coriolis/crlcore/src/ccore/RoutingGauge.cpp

268 lines
7.1 KiB
C++
Raw Normal View History

// -*- C++ -*-
//
// This file is part of the Coriolis Software.
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
// Copyright (c) UPMC 2008-2015, All Rights Reserved
//
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | Alliance / Hurricane Interface |
// | |
// | Author : Jean-Paul CHAPUT |
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
// | E-mail : Jean-Paul.Chaput@lip6.fr |
// | =============================================================== |
// | C++ Module : "./RoutingGauge.cpp" |
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
// +-----------------------------------------------------------------+
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
#include <limits>
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
#include <sstream>
#include <algorithm>
#include "hurricane/Commons.h"
#include "hurricane/ViaLayer.h"
#include "hurricane/Technology.h"
#include "hurricane/DataBase.h"
#include "crlcore/XmlParser.h"
#include "crlcore/RoutingLayerGauge.h"
#include "crlcore/RoutingGauge.h"
namespace {
const char* dupLayerGauge =
"RoutingGauge::AddLayerGauge() :\n\n"
" Attempt to re-define layer gauge %s in routing gauge %s.\n";
} // End of anonymous namespace.
namespace CRL {
using Hurricane::DataBase;
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
using Hurricane::ViaLayer;
// -------------------------------------------------------------------
// Class : "RoutingGauge".
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
const size_t RoutingGauge::nlayerdepth = std::numeric_limits<size_t>::max();
RoutingGauge::RoutingGauge ( const char* name )
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
: _name (name)
, _layerGauges()
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
, _viaLayers ()
, _technology (DataBase::getDB()->getTechnology())
{ }
RoutingGauge::RoutingGauge ( const RoutingGauge& gauge )
: _name (gauge._name)
, _layerGauges()
, _viaLayers ()
, _technology (gauge._technology)
{
// Make a deep copy of the map.
for ( size_t i=0 ; i<gauge._layerGauges.size() ; i++ )
addLayerGauge ( RoutingLayerGauge::create
( gauge._layerGauges[i]->getLayer()
, gauge._layerGauges[i]->getDirection()
, gauge._layerGauges[i]->getType()
, gauge._layerGauges[i]->getDepth()
, gauge._layerGauges[i]->getDensity()
, gauge._layerGauges[i]->getOffset()
, gauge._layerGauges[i]->getPitch()
, gauge._layerGauges[i]->getWireWidth()
, gauge._layerGauges[i]->getViaWidth() )
);
}
RoutingGauge* RoutingGauge::create ( const char* name )
{
RoutingGauge* gauge = new RoutingGauge ( name );
return gauge;
}
void RoutingGauge::_preDestroy () {
for ( size_t i=0 ; i<_layerGauges.size() ; i++ )
_layerGauges[i]->destroy ();
}
void RoutingGauge::destroy() {
_preDestroy ();
delete this;
}
RoutingGauge::~RoutingGauge ()
{
}
RoutingGauge* RoutingGauge::getClone () const
{
return new RoutingGauge ( *this );
}
RoutingLayerGauge* RoutingGauge::getLayerGauge ( const Layer* layer ) const
{
for ( size_t i=0 ; i < _layerGauges.size() ; i++ ) {
if ( _layerGauges[i]->getLayer() == layer )
return _layerGauges[i];
}
return NULL;
}
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
unsigned int RoutingGauge::getLayerType ( const Layer* layer ) const
{
RoutingLayerGauge* layerGauge = getLayerGauge(layer);
if ( !layerGauge ) return 0;
return layerGauge->getType();
}
unsigned int RoutingGauge::getLayerDirection ( const Layer* layer ) const
{
RoutingLayerGauge* layerGauge = getLayerGauge(layer);
if ( !layerGauge ) return 0;
return layerGauge->getDirection();
}
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
size_t RoutingGauge::getViaDepth ( const Layer* layer ) const
{
const Layer* bottomLayer = layer;
const Layer* viaLayer = dynamic_cast<const ViaLayer*>(layer);
if (viaLayer) bottomLayer = viaLayer->getBottom();
for ( size_t i=0 ; i < _layerGauges.size() ; i++ ) {
if ( _layerGauges[i]->getLayer()->getMask() == bottomLayer->getMask() )
return i;
}
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
return nlayerdepth;
Improved UpdateSession & exception catching. Start of RoutingGauge implem. Miscellaneous: * Change: In <crlcore>, in display.conf use the same display threshold for both METAL2 & METAL3. In alliance.conf, the side of VIAs in the gauge is 2l (not 3l). In kite.conf, separate edge densities for H/V. * Change: In <Cell>, in flattenNets() use flag as argument, not a boolean. Do not create rings for clock or supply nets. * Change: In <DeepNet>, in _createRoutingPads() do not create rings for clock or supply net (duplicated policy as in Cell::flattenNets()). * Bug: In <ControllerWidget>, at last find the bad signal disconnect that was causing ungraceful messages. * Change: In <knik>, in Edge display occupancy/capacity in the string name. Improved display progress and debugging capabilities. Improved exception catch & breakpoint managment: * Bug: In <PaletteWidget>, in updateExtensions() replace the calls to deleteLayer() by delete. This cause the widget to be immediatly erased instead of waiting for the event queue to be completly processed. This was causing the widget to be left in a incoherent state when stoping at a breakpoint. * Bug: In <BreakpointWidget>, in