getConfiguration()->getGVerticalLayer()
, vertical->getX()
, DbU::fromLambda(2.0)
);
} else
return breakContact;
}
for ( ; i<gcells->size()-1 ; ++i ) gcells->edgeAt(i)->replace( segment, splitted );
return breakContact;
}
bool AnabaticEngine::unify ( Contact* contact )
{
size_t hCount = 0;
size_t vCount = 0;
Horizontal* horizontals[2];
Vertical* verticals [2];
for ( Component* slave : contact->getSlaveComponents() ) {
Horizontal* h = dynamic_cast<Horizontal*>( slave );
if (h) {
if (vCount or (hCount > 1)) return false;
horizontals[hCount++] = h;
} else {
Vertical* v = dynamic_cast<Vertical*>( slave );
if (v) {
if (hCount or (vCount > 1)) return false;
verticals[vCount++] = v;
} else {
// Something else depends on this contact.
return false;
}
}
}
if (hCount == 2) {
if (horizontals[0]->getTarget() != contact) std::swap( horizontals[0], horizontals[1] );
Interval constraints ( false );
GCellsUnder gcells0 = getGCellsUnder( horizontals[0] );
if (not gcells0->empty()) {
for ( size_t i=0 ; i<gcells0->size() ; ++i )
constraints.intersection( gcells0->gcellAt(i)->getSide(Flags::Vertical) );
}
GCellsUnder gcells1 = getGCellsUnder( horizontals[1] );
if (not gcells1->empty()) {
for ( size_t i=0 ; i<gcells1->size() ; ++i ) {
constraints.intersection( gcells1->gcellAt(i)->getSide(Flags::Vertical) );
if (constraints.isEmpty()) return false;
}
}
if (not gcells1->empty()) {
for ( size_t i=0 ; i<gcells1->size()-1 ; ++i )
gcells1->edgeAt(i)->replace( horizontals[1], horizontals[0] );
}
Component* target = horizontals[1]->getTarget();
horizontals[1]->destroy();
horizontals[0]->getTargetHook()->detach();
horizontals[0]->getTargetHook()->attach( target->getBodyHook() );
}
if (vCount == 2) {
if (verticals[0]->getTarget() != contact) std::swap( verticals[0], verticals[1] );
Interval constraints ( false );
GCellsUnder gcells0 = getGCellsUnder( verticals[0] );
if (not gcells0->empty()) {
for ( size_t i=0 ; i<gcells0->size() ; ++i )
constraints.intersection( gcells0->gcellAt(i)->getSide(Flags::Horizontal) );
}
GCellsUnder gcells1 = getGCellsUnder( verticals[1] );
if (not gcells1->empty()) {
for ( size_t i=0 ; i<gcells1->size() ; ++i ) {
constraints.intersection( gcells1->gcellAt(i)->getSide(Flags::Horizontal) );
if (constraints.isEmpty()) return false;
}
}
if (not gcells1->empty()) {
for ( size_t i=0 ; i<gcells1->size()-1 ; ++i )
gcells1->edgeAt(i)->replace( verticals[1], verticals[0] );
}
Component* target = verticals[1]->getTarget();
verticals[1]->destroy();
verticals[0]->getTargetHook()->detach();
verticals[0]->getTargetHook()->attach( target->getBodyHook() );
}
getGCellUnder( contact->getPosition() )->unrefContact( contact );
return true;
}
void AnabaticEngine::ripup ( Segment* seed, Flags flags )
{
Net* net = seed->getNet();
DebugSession::open( net, 112, 120 );
cdebug_log(112,1) << "AnabaticEngine::ripup(): " << seed << endl;
Contact* end0 = NULL;
Contact* end1 = NULL;
vector<Segment*> ripups;
ripups.push_back( seed );
vector< pair<Segment*,Component*> > stack;
if (flags & Flags::Propagate) {
stack.push_back( make_pair(seed,seed->getSource()) );
stack.push_back( make_pair(seed,seed->getTarget()) );
}
while ( not stack.empty() ) {
Contact* contact = dynamic_cast<Contact*>( stack.back().second );
Segment* from = stack.back().first;
stack.pop_back();
if (not contact) continue;
Segment* connected = NULL;
size_t slaveCount = 0;
for ( Hook* hook : contact->getBodyHook()->getHooks() ) {
Component* linked = hook->getComponent();
if ((linked == contact) or (linked == from)) continue;
if (dynamic_cast<RoutingPad*>(linked)) { ++slaveCount; continue; }
