coriolis/anabatic/src/Dijkstra.cpp

2925 lines
107 KiB
C++
Raw Normal View History

// -*- mode: C++; explicit-buffer-name: "Dijkstra.cpp<anabatic>" -*-
//
// This file is part of the Coriolis Software.
// Copyright (c) UPMC 2016-2018, All Rights Reserved
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | A n a b a t i c - Global Routing Toolbox |
// | |
// | Author : Jean-Paul CHAPUT |
// | E-mail : Jean-Paul.Chaput@lip6.fr |
// | =============================================================== |
// | C++ Module : "./anabatic/Dijkstra.cpp" |
// +-----------------------------------------------------------------+
#include <limits>
#include <algorithm>
#include "hurricane/Error.h"
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
#include "hurricane/Warning.h"
#include "hurricane/Net.h"
#include "hurricane/Pin.h"
#include "hurricane/RoutingPad.h"
#include "hurricane/Horizontal.h"
#include "hurricane/Vertical.h"
#include "hurricane/UpdateSession.h"
#include "hurricane/DebugSession.h"
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
#include "crlcore/Utilities.h"
#include "anabatic/AnabaticEngine.h"
#include "anabatic/Dijkstra.h"
#include "hurricane/DataBase.h"
#include "hurricane/viewer/CellViewer.h"
#include "hurricane/Technology.h"
#include "hurricane/NetRoutingProperty.h"
namespace Anabatic {
using std::cerr;
using std::endl;
using std::numeric_limits;
using Hurricane::ForEachIterator;
using Hurricane::Error;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
using Hurricane::Warning;
using Hurricane::Component;
using Hurricane::Pin;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
using Hurricane::Segment;
using Hurricane::Horizontal;
using Hurricane::Vertical;
using Hurricane::RoutingPad;
using Hurricane::UpdateSession;
using Hurricane::DebugSession;
using Hurricane::NetRoutingExtension;
2017-06-21 11:02:37 -05:00
DbU::Unit calcDistance( Point p1, Point p2 )
{
return abs(p1.getX()-p2.getX()) + abs(p1.getY()-p2.getY());
}
DbU::Unit calcMidIntersection( DbU::Unit imin1, DbU::Unit imax1, DbU::Unit imin2, DbU::Unit imax2 )
{
if ( (imin1 > imax1)
|| (imin2 > imax2)
){
cerr << "DbU::Unit calcMidIntersection(...): Wrong parameters." << endl;
return 0;
}
if ( (imin1 > imax2)
|| (imax1 < imin2)
) {
cerr << "DbU::Unit calcMidIntersection(...): No intersection." << endl;
return 0;
}
return ( max(imin1, imin2) + min(imax1, imax2) )/2;
}
// -------------------------------------------------------------------
// Class : "Anabatic::IntervalC".
IntervalC::IntervalC()
{
_min = Vertex::unreached;
_max = Vertex::unreached;
_axis = Vertex::unreached;
_flags = 0;
}
IntervalC::IntervalC(IntervalC& i)
{
_min = i.getMin();
_max = i.getMax();
_axis = i.getAxis();
setFlags(i.getFlags());
}
IntervalC::IntervalC(const IntervalC& i)
{
_min = i.getMin();
_max = i.getMax();
_axis = i.getAxis();
setFlags(i.getFlags());
}
2017-06-21 11:02:37 -05:00
IntervalC::IntervalC( DbU::Unit min, DbU::Unit max, DbU::Unit axis )
{
_min = min;
_max = max;
_axis = axis;
setiSet();
}
IntervalC::~IntervalC() {}
void IntervalC::set ( DbU::Unit min, DbU::Unit max, DbU::Unit axis )
{
_min = min;
_max = max;
_axis = axis;
setiSet();
}
void IntervalC::setRange( DbU::Unit vmin, DbU::Unit vmax )
{
if (vmin < vmax){
_min = vmin;
_max = vmax;
setiSet();
} else {
_min = vmax;
_max = vmin;
setiSet();
}
}
void IntervalC::extendMin( DbU::Unit vmin )
{
if (_min > vmin) _min = vmin;
}
void IntervalC::extendMax( DbU::Unit vmax )
{
if (_max < vmax) _max = vmax;
}
void IntervalC::print() const
{
cdebug_log(112,0) << "[IntervalC]: min: " << DbU::getValueString(_min) << ", max:" << DbU::getValueString(_max) << ", axis:" << DbU::getValueString(_axis) << endl;
}
void IntervalC::reset()
{
_min = Vertex::unreached;
_max = Vertex::unreached;
_axis = Vertex::unreached;
_flags &= ~iSet;
}
// -------------------------------------------------------------------
// Class : "Anabatic::GRAData".
GRAData::GRAData ()
: _intervfrom (IntervalC())
, _interv (IntervalC())
, _from2 (NULL)
, _intervfrom2 (IntervalC())
{}
GRAData::~GRAData() {}
GRAData* GRAData::create()
{
return new GRAData();
}
void GRAData::resetIntervals()
{
_interv.reset();
_intervfrom.reset();
}
void GRAData::clearFrom2 ()
{
_from2 = NULL;
}
// -------------------------------------------------------------------
// Class : "Anabatic::Vertex".