execNoModal(), flush the main event loop (QApplication::flush()) *before* lauching the *local* event loop. This is to ensure all widgets are in their final state when waiting (especially <PaletteWidget>). * Change: In <ExceptionWidget>, new method catchAllWrapper() to execute any std::function< void() > function/method with a "try"/ "catch" wraparound and lauch the widget in case something is catch. * New: In <hurricane>, support for a oberver pattern, backported from <katabatic> with an Obervable capable of being linked to any number of Obervers. * New: In <Cell>, made it observable to detect Cell change, currently emit two kind of signals: - Cell::CellAboutToChange : *before* any change. - Cell::CellChanged : *after* the change has been completed. * New: In <UpdateSession>, in Go::invalidate() add the Cell owning the Go to the UPDATOR_STACK (of course the cell is added only once). In addition, when the Cell is added, send a notification of Cell::CellAboutToChange to all it's observers. The slave instances are also invalidated. Conversely in UpdateSession::_preDestroy() for each invalidated Cell send a Cell::CellChanged notification to all observer. The UPDATOR_STACK has been slightly amended to accept Cell which are not Gos. Prior to this, the Cell where completly excluded from the UpdateSession mechanism, so it's instances where never actualised of anything referring to the Cell for that matter. Note: we use two different mechanisms to transmit a Cell change, observers and the slave instance map. I think at some point it should be unificated. * Change: In <CellViewer>, make it a Cell observer to redraw when the cell is modificated (also update the palette). Uses the catchAllWrapper() to protect all critical actions. * Change: In <GraphicTool>, no longer need of cellPreModificated and cellPostModificated signals. Now done through the Cell obersvers. * Change: In <mauka>, <etesian> & <kite> now uses the catchAllWrapper method for protection (need to split methods in two, to be able to pass it as argument). No longer emit cellPreModificated and cellPostModificated. Support for RoutingGauge in P&R: * Bug: In <placeandroute.py>, the connection from the internal power ring to the connectors was not done correctly. Wrong contact layers leading to a gap. * Change: In <BuildPowerRails>, detection of the corona signals based on how the "pck_px" pad is connected. No longer based on name matching. * Change: In <placeandroute.py>, support for 2 routing metal only (3 metal in the technology). * Change: In <katabatic> & <kite> support for a "top layer" limitation on the routing gauge, this allows to use only two routing metals (METAL2 & METAL3). Work in progress.
2014-04-20 12:25:08 -05:00
}
size_t RoutingGauge::getLayerDepth ( const Layer* layer ) const
{
for ( size_t i=0 ; i < _layerGauges.size() ; i++ ) {
if ( _layerGauges[i]->getLayer()->getMask() == layer->getMask() )
return i;
}
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
return nlayerdepth;
}
RoutingLayerGauge* RoutingGauge::getLayerGauge ( size_t depth ) const
{
if ( depth >= _layerGauges.size() ) return NULL;
return _layerGauges[depth];
}
const Layer* RoutingGauge::getRoutingLayer ( size_t depth ) const
{
if ( depth >= _layerGauges.size() ) return NULL;
return _layerGauges[depth]->getLayer();
}
Layer* RoutingGauge::getContactLayer ( size_t depth ) const
{
if ( depth >= _viaLayers.size() ) return NULL;
return _viaLayers[depth];
}
const vector<RoutingLayerGauge*>& RoutingGauge::getLayerGauges () const
{
return _layerGauges;
}
void RoutingGauge::addLayerGauge ( RoutingLayerGauge* layerGauge )
{
if ( getLayerGauge(layerGauge->getLayer()) != NULL )
throw Error ( dupLayerGauge, getString(layerGauge->getLayer()->getName()).c_str()
, getString(_name).c_str() );
_layerGauges.push_back ( layerGauge );
size_t gaugeSize = _layerGauges.size();
if ( gaugeSize > 1 ) {
Layer* viaLayer = _technology->getViaBetween(_layerGauges[gaugeSize-2]->getLayer()
,_layerGauges[gaugeSize-1]->getLayer());
if ( !viaLayer ) {
cerr << Error("Can't find a VIA between Gauge layers %s and %s."
,getString(_layerGauges[gaugeSize-2]).c_str()
,getString(_layerGauges[gaugeSize-1]).c_str()) << endl;
}
_viaLayers.push_back ( viaLayer );
}
}
void RoutingGauge::checkConnexity () const
{
if ( _layerGauges.empty() ) return;
for ( size_t i=0 ; i<_viaLayers.size() ; i++ ) {
if ( !_viaLayers[i] ) {
cerr << Error("Gap in %s: %s and %s are not contiguous."
,getString(this).c_str()
,getString(_layerGauges[i ]->getLayer()).c_str()
,getString(_layerGauges[i+1]->getLayer()).c_str()) << endl;
}
if ( _layerGauges[i+1]->getType() == Constant::PinOnly ) {
cerr << Error("In %s: only first layer can be PinOnly.\n"
" (%s at depth %d)"
,getString(this).c_str()
,getString(_layerGauges[i+1]).c_str()
,i+1 ) << endl;
}
}
}
string RoutingGauge::_getTypeName () const
{
return "CRL::RoutingGauge";
}
string RoutingGauge::_getString () const
{
ostringstream os;
os << "<" << "RoutingGauge " << _name << ">";
return ( os.str() );
}
Record* RoutingGauge::_getRecord ( Record* record ) const
{
if ( record == NULL )
record = new Record ( getString(this) );
record->add ( getSlot("_name" , _name ) );
record->add ( getSlot("_gauges" ,&_layerGauges) );
return ( record );
}
} // End of CRL namespace.