connected = dynamic_cast<Segment*>( linked );
if (connected) ++slaveCount;
}
if ((slaveCount == 1) and (connected)) {
stack .push_back( make_pair(connected,connected->getOppositeAnchor(contact)) );
ripups.push_back( connected );
} else {
if (not end0) {
end0 = contact;
cdebug_log(112,0) << "end0:" << contact << endl;
} else {
end1 = contact;
cdebug_log(112,0) << "end1:" << contact << endl;
}
}
}
for ( Segment* segment : ripups ) {
cdebug_log(112,1) << "| Destroy:" << segment << endl;
GCellsUnder gcells = getGCellsUnder( segment );
if (not gcells->empty()) {
for ( size_t i=0 ; i<gcells->size()-1 ; ++i )
gcells->edgeAt(i)->remove( segment );
}
Contact* source = dynamic_cast<Contact*>( segment->getSource() );
Contact* target = dynamic_cast<Contact*>( segment->getTarget() );
segment->getSourceHook()->detach();
segment->getTargetHook()->detach();
segment->destroy();
bool deletedSource = gcells->gcellAt( 0 )->unrefContact( source );
bool deletedTarget = gcells->gcellAt( gcells->size()-1 )->unrefContact( target );
if (deletedSource) {
if (source == end0) end0 = NULL;
if (source == end1) end1 = NULL;
}
if (deletedTarget) {
if (target == end0) end0 = NULL;
if (target == end1) end1 = NULL;
}
cdebug_tabw(112,-1);
}
if (end0) unify( end0 );
if (end1) unify( end1 );
getNetData( net )->setGlobalRouted( false );
cdebug_tabw(112,-1);
DebugSession::close();
}
void AnabaticEngine::cleanupGlobal ()
{
UpdateSession::open();
for ( GCell* gcell : _gcells ) gcell->cleanupGlobal();
UpdateSession::close();
}
void AnabaticEngine::loadGlobalRouting ( unsigned int method )
{
if (_state < EngineGlobalLoaded)
throw Error ("AnabaticEngine::loadGlobalRouting() : global routing not present yet.");
if (_state > EngineGlobalLoaded)
throw Error ("AnabaticEngine::loadGlobalRouting() : global routing already loaded.");
switch ( method ) {
case EngineLoadGrByNet: _loadGrByNet(); break;
case EngineLoadGrByGCell:
default:
throw Error( badMethod
, "Anabatic::loadGlobalRouting()"
, method
, getString(_cell).c_str()
);
}
cleanupGlobal();
_state = EngineActive;
}
void AnabaticEngine::updateNetTopology ( Net* net )
{
DebugSession::open( net, 140, 150 );
cdebug_log(149,0) << "Anabatic::updateNetTopology( " << net << " )" << endl;
cdebug_tabw(145,1);
vector<AutoContact*> contacts;
for ( Component* component : net->getComponents() ) {
Contact* contact = dynamic_cast<Contact*>( component );
if (contact) {
AutoContact* autoContact = Session::lookup( contact );
if (autoContact and autoContact->isInvalidatedCache())
contacts.push_back( autoContact );
}
}
for ( size_t i=0 ; i<contacts.size() ; ++i )
contacts[i]->updateTopology();
cdebug_tabw(145,-1);
DebugSession::close();
}
void AnabaticEngine::finalizeLayout ()
{
cdebug_log(145,0) << "Anabatic::finalizeLayout()" << endl;
if (_state > EngineDriving) return;
_state = EngineDriving;
startMeasures();
_gutAnabatic();
stopMeasures ();
printMeasures( "fin" );
_state = EngineGutted;
}
void AnabaticEngine::_alignate ( Net* net )
{
DebugSession::open( net, 140, 150 );
cdebug_log(149,0) << "Anabatic::_alignate( " << net << " )" << endl;
cdebug_tabw(145,1);
//cmess2 << " - " << getString(net) << endl;
set<Segment*> exploredSegments;
vector<AutoSegment*> unexploreds;
vector<AutoSegment*> aligneds;
for ( Component* component : net->getComponents() ) {
Segment* segment = dynamic_cast<Segment*>(component);
if (segment) {
AutoSegment* seedSegment = Session::lookup( segment );
if (seedSegment) unexploreds.push_back( seedSegment );
}
}
sort( unexploreds.begin(), unexploreds.end(), AutoSegment::CompareId() );
for ( size_t i=0 ; i<unexploreds.size() ; i++ ) {