DbU::Unit Vertex::unreached = std::numeric_limits<long>::max();
DbU::Unit Vertex::unreachable = std::numeric_limits<long>::max()-1;
bool Vertex::hasValidStamp () const
{ return _stamp == getAnabatic()->getStamp(); }
Edge* Vertex::getFrom() const
{
if (hasValidStamp()) return _from;
else return NULL;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::setRestricted ()
{
setNRestricted();
setSRestricted();
setERestricted();
setWRestricted();
}
void Vertex::clearRestriction ()
{
unsetFlags(NRestricted);
unsetFlags(SRestricted);
unsetFlags(ERestricted);
unsetFlags(WRestricted);
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
bool Vertex::hasRP ( Net* net ) const
{
if (getGCell() != NULL ){
Cell* cell = getGCell()->getAnabatic()->getCell();
RoutingPad* rp = NULL;
for ( Component* component : cell->getComponentsUnder(getGCell()->getBoundingBox().inflate(-1)) ){
rp = dynamic_cast<RoutingPad*>( component );
if (rp) {
if (rp->getNet() == net) return true;
}
}
}
return false;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
bool Vertex::hasVRP ( Net* net ) const
{
if (getGCell() != NULL){
Cell* cell = getGCell()->getAnabatic()->getCell();
RoutingPad* rp = NULL;
for ( Component* component : cell->getComponentsUnder(getGCell()->getBoundingBox().inflate(-1)) ){
rp = dynamic_cast<RoutingPad*>( component );
if (rp) {
if (rp->getNet() == net) break;
}
}
if (rp) {
Vertical* v = dynamic_cast<Vertical*>(rp->_getEntityAs<Segment>());
if (v) { return true; }
}
}
return false;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
bool Vertex::hasHRP ( Net* net ) const
{
if (getGCell() != NULL){
Cell* cell = getGCell()->getAnabatic()->getCell();
RoutingPad* rp = NULL;
for ( Component* component : cell->getComponentsUnder(getGCell()->getBoundingBox().inflate(-1)) ){
rp = dynamic_cast<RoutingPad*>( component );
if (rp) {
if (rp->getNet() == net) break;
}
}
if (rp) {
Horizontal* h = dynamic_cast<Horizontal*>(rp->_getEntityAs<Segment>());
if (h) { return true; }
}
}
return false;
}
bool Vertex::isRestricted ( const Vertex* v1, const Vertex* v2, const Edge* e, DbU::Unit hpitch, DbU::Unit vpitch, Net* net )
{
bool restricted = true;
GCell* c1 = v1->getGCell();
GCell* c2 = v2->getGCell();
// Check from GCell 1
if ( c1->isNorth(c2) and not v1->isNRestricted() ) restricted = false;
else if ( c1->isSouth(c2) and not v1->isSRestricted() ) restricted = false;
else if ( c1->isEast (c2) and not v1->isERestricted() ) restricted = false;
else if ( c1->isWest (c2) and not v1->isWRestricted() ) restricted = false;
// else {
// cerr << Error( "Vertex::isRestricted(): Vertexes/GCells v1 & v2 do not share a side.\n"
// " v1:%s\n"
// " v2:%s"
// , getString(v1).c_str()
// , getString(v2).c_str()
// ) << endl;
// return true;
// }
if (restricted) {
cdebug_log(112,0) << "v1 -> v2 edge is restricted." << endl;
return true;
}
if ( e->isVertical() and (c1->getWidth() < hpitch) ) {
cdebug_log(112,0) << "GCell 1 is too narrow for V edges." << endl;
return true;
}
if ( e->isHorizontal() and (c1->getHeight() < vpitch) ) {
cdebug_log(112,0) << "GCell 1 is too narrow for H edges." << endl;
return true;
}
restricted = true;
// Check from GCell 2
if ( c2->isNorth(c1) and not v2->isNRestricted() ) restricted = false;
else if ( c2->isSouth(c1) and not v2->isSRestricted() ) restricted = false;
else if ( c2->isEast (c1) and not v2->isERestricted() ) restricted = false;
else if ( c2->isWest (c1) and not v2->isWRestricted() ) restricted = false;
// else {
// cerr << Error( "Vertex::isRestricted(): Vertexes/GCells v1 & v2 do not share a side.\n"
// " v1:%s\n"
// " v2:%s"
// , getString(v1).c_str()
// , getString(v2).c_str()
// ) << endl;
// return true;
// }
if (restricted) {
cdebug_log(112,0) << "v2 -> v1 edge is restricted." << endl;
return true;
}
if ( e->isVertical() and (c2->getWidth() < hpitch) ) {
cdebug_log(112,0) << "GCell 2 is too narrow for V edges." << endl;
return true;
}
if ( e->isHorizontal() and (c2->getHeight() < vpitch) ) {
cdebug_log(112,0) << "GCell 2 is too narrow for H edges." << endl;
return true;
}
if ( v2->getGCell()->isStrut() and e->isMaxCapacity(net) ) {
cdebug_log(112,0) << "Overcapacity:" << e << endl;
return true;
}
return false;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
Point Vertex::getNextPathPoint ( Point pcurr, const Vertex* vnext ) const
{
cdebug_log(112,1) << "Point Dijkstra::getNextPathPoint( Point pcurr, const Vertex* vnext )" << endl;
if (vnext == NULL){
cdebug_tabw(112,-1);
return Point(0,0);
}
//<<<<<<< HEAD
2017-06-21 11:02:37 -05:00
/*if (vnext->getGCell()->isMatrix()) {
=======
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (not vnext->getGCell()->isAnalog()) {
>>>>>>> 987289653831df12933bd4490d9559415e61f220
cdebug_tabw(112,-1);
return Point(vnext->getGCell()->getXCenter(), vnext->getGCell()->getYCenter());
2017-06-21 11:02:37 -05:00
}*/
GCell* gnext = vnext->getGCell();
GCell* gcurr = getGCell();
DbU::Unit x = 0;
DbU::Unit y = 0;
if (vnext->isV()){
//cdebug_log(112,0) << "Case next: Vertical: " << vnext->isiSet() << endl; //", d:" << vnext->getDistance() << endl;
if ((vnext->isiSet())&&(vnext->hasValidStamp())){
//cdebug_log(112,0) << "Case set" << endl;
x = vnext->getIAxis();
if (isNorth(vnext)) y = vnext->getIMin();
else if (isSouth(vnext)) y = vnext->getIMax();
else if ((isWest(vnext))||(isEast(vnext))) {