AutoSegment* seedSegment = unexploreds[i];
if (exploredSegments.find(seedSegment->base()) == exploredSegments.end()) {
cdebug_log(145,0) << "New chunk from: " << seedSegment << endl;
aligneds.push_back( seedSegment );
for ( AutoSegment* collapsed : seedSegment->getAligneds() ) {
cdebug_log(145,0) << "Aligned: " << collapsed << endl;
aligneds.push_back( collapsed );
exploredSegments.insert( collapsed->base() );
}
cdebug_tabw(145,1);
sort( aligneds.begin(), aligneds.end(), AutoSegment::CompareId() );
cdebug_log(145,0) << "Seed: " << (void*)aligneds[0]->base() << " " << aligneds[0] << endl;
for ( size_t j=1 ; j<aligneds.size() ; j++ ) {
cdebug_log(145,0) << "Secondary: " << (void*)(aligneds[j]->base()) << " " << aligneds[j] << endl;
}
cdebug_log(149,0) << "Align on " << aligneds[0]
<< " " << DbU::toLambda(aligneds[0]->getAxis()) << endl;
aligneds[0]->setAxis( aligneds[0]->getAxis(), Flags::Realignate );
aligneds.clear();
cdebug_tabw(145,-1);
}
}
cdebug_tabw(145,-1);
DebugSession::close();
}
void AnabaticEngine::_computeNetTerminals ( Net* net )
{
DebugSession::open( net, 140, 150 );
cdebug_log(149,0) << "Anabatic::_computeNetTerminals( " << net << " )" << endl;
cdebug_tabw(145,1);
for ( Segment* segment : net->getSegments() ) {
AutoSegment* autoSegment = Session::lookup( segment );
if (autoSegment == NULL) continue;
if (autoSegment->isInvalidated()) autoSegment->computeTerminal();
}
cdebug_tabw(145,-1);
DebugSession::close();
}
void AnabaticEngine::_saveNet ( Net* net )
{
DebugSession::open( net, 140, 150 );
cdebug_log(145,0) << "Anabatic::_saveNet() " << net << endl;
cdebug_tabw(145,1);
#if 0
cdebug_log(145,0) << "Deleting zero-length segments." << endl;
vector<Segment*> nullSegments;
set<const Layer*> connectedLayers;
forEach ( Segment*, segment, net->getSegments() ) {
if (segment->getLength()) {
if (net->isExternal()) {
NetExternalComponents::setExternal( *segment );
}
continue;
}
if (Session::lookup(*segment) == NULL) {
cdebug_log(145,0) << "* Not associated to an AutoSegment: " << *segment << endl;
continue;
}
if (not isTopAndBottomConnected(*segment,connectedLayers)) {
nullSegments.push_back( *segment );
cdebug_log(145,0) << "* Null Length: " << *segment << endl;
}
}
setFlags( EngineDestroyBaseSegment );
for ( size_t i = 0 ; i < nullSegments.size() ; i++ ) {
Contact* source = dynamic_cast<Contact*>(nullSegments[i]->getSource());
Contact* target = dynamic_cast<Contact*>(nullSegments[i]->getTarget());
if ( (source == NULL) or (target == NULL) ) {
cerr << Error("Unconnected source/target on %s.",getString(nullSegments[i]).c_str()) << endl;
continue;
}
if (source->getAnchor()) {
if (target->getAnchor()) {
continue;
//cerr << Bug("Both source & target are anchored while deleting zero-length segment:\n"
// " %s.",getString(nullSegments[i]).c_str()) << endl;
} else
swap( source, target );
}
cdebug_log(145,0) << "Deleting: " << nullSegments[i] << endl;
if (isTopAndBottomConnected(nullSegments[i],connectedLayers)) {
cdebug_log(145,0) << "Deletion cancelled, no longer top or bottom connected." << endl;
continue;
}
cdebug_log(145,0) << "* Source: " << (void*)source << " " << source << endl;
cdebug_log(145,0) << "* Target: " << (void*)target << " " << target << endl;
const Layer* layer = DataBase::getDB()->getTechnology()
->getViaBetween( *connectedLayers.begin(), *connectedLayers.rbegin() );
cdebug_log(145,0) << *connectedLayers.begin() << " + " << *connectedLayers.rbegin() << endl;
cdebug_log(145,0) << "* Shrink layer: " << layer << endl;
if ( !layer ) {
cerr << Error("NULL contact layer while deleting %s."
,getString(nullSegments[i]).c_str()) << endl;
continue;
}
Session::lookup( nullSegments[i] )->destroy ();
vector<Hook*> slaveHooks;
Hook* masterHook = source->getBodyHook()->getPreviousMasterHook();
while ( masterHook->getNextHook() != source->getBodyHook() ) {
slaveHooks.push_back( masterHook->getNextHook() );
cdebug_log(145,0) << "* detach: "
<< (void*)masterHook->getNextHook()->getComponent()
<< " " << masterHook->getNextHook()->getComponent() << endl;
masterHook->getNextHook()->detach();
}
source->destroy();
masterHook = target->getBodyHook();
for ( size_t j=0 ; j < slaveHooks.size() ; j++ ) {
slaveHooks[j]->attach( masterHook );
}
cdebug_log(145,0) << (void*)target << " " << target << " setLayer: " << layer << endl;
target->setLayer( layer );
}
unsetFlags( EngineDestroyBaseSegment );
#endif
cdebug_tabw(145,-1);
DebugSession::close();
}
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
void AnabaticEngine::startMeasures ()
{
_timer.resetIncrease();
_timer.start();
}
void AnabaticEngine::stopMeasures ()
{ _timer.stop(); }
void AnabaticEngine::suspendMeasures ()
{ _timer.suspend(); }
void AnabaticEngine::resumeMeasures ()
{ _timer.resume(); }
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
void AnabaticEngine::printMeasures ( const string& tag ) const
{
ostringstream result;
result << Timer::getStringTime(_timer.getCombTime())
<< ", " << Timer::getStringMemory(_timer.getIncrease());
cmess1 << Dots::asString( " - Done in", result.str() ) << endl;
result.str("");
result << _timer.getCombTime()
<< "s, +" << (_timer.getIncrease()>>10) << "Kb/"
<< (_timer.getMemorySize()>>10) << "Kb";
cmess2 << Dots::asString( " - Raw measurements", result.str() ) << endl;
}
void AnabaticEngine::updateDensity ()
{ for ( GCell* gcell : _gcells ) gcell->updateDensity(); }
size_t AnabaticEngine::checkGCellDensities ()
{
size_t saturateds = 0;
for ( GCell* gcell : _gcells ) saturateds += gcell->checkDensity();
return saturateds;
}
AutoSegment* AnabaticEngine::_lookup ( Segment* segment ) const
{
AutoSegmentLut::const_iterator it = _autoSegmentLut.find( segment );
if (it == _autoSegmentLut.end()) return NULL;
return (*it).second;
}
void AnabaticEngine::_link ( AutoSegment* autoSegment )
{
if (_state > EngineActive) return;
_autoSegmentLut[ autoSegment->base() ] = autoSegment;
}
void AnabaticEngine::_unlink ( AutoSegment* autoSegment )
{
if (_state > EngineDriving) return;
AutoSegmentLut::iterator it = _autoSegmentLut.find( autoSegment->base() );
if (it != _autoSegmentLut.end())
_autoSegmentLut.erase( it );
}
AutoContact* AnabaticEngine::_lookup ( Contact* contact ) const
{
AutoContactLut::const_iterator it = _autoContactLut.find( contact );
if (it == _autoContactLut.end()) {
return NULL;
}
return (*it).second;
}
void AnabaticEngine::_link ( AutoContact* autoContact )
{
if (_state > EngineActive) return;
_autoContactLut [ autoContact->base() ] = autoContact;
}
void AnabaticEngine::_unlink ( AutoContact* autoContact )
{
if ( _state > EngineActive ) return;
AutoContactLut::iterator it = _autoContactLut.find( autoContact->base() );
if (it != _autoContactLut.end())
_autoContactLut.erase( it );
}
void AnabaticEngine::_destroyAutoSegments ()
{
cdebug_log(145,0) << "Anabatic::_destroyAutoSegments ()" << endl;
size_t expandeds = 0;
for ( auto sasp : _autoSegmentLut ) {
expandeds++;
sasp.second->destroy();
}
if (_state == EngineDriving)
cmess2 << " - Expandeds := " << expandeds << endl;
_autoSegmentLut.clear();
}
void AnabaticEngine::_destroyAutoContacts ()
{
cdebug_log(145,0) << "Anabatic::_destroyAutoContacts ()" << endl;
for ( auto cacp : _autoContactLut ) cacp.second->destroy();
_autoContactLut.clear();
}