if ( pcurr.getY() > vnext->getIMax() ) y = vnext->getIMax();
else if ( pcurr.getY() < vnext->getIMin() ) y = vnext->getIMin();
else y = pcurr.getY();
} else cdebug_log(112,0) << "[ERROR](Point Vertex::getNextPathPoint2(...) const: Something is wrong.1" << endl;
} else {
//cdebug_log(112,0) << "Case not set" << endl;
if (isNorth(vnext)){
y = gcurr->getYMax();
if (pcurr.getX() < gnext->getXMin()) x = gnext->getXMin();
else if (pcurr.getX() > gnext->getXMax()) x = gnext->getXMax();
else x = pcurr.getX();
} else if (isSouth(vnext)){
y = gcurr->getYMin();
if (pcurr.getX() < gnext->getXMin()) x = gnext->getXMin();
else if (pcurr.getX() > gnext->getXMax()) x = gnext->getXMax();
else x = pcurr.getX();
} else if (isWest(vnext)){
x = gcurr->getXMin();
if (pcurr.getY() < gnext->getYMin()) y = gnext->getYMin();
else if (pcurr.getY() > gnext->getYMax()) y = gnext->getYMax();
else y = pcurr.getY();
} else if (isEast(vnext)){
x = gcurr->getXMax();
if (pcurr.getY() < gnext->getYMin()) y = gnext->getYMin();
else if (pcurr.getY() > gnext->getYMax()) y = gnext->getYMax();
else y = pcurr.getY();
} else cdebug_log(112,0) << "[ERROR](Point Vertex::getNextPathPoint2(...) const: Something is wrong.2" << endl;
}
} else if (vnext->isH()) {
//cdebug_log(112,0) << "Case next: Horizontal: " << vnext->isiSet() << endl; //", d:" << vnext->getDistance() << endl;
if ((vnext->isiSet())&&(vnext->hasValidStamp())){
//cdebug_log(112,0) << "Case set" << endl;
y = vnext->getIAxis();
if (isEast (vnext)) x = vnext->getIMin();
else if (isWest (vnext)) x = vnext->getIMax();
else if ((isNorth(vnext))||(isSouth(vnext))) {
if ( pcurr.getX() > vnext->getIMax() ) x = vnext->getIMax();
else if ( pcurr.getX() < vnext->getIMin() ) x = vnext->getIMin();
else x = pcurr.getX();
} else cdebug_log(112,0) << "[ERROR](Point Vertex::getNextPathPoint2(...) const: Something is wrong.3" << endl;
} else {
//cdebug_log(112,0) << "Case not set" << endl;
if (isNorth(vnext)){
y = gcurr->getYMax();
if (pcurr.getX() < gnext->getXMin()) x = gnext->getXMin();
else if (pcurr.getX() > gnext->getXMax()) x = gnext->getXMax();
else x = pcurr.getX();
} else if (isSouth(vnext)){
y = gcurr->getYMin();
if (pcurr.getX() < gnext->getXMin()) x = gnext->getXMin();
else if (pcurr.getX() > gnext->getXMax()) x = gnext->getXMax();
else x = pcurr.getX();
} else if (isWest(vnext)){
x = gcurr->getXMin();
if (pcurr.getY() < gnext->getYMin()) y = gnext->getYMin();
else if (pcurr.getY() > gnext->getYMax()) y = gnext->getYMax();
else y = pcurr.getY();
} else if (isEast(vnext)){
x = gcurr->getXMax();
if (pcurr.getY() < gnext->getYMin()) y = gnext->getYMin();
else if (pcurr.getY() > gnext->getYMax()) y = gnext->getYMax();
else y = pcurr.getY();
} else cdebug_log(112,0) << "[ERROR](Point Vertex::getNextPathPoint2(...) const: Something is wrong.4" << endl;
}
} else {
2017-06-21 11:02:37 -05:00
cdebug_log(112,0) << "[ERROR](Point Vertex::getNextPathPoint2(...) const: Something is wrong.5: " << vnext << endl;
}
cdebug_tabw(112,-1);
return Point(x,y);
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
Point Vertex::getStartPathPoint ( const Vertex* next ) const
{
cdebug_log(112,1) << "Point Vertex::getStartPathPoint( const Vertex* next ) const:" << this << endl;
GCell* gcurr = getGCell();
GCell* gnext = next->getGCell();
DbU::Unit x = 0;
DbU::Unit y = 0;
IntervalC intervfrom = IntervalC();
if (_adata == NULL){
//cdebug_log(112,0) << "Point Vertex::getStartPathPoint( const Vertex* next ) const: Digital vertex." << endl;
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_tabw(112,-1);
return Point(0,0);
2017-06-21 11:02:37 -05:00
}
if (gcurr->isMatrix()){
GCell* gprev = getGPrev();
cdebug_log(112,-1) << endl;
if (gprev) {
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (isNorth(vprev)) return Point (gcurr->getXCenter(), gcurr->getYMax() );
else if (isSouth(vprev)) return Point (gcurr->getXCenter(), gcurr->getYMin() );
else if (isWest (vprev)) return Point (gcurr->getXMin() , gcurr->getYCenter() );
else if (isEast (vprev)) return Point (gcurr->getXMax() , gcurr->getYCenter() );
else return Point (gcurr->getXCenter(), gcurr->getYCenter() );
} else return Point (gcurr->getXCenter(), gcurr->getYCenter() );
} else if (gcurr->isDevice ()){
cdebug_log(112,0) << "Case device" << endl;
cdebug_log(112,0) << "seed isH(): " << isH() << endl;
cdebug_log(112,0) << "seed isV(): " << isV() << endl;
if (isH()){
cdebug_log(112,0) << "hinterval: " << DbU::getValueString(getIAxis()) << endl;
y = getIAxis();
if ((gnext->getXMax() < getIMin())||(isWest (next))) x = getIMin();
else if ((gnext->getXMin() > getIMax())||(isEast (next))) x = getIMax();
else x = (max(gnext->getXMin(), getIMin())+min(gnext->getXMax(), getIMax()))/2;
} else if (isV()){
cdebug_log(112,0) << "vinterval" << endl;
x = getIAxis();
if ((gnext->getYMax() < getIMin())||(isSouth(next))) y = getIMin();
else if ((gnext->getYMin() > getIMax())||(isNorth(next))) y = getIMax();
else y = (max(gnext->getYMin(), getIMin())+min(gnext->getYMax(), getIMax()))/2 ;
} else {
cdebug_log(112,0) << "[ERROR](Point Vertex::getStartPathPoint( const Vertex * next ) const: Something is wrong." << endl;
cdebug_tabw(112,-1);
return Point(0,0);
}
} else if (isH()) {
cdebug_log(112,0) << "Case horizontal: " << isiSet() << endl;
GCell* gprev = getGPrev(Vertex::From2Mode);
intervfrom = getIntervFrom(From2Mode);
Vertex* prev = NULL;
if (gprev) prev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
cdebug_log(112,0) << "PREV: " << prev << " ";
intervfrom.print();
if (isiSet()||(prev == NULL)){
cdebug_log(112,0) << "isiSet: ";
printInterv();
y = getIAxis();
if ((gnext->getXMax() < getIMin())||(isWest (next))) x = getIMin();
else if ((gnext->getXMin() > getIMax())||(isEast (next))) x = getIMax();
else x = (max(gnext->getXMin(), getIMin())+min(gnext->getXMax(), getIMax()))/2;
} else {
if (prev->isH()){
cdebug_log(112,0) << "prev is H" << endl;
if (gnext->getXMax() < intervfrom.getMin()) x = intervfrom.getMin();
else if (gnext->getXMin() > intervfrom.getMax()) x = intervfrom.getMax();
else x = (max(gnext->getXMin(), intervfrom.getMin())+min(gnext->getXMax(), intervfrom.getMax()))/2;
if (isNorth(prev)) y = gcurr->getYMax();
else if (isSouth(prev)) y = gcurr->getYMin();
else y = intervfrom.getAxis();
} else if (prev->isV()){
cdebug_log(112,0) << "prev is V" << endl;
if (isNorth(prev)){
x = intervfrom.getAxis();
y = gcurr->getYMax();
} else if (isSouth(prev)){
x = intervfrom.getAxis();
y = gcurr->getYMin();
} else if (isWest (prev)){
x = gcurr->getXMin();
if (isNorth(next)){
if (intervfrom.getMax() > gcurr->getYMax()) y = gcurr->getYMax();
else y = intervfrom.getMax();
} else if (isSouth(next)){
if (intervfrom.getMin() < gcurr->getYMin()) y = gcurr->getYMin();
else y = intervfrom.getMin();
} else { // East side
if ( intervfrom.getMin() < gcurr->getYMin() ){ y = gcurr->getYMin();
} else if ( intervfrom.getMax() > gcurr->getYMax() ){ y = gcurr->getYMax();
} else { y = (intervfrom.getMin() + intervfrom.getMax())/2 ;
}
}
} else if (isEast (prev)){
x = gcurr->getXMax();
if (isNorth(next)){
if (intervfrom.getMax() > gcurr->getYMax()) y = gcurr->getYMax();
else y = intervfrom.getMax();
} else if (isSouth(next)){
if (intervfrom.getMin() < gcurr->getYMin()) y = gcurr->getYMin();
else y = intervfrom.getMin();
} else { // West side
if ( intervfrom.getMin() < gcurr->getYMin() ){ y = gcurr->getYMin();
} else if ( intervfrom.getMax() > gcurr->getYMax() ){ y = gcurr->getYMax();
} else { y = (intervfrom.getMin() + intervfrom.getMax())/2 ;
}
}
} else {
cdebug_log(112,0) << "[ERROR](Point Vertex::getStartPathPoint() const: Something is wrong." << endl;
cdebug_tabw(112,-1);
return Point(0,0);
}
cdebug_log(112,0) << "x: " << DbU::getValueString(x) << ", y:" << DbU::getValueString(y) << endl;
} else {
cdebug_log(112,0) << "[ERROR](Point Vertex::getStartPathPoint() const: Something is wrong." << endl;
cdebug_tabw(112,-1);
return Point(0,0);
}
}
} else if (isV()) {
cdebug_log(112,0) << "Case vertical: " << isiSet() << endl;
//GCell* gprev = NULL;
GCell* gprev = getGPrev(Vertex::From2Mode);
intervfrom = getIntervFrom(From2Mode);
Vertex* prev = NULL;
if (gprev) prev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
cdebug_log(112,0) << "PREV: " << prev << " ";
intervfrom.print();
if (isiSet()||(prev == NULL)){
cdebug_log(112,0) << "isiSet: ";
printInterv();
x = getIAxis();
if ((gnext->getYMax() <= getIMin())||(isSouth(next))){
y = getIMin();
}
else if ((gnext->getYMin() >= getIMax())||(isNorth(next))){
y = getIMax();
}
else {
y = (max(gnext->getYMin(), getIMin())+min(gnext->getYMax(), getIMax()))/2 ;
}
} else {
if (prev->isH()){
cdebug_log(112,0) << "prev is H" << endl;
if (isNorth(prev)){
y = gcurr->getYMax();
if (isNorth(next)){
if (intervfrom.getMax() > gcurr->getXMax()) x = gcurr->getXMax();
else x = intervfrom.getMax();
} else if (isSouth(next)){
if (intervfrom.getMin() < gcurr->getXMin()) x = gcurr->getXMin();
else x = intervfrom.getMin();
} else { // West side
if ( intervfrom.getMin() < gcurr->getXMin() ){ x = gcurr->getXMin();
} else if ( intervfrom.getMax() > gcurr->getXMax() ){ x = gcurr->getXMax();
} else { x = (intervfrom.getMin() + intervfrom.getMax())/2 ;
}
}
} else if (isSouth(prev)){
y = gcurr->getYMin();
if (isEast(next)){
if (intervfrom.getMax() > gcurr->getXMax()) x = gcurr->getXMax();
else x = intervfrom.getMax();
} else if (isWest(next)){
if (intervfrom.getMin() < gcurr->getXMin()) x = gcurr->getXMin();
else x = intervfrom.getMin();
} else { // Northside
if ( intervfrom.getMin() < gcurr->getXMin() ){ x = gcurr->getXMin();
} else if ( intervfrom.getMax() > gcurr->getXMax() ){ x = gcurr->getXMax();
} else { x = (intervfrom.getMin() + intervfrom.getMax())/2 ;
}
}
} else if (isWest (prev)){
x = gcurr->getXMin();
y = intervfrom.getAxis();
} else if (isEast (prev)){
x = gcurr->getXMax();
y = intervfrom.getAxis();
} else {
cdebug_log(112,0) << "[ERROR](Point Vertex::getStartPathPoint() const: Something is wrong." << endl;
cdebug_tabw(112,-1);
return Point(0,0);
}
} else if (prev->isV()){
cdebug_log(112,0) << "prev is V" << endl;
if (gnext->getYMax() < intervfrom.getMin()) { y = intervfrom.getMin();
} else if (gnext->getYMin() > intervfrom.getMax()){ y = intervfrom.getMax();
} else{ y = (max(gnext->getYMin(), intervfrom.getMin())+min(gnext->getYMax(), intervfrom.getMax()))/2;
}
if (isEast(prev)) x = gcurr->getXMax();
else if (isWest(prev)) x = gcurr->getXMin();
else x = intervfrom.getAxis();
} else {
cdebug_log(112,0) << "[ERROR](Point Vertex::getStartPathPoint() const: Something is wrong." << endl;
cdebug_tabw(112,-1);
return Point(0,0);
}
}
} else {
cdebug_log(112,0) << "[ERROR](Point Vertex::getStartPathPoint() const: Something is wrong." << endl;
cdebug_tabw(112,-1);
return Point(0,0);
}
cdebug_tabw(112,-1);