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah! * Bug: In Hurricane, in StaticObservable::getObserver(), if the slot pointer is NULL, do not try to access the owner. Returns NULL, so the caller can be aware of the situation... * Change: In Hurricane, in BreakpointWidget & ExceptionWidget some cosmetic changes (fonts and window sizes). * Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account the constraints from the source AutoContact, as it holds the constraints transmitted by the RoutingPads and sets up by propageConstraintsFromRp(). It is likely to be a bug affecting the original Katabatic as well. * Change: In Anabatic, in RawGCellsUnder(), check that the segment is not completly oustside the cell abutment box and truncate the coordinates to the part that is inside. Use the "shrink" if we reach the east/north border. * Change: In Anabatic, in Configuration, no more decorator because we will use a true derived relationship. Katana *derives* from *Anabatic* and do not *decorate* it, so the Configuration can do the same. It also implies that we directly create a Katana engine, not an Anabatic one. * Change: In Anabatic, in Session, do not allow the opening of the Session in a standalone fashion (with a static method). Instead it must be opened using the relevant method of the Anabatic/Katana engine. This ensure we are opening the right Session type. * Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment is not part of the collection by default, but will be included if the Flags::WithSelf is set. * Change: In Configuration, all the flags value are now defined in two steps. Declared in the header and initialized in the module. This is to prevent the fact that on some cases, in relation with the Python "extern C" part modules, we need a true allocated variable. It was causing weird linking problems. A side effect is that they can no longer be used as entry is switches, have to replace them by if/else. * New: In Anabatic, new GCell::getNeighborAt() utility function. * Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with the grid type... Back annote all the edges capacity (north & east) with the reserved local capacity. * New: Complete portage of Kite over Anabatic. The new engine is christened "Katana" for Kite-Analogic. When it's capabilities and performances will be on a part with Kite, it is to completly replace it (and take back the "Kite" name). Preliminary tests seems to show that, contrary to intuition (because built on a more complex/slower grid), it is even slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
void AnabaticEngine::_check ( Net* net ) const
{
cdebug_log(149,1) << "Checking " << net << endl;
for ( Segment* segment : net->getComponents().getSubSet<Segment*>() ) {
AutoSegment* autoSegment = _lookup( segment );
cdebug_log(149,0) << autoSegment << endl;
if (autoSegment) {
AutoContact* autoContact = autoSegment->getAutoSource();
cdebug_log(149,0) << autoContact << endl;
if (autoContact) autoContact->checkTopology();
autoContact = autoSegment->getAutoTarget();
cdebug_log(149,0) << autoContact << endl;
if (autoContact) autoContact->checkTopology();
}
}
cdebug_tabw(149,-1);
}
bool AnabaticEngine::_check ( const char* message ) const
{
bool coherency = true;
if (message)
cerr << " o checking Anabatic DB (" << message << ")." << endl;
for ( auto element : _autoSegmentLut )
coherency = element.second->_check() and coherency;
for ( GCell* gcell : _gcells ) {
for ( AutoContact* contact : gcell->getContacts() )
contact->checkTopology();
}
if (message) cerr << " - completed." << endl;
return coherency;
}
string AnabaticEngine::_getTypeName () const
{ return getString(_toolName); }
string AnabaticEngine::_getString () const
{
ostringstream os;
os << "<" << _toolName << " " << _cell->getName() << ">";
return os.str();
}
Record* AnabaticEngine::_getRecord () const
{
Record* record = Super::_getRecord();
record->add( getSlot("_configuration", _configuration) );
record->add( getSlot("_gcells" , &_gcells ) );
record->add( getSlot("_matrix" , &_matrix ) );
record->add( getSlot("_flags" , &_flags ) );
return record;
}
} // Anabatic namespace.