return Point(x,y);
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
bool Vertex::isH () const
{
GCell* gcell = getGCell();
if (gcell->isDevice()) return isiHorizontal();
else if ((gcell->isHChannel())||(gcell->isHRail())) return true;
2017-06-21 11:02:37 -05:00
else if (gcell->isStrut()| gcell->isMatrix() ) return ((gcell->getWidth() > gcell->getHeight())||(gcell->getWidth() == gcell->getHeight()));
else return false;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
bool Vertex::isV () const
{
GCell* gcell = getGCell();
if (gcell->isDevice()) return isiVertical();
else if ((gcell->isVChannel())||(gcell->isVRail())) return true;
2017-06-21 11:02:37 -05:00
else if (gcell->isStrut()|| gcell->isMatrix()) return gcell->getWidth() < gcell->getHeight();
else return false;
}
void Vertex::setIntervals ( Vertex* vcurr )
{
cdebug_log(112,1) << "!SETINTERVALS! ( Vertex* vcurr )" << endl;
Point pcurr;
if (isFromFrom2()){
vcurr->setFlags(Vertex::From2Mode);
pcurr = vcurr->getStartPathPoint(this);
vcurr->unsetFlags(Vertex::From2Mode);
} else {
pcurr = vcurr->getStartPathPoint(this);
}
Point pnext = vcurr->getNextPathPoint( pcurr, this );
cdebug_log(112,0) << "Pcurrent : X:" << DbU::getValueString(pcurr.getX()) << ", Y:" << DbU::getValueString(pcurr.getY()) << endl;
cdebug_log(112,0) << "Pneighbour: X:" << DbU::getValueString(pnext.getX()) << ", Y:" << DbU::getValueString(pnext.getY()) << endl;
DbU::Unit min, max, axis;
if (vcurr->isH()){
cdebug_log(112,0) << "case vcurr: Horizontal" << endl;
if ((vcurr->isiSet())&&(vcurr->hasValidStamp())){
cdebug_log(112,0) << "case set" << endl;
if (vcurr->getIMin() > pnext.getX()) {
min = pnext.getX();
max = vcurr->getIMax();
axis = vcurr->getIAxis();
} else if (vcurr->getIMax() < pnext.getX()) {
min = vcurr->getIMin();
max = pnext.getX();
axis = vcurr->getIAxis();
} else {
min = vcurr->getIMin();
max = vcurr->getIMax();
axis = vcurr->getIAxis();
}
} else {
cdebug_log(112,0) << "case not set" << endl;
axis = pcurr.getY();
bool hh = false;
if (vcurr->hasValidStamp() && (vcurr->getFrom() != NULL)){
GCell* gprev = vcurr->getGPrev(Vertex::UseFromFrom2);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (vprev->isH()) {
cdebug_log(112,0) << "----------------------------" << endl;
cdebug_log(112,0) << "HHCASE:" << endl;
cdebug_log(112,0) << "prev: " << vprev << endl;
cdebug_log(112,0) << "curr: " << vcurr << endl;
cdebug_log(112,0) << "next: " << this << endl;
cdebug_log(112,0) << "----------------------------" << endl;
hh = true;
}
}
if (hh){
GCell* gcurr = vcurr->getGCell();
GCell* gnext = getGCell();
IntervalC intervfrom = vcurr->getIntervFrom(UseFromFrom2);
vcurr->printIntervfrom();
if (gnext->getXMin() > intervfrom.getMax()){
//cdebug_log(112,0) << "1" << endl;
min = intervfrom.getMax();
max = gnext->getXMin();
} else if (gnext->getXMax() < intervfrom.getMin()){
//cdebug_log(112,0) << "2" << endl;
min = gnext->getXMax();
max = intervfrom.getMin();
} else {
//cdebug_log(112,0) << "3" << endl;
min = std::max(gcurr->getXMin(), intervfrom.getMin());
max = std::min(gcurr->getXMax(), intervfrom.getMax());
}
} else {
if (pcurr.getX() < pnext.getX()){
//cdebug_log(112,0) << "4" << endl;
min = pcurr.getX();
max = pnext.getX();
} else {
//cdebug_log(112,0) << "5" << endl;
max = pcurr.getX();
min = pnext.getX();
}
}
}
} else if (vcurr->isV()){
cdebug_log(112,0) << "case vcurr: Vertical" << endl;
if ((vcurr->isiSet())&&(vcurr->hasValidStamp())){
cdebug_log(112,0) << "case set" << endl;
if (vcurr->getIMin() > pnext.getY()) {
min = pnext.getY();
max = vcurr->getIMax();
axis = vcurr->getIAxis();
} else if (vcurr->getIMax() < pnext.getY()) {
min = vcurr->getIMin();
max = pnext.getY();
axis = vcurr->getIAxis();
} else {
min = vcurr->getIMin();
max = vcurr->getIMax();
axis = vcurr->getIAxis();
}
} else {
cdebug_log(112,0) << "case not set" << endl;
axis = pcurr.getX();
bool vv = false;
if (vcurr->hasValidStamp() && (vcurr->getFrom() != NULL)){
GCell* gprev = vcurr->getGPrev(Vertex::UseFromFrom2);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if ((vprev->isV())) {
cdebug_log(112,0) << "----------------------------" << endl;
cdebug_log(112,0) << "VVCASE:" << endl;
cdebug_log(112,0) << "prev: " << vprev << endl;
cdebug_log(112,0) << "curr: " << vcurr << endl;
cdebug_log(112,0) << "next: " << this << endl;
cdebug_log(112,0) << "----------------------------" << endl;
vv = true;
}
}
if (vv){
GCell* gcurr = vcurr->getGCell();
GCell* gnext = getGCell();
IntervalC intervfrom = vcurr->getIntervFrom(UseFromFrom2);
if (gnext->getYMin() > intervfrom.getMax()){
//cdebug_log(112,0) << "1" << endl;
min = intervfrom.getMax();
max = gnext->getYMin();
} else if (gnext->getYMax() < intervfrom.getMin()){
//cdebug_log(112,0) << "2" << endl;
min = gnext->getYMax();
max = intervfrom.getMin();
} else {
//cdebug_log(112,0) << "3" << endl;
min = std::max(gcurr->getYMin(), intervfrom.getMin());
max = std::min(gcurr->getYMax(), intervfrom.getMax());
}
} else {
if (pcurr.getY() < pnext.getY()){
//cdebug_log(112,0) << "4" << endl;
min = pcurr.getY();
max = pnext.getY();
} else {
//cdebug_log(112,0) << "5" << endl;
max = pcurr.getY();
min = pnext.getY();
}
}
}
} else {
cdebug_log(112,0) << "[ERROR](void Vertex::setIntervals(...)): Something is wrong." << endl;
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_tabw(112,-1);
return;
}
cdebug_log(112,0) << "IntervFrom => min: " << DbU::getValueString(min) << ", max: " << DbU::getValueString(max) << ", axis:" << DbU::getValueString(axis) << endl;
if (isFrom2Mode()) {
cdebug_log(112,0) << "SetIntervfrom2" << endl;
setIntervfrom2(min, max, axis);
}
else {
cdebug_log(112,0) << "SetIntervfrom" << endl;
setIntervfrom(min, max, axis);
}
cdebug_tabw(112,-1);
}
bool Vertex::areSameSide ( const Vertex* v1, const Vertex* v2 ) const
{
if ( (isNorth(v1) and isNorth(v2))
|| (isSouth(v1) and isSouth(v2))
|| (isWest (v1) and isWest (v2))
|| (isEast (v1) and isEast (v2))
) return true;
else return false;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::createAData ()
{
2017-06-21 11:02:37 -05:00
if (!getGCell()->isMatrix()){
if (_adata == NULL) _adata = GRAData::create();
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
bool Vertex::isiSet () const
{
2017-06-21 11:02:37 -05:00
if (_adata) return _adata->isiSet();
else return false;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
DbU::Unit Vertex::getIAxis () const
{
2017-06-21 11:02:37 -05:00
if (_adata) return _adata->getIAxis();
else {
if (_from){
//cdebug_log(112,0) << "DbU::Unit Vertex::getIAxis() const: Digital vertex. " << endl;
GCell* gcurr = getGCell();
GCell* gprev = _from->getOpposite(gcurr);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (isNorth(vprev)||isSouth(vprev))
return calcMidIntersection(gcurr->getXMin(), gcurr->getXMax(), gprev->getXMin(), gprev->getXMax());
else if (isWest (vprev)||isEast (vprev))
return calcMidIntersection(gcurr->getYMin(), gcurr->getYMax(), gprev->getYMin(), gprev->getYMax());
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getIAxis() const: Not a neighbour GCell. " << endl;
return 0;
}
} else {
if (isH()) return getGCell()->getXCenter();
else return getGCell()->getYCenter();
}
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
DbU::Unit Vertex::getIMax () const
{
if (_adata){
return _adata->getIMax();
} else {
2017-06-21 11:02:37 -05:00
if (_from){
//cdebug_log(112,0) << "DbU::Unit Vertex::getIMax() const: Digital vertex. " << endl;
GCell* gcurr = getGCell();
GCell* gprev = _from->getOpposite(gcurr);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (isH()){
if (isNorth(vprev)||isSouth(vprev)||isWest (vprev)) return getGCell()->getXCenter();
else if (isEast (vprev)) return getGCell()->getXMax();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getIMax() const: Not a neighbour GCell. " << endl;
return 0;
}
} else {
if (isWest(vprev)||isEast(vprev)||isSouth (vprev)) return getGCell()->getYCenter();
else if (isNorth (vprev)) return getGCell()->getYMax();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getIMax() const: Not a neighbour GCell. " << endl;
return 0;
}
}
} else {
if (isH()) return getGCell()->getXCenter();
else return getGCell()->getYCenter();
}
}
}
2017-06-21 11:02:37 -05:00
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
DbU::Unit Vertex::getIMin () const
{
if (_adata){
return _adata->getIMin();
} else {
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
if (_from) {
2017-06-21 11:02:37 -05:00
GCell* gcurr = getGCell();
GCell* gprev = _from->getOpposite(gcurr);
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
Vertex* vprev = gprev->getObserver<Vertex>( GCell::Observable::Vertex );
2017-06-21 11:02:37 -05:00
if (isH()){
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
if (isNorth(vprev) or isSouth(vprev) or isEast (vprev)) return getGCell()->getXCenter();
else if (isWest (vprev)) return getGCell()->getXMin();
2017-06-21 11:02:37 -05:00
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getIMin() const: Not a neighbour GCell. " << endl;
return 0;
}
} else {
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
if (isWest (vprev) or isEast(vprev) or isNorth (vprev)) return getGCell()->getYCenter();
else if (isSouth(vprev)) return getGCell()->getYMin();
2017-06-21 11:02:37 -05:00
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getIMin() const: Not a neighbour GCell. " << endl;
return 0;
}
}
} else {
if (isH()) return getGCell()->getXCenter();
else return getGCell()->getYCenter();
}
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
DbU::Unit Vertex::getPIAxis () const
{
if (_adata){
return _adata->getPIAxis();
} else {
2017-06-21 11:02:37 -05:00
//cdebug_log(112,0) << "DbU::Unit Vertex::getPIAxis() const: Digital vertex. " << endl;
if (_from){
GCell* gcurr = getGCell();
GCell* gprev = _from->getOpposite(gcurr);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (vprev->isH()){
if (vprev->isWest(this)||vprev->isEast (this)) return gprev->getYCenter();
else if (vprev->isSouth (this)) return gprev->getYMin();
else if (vprev->isNorth (this)) return gprev->getYMax();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIAxis() const: Not a neighbour GCell. " << endl;
return 0;
}
} else {
if (vprev->isNorth(this)||vprev->isSouth (this)) return gprev->getXCenter();
else if (vprev->isWest (this)) return gprev->getXMin();
else if (vprev->isEast (this)) return gprev->getXMax();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIAxis() const: Not a neighbour GCell. " << endl;
return 0;
}
}
} else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIAxis() const: Inappropriate usage of GRAData. " << endl;
return 0;
}
}
}
2017-06-21 11:02:37 -05:00
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
DbU::Unit Vertex::getPIMax () const
{
if (_adata){
return _adata->getPIMax();
} else {
2017-06-21 11:02:37 -05:00
//cdebug_log(112,0) << "DbU::Unit Vertex::getPIMax() const: Digital vertex. " << endl;
if (_from){
GCell* gcurr = getGCell();
GCell* gprev = _from->getOpposite(gcurr);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (vprev->isH()){
if (vprev->isSouth(this)||vprev->isWest(this)||vprev->isNorth(this)) return gprev->getXCenter();
else if (vprev->isEast (this)) return gprev->getXMax();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMax() const: Not a neighbour GCell. " << endl;
return 0;
}
} else {
if (vprev->isSouth(this)||vprev->isWest(this)||vprev->isEast(this)) return gprev->getYCenter();
else if (vprev->isNorth (this)) return gprev->getYMax();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMax() const: Not a neighbour GCell. " << endl;
return 0;
}
}
} else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMax() const: Inappropriate usage of GRAData. " << endl;
return 0;
}
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
DbU::Unit Vertex::getPIMin () const
{
if (_adata){
return _adata->getPIMin();
} else {
2017-06-21 11:02:37 -05:00
//cdebug_log(112,0) << "DbU::Unit Vertex::getPIMin() const: Digital vertex. " << endl;
if (_from){
GCell* gcurr = getGCell();
GCell* gprev = _from->getOpposite(gcurr);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if (vprev->isH()){
if (vprev->isSouth(this)||vprev->isWest(this)||vprev->isNorth(this)) return gprev->getXCenter();
else if (vprev->isWest (this)) return gprev->getXMin();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMin() const: Not a neighbour GCell. " << endl;
return 0;
}
} else {
if (vprev->isNorth(this)||vprev->isWest(this)||vprev->isEast(this)) return gprev->getYCenter();
else if (vprev->isSouth (this)) return gprev->getYMin();
else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMin() const: Not a neighbour GCell. " << endl;
return 0;
}
}
} else {
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMin() const: Inappropriate usage of GRAData. " << endl;
return 0;
}
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::setInterv ( DbU::Unit min, DbU::Unit max, DbU::Unit axis )
{
if (_adata){
_adata->setInterv(min, max, axis);
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "void Vertex::setInterv( DbU::Unit min, DbU::Unit max, DbU::Unit axis ): Inappropriate usage of GRAData. " << endl;
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::setIntervfrom ( DbU::Unit min, DbU::Unit max, DbU::Unit axis )
{
if (_adata){
_adata->setIntervfrom(min, max, axis);
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "void Vertex::setIntervfrom( DbU::Unit min, DbU::Unit max, DbU::Unit axis ): Inappropriate usage of GRAData. " << endl;
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::setIntervfrom2 ( DbU::Unit min, DbU::Unit max, DbU::Unit axis )
{
if (_adata){
_adata->setIntervfrom2(min, max, axis);
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "void Vertex::setIntervfrom2( DbU::Unit min, DbU::Unit max, DbU::Unit axis ): Inappropriate usage of GRAData. " << endl;
}
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::resetIntervals ()
{
if (_adata){
_adata->resetIntervals();
2017-06-21 11:02:37 -05:00
} /*else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "void Vertex::resetIntervals(): Inappropriate usage of GRAData. " << endl;
2017-06-21 11:02:37 -05:00
}*/
unsetFlags(iSet);
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
void Vertex::clearFrom2 ()
{
if (_adata){
_adata->clearFrom2();
2017-06-21 11:02:37 -05:00
}
}
Edge* Vertex::getFrom2() const
{
if (_adata){
if (hasValidStamp()) return _adata->getFrom2();
else return NULL;
} else {
2017-06-21 11:02:37 -05:00
//cdebug_log(112,0) << "Edge* Vertex::getFrom2() const: Inappropriate usage of GRAData. " << endl;
return NULL;
}
}
void Vertex::setFrom2( Edge* from )
{
if (_adata){
_adata->setFrom2(from);
} else {
2017-06-21 11:02:37 -05:00
if (from) cdebug_log(112,0) << "void Vertex::setFrom2( Edge* from ): Inappropriate usage of GRAData. " << endl;
}
}
DbU::Unit Vertex::getPIMax2() const
{
if (_adata){
return _adata->getPIMax2();
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMax2() const: Inappropriate usage of GRAData. " << endl;
return 0;
}
}
DbU::Unit Vertex::getPIMin2() const
{
if (_adata){
return _adata->getPIMin2();
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "DbU::Unit Vertex::getPIMin2() const: Inappropriate usage of GRAData. " << endl;
return 0;
}
}
DbU::Unit Vertex::getPIAxis2() const
{
if (_adata){
return _adata->getPIAxis2();
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "DbU::Unit Vertex::getPIAxis2() const: Inappropriate usage of GRAData. " << endl;
return 0;
}
}
IntervalC Vertex::getIntervFrom2() const
{
if (_adata){
return _adata->getIntervFrom2();
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "DbU::Unit Vertex::getIntervFrom2() const: Inappropriate usage of GRAData. " << endl;
return IntervalC();
}
}
IntervalC Vertex::getIntervFrom( uint32_t criteria ) const
{
if (_adata){
switch (criteria){
case Vertex::From2Mode:
if ((isFrom2Mode())&&(getFrom2() != NULL)){
cdebug_log(112,0) << "getIntervFrom:From2Mode:UseFrom2. " << endl;
return _adata->getIntervFrom2();
} else {
cdebug_log(112,0) << "getIntervFrom:From2Mode:UseFrom1. " << endl;
return _adata->getIntervFrom();
}
case Vertex::UseFromFrom2:
if ((isFromFrom2())&&(getFrom2() != NULL)){
cdebug_log(112,0) << "getIntervFrom:UseFromFrom2:UseFrom2. " << endl;
return _adata->getIntervFrom2();
} else {
cdebug_log(112,0) << "getIntervFrom:UseFromFrom2:UseFrom1. " << endl;
return _adata->getIntervFrom();
}
case 0:
cdebug_log(112,0) << "getIntervFrom:Default:UseFrom1. " << endl;
return _adata->getIntervFrom();
default:
cdebug_log(112,0) << "getIntervFrom:Default:UseFrom1. " << endl;
return _adata->getIntervFrom();
}
} else {
2017-06-21 11:02:37 -05:00
//cdebug_log(112,0) << "DbU::Unit Vertex::getIntervFrom(Flags criteria) const: Inappropriate usage of GRAData. " << endl;
return IntervalC(getPIMin(), getPIMax(), getPIAxis());
}
}
GCell* Vertex::getGPrev( uint32_t criteria ) const
{
if (_adata){
switch (criteria){
case Vertex::From2Mode:
if ((isFrom2Mode())&&(getFrom2() != NULL)){
cdebug_log(112,0) << "getGPrev:From2Mode:UseFrom2. " << endl;
return _adata->getFrom2()->getOpposite(getGCell());
} else {
cdebug_log(112,0) << "getGPrev:From2Mode:UseFrom1. " << endl;
if (_from) return getFrom()->getOpposite(getGCell());
else return NULL;
}
case Vertex::UseFromFrom2:
if ((isFromFrom2())&&(getFrom2() != NULL)){
cdebug_log(112,0) << "getGPrev:UseFromFrom2:UseFrom2. " << endl;
return _adata->getFrom2()->getOpposite(getGCell());
} else {
cdebug_log(112,0) << "getGPrev:UseFromFrom2:UseFrom1. " << endl;
if (_from) return getFrom()->getOpposite(getGCell());
else return NULL;
}
case 0:
cdebug_log(112,0) << "getGPrev:Default:UseFrom1. " << endl;
if (_from) return getFrom()->getOpposite(getGCell());
else return NULL;
default:
cdebug_log(112,0) << "getGPrev:Default:UseFrom1. " << endl;
if (_from) return getFrom()->getOpposite(getGCell());
else return NULL;
}
} else {
if (_from) return getFrom()->getOpposite(getGCell());
else return NULL;
}
}
IntervalC Vertex::getInterv() const
{
if (_adata){
return _adata->getInterv();
} else {
Synchronize priority of TrackSegments connecteds through doglegs. * Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls (lots of them causing a big shift right). * New: In Anabatic::TrackSegment, new helper structure SideStack to manage a set of aligned GCells and their various sides sizes. * Change: In Anabatic::TrackSegment::computeOptimal(), more accurate computation of attractors from global segments and variable size GCells using SideStack. * Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance for misaligned symmetrics from 2 to 5 tracks (should be enough for our narrow channel routing). * New: In Katana::TrackSegment, add a first flag to enable locking of priority. If it is set, calls to either "computePriority()" or "forcePriority()" will have no effect. Added the uint32_t flags paraphernalia. * New: In ::computeNetPriority(), overall function to control the call of TrackSegment::computeAlignedPriority(). The call is done from NegociateWindow::run(). * New: Katana::TrackSegment::computeAlignedPriority(), order the TrackSegments aligneds through doglegs to the one with the highest priority is routed first and others progressively from him. Done by forcing an ever decreasing priority on the aligneds ones. The amount of decrease is small so the aligned segments got routed (ordered) in close, if not contiguous, sequence. Priority is locked for the order to remain. * Bug: In Katana::TrackSegment::computePriority(), correct computation of the priority when there is more than 10 free tracks (a DbU::toLambda() call was missing, leading to very big priorities). * Change: In katana::TrackCost CTOR, do not compute a distance to fixed in the case of analog segments, this is backfiring. Slight change of the compare function when delta differs. Seems to improve a little.
2017-05-30 15:33:06 -05:00
cdebug_log(112,0) << "DbU::Unit Vertex::getInterv() const: Inappropriate usage of GRAData. " << endl;
return IntervalC();
}
}
void Vertex::printInterv() const
{
if (_adata){
_adata->printInterv();
} else {
2017-06-21 11:02:37 -05:00
cdebug_log(112,0) << "Interv => this is a digital vertex." << endl;
}
}
void Vertex::printIntervfrom() const
{
if (_adata){
_adata->printIntervfrom();
} else {
2017-06-21 11:02:37 -05:00
cdebug_log(112,0) << "IntervFrom => this is a digital vertex." << endl;
}
}
string Vertex::_getString () const
{
if (not _gcell) {
string s = "<Vertex [key] " + getString(_id) + ">";
return s;
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
string s = "<Vertex id:" + getString(_id)
+ " [" + DbU::getValueString(_gcell->getXMin())
+ " " + DbU::getValueString(_gcell->getYMin())
+ " " + DbU::getValueString(_gcell->getXMax())
+ " " + DbU::getValueString(_gcell->getYMax()) + "]"
//+ " rps:" + getString(_rpCount)
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
+ " deg:" + getString(_degree)
+ " connexId:" + ((_connexId >= 0) ? getString(_connexId) : "None")
+ " d:" + ((_distance == unreached) ? "unreached"
: ((_distance == unreachable) ? "unreachable"
: DbU::getValueString(_distance)) )
//+ "+" + getString(_branchId)
//+ " stamp:" + (hasValidStamp() ? "valid" : "outdated")
+ " from:" + ((_from) ? "set" : "NULL")
//+ " from2:" + ((_adata) ? _adata->getFrom2() : "NULL")
+ " restricted:"
+ (isNRestricted() ? "N" : "-")
+ (isSRestricted() ? "S" : "-")
+ (isERestricted() ? "E" : "-")
+ (isWRestricted() ? "W" : "-")
//+ " isiSet:" +(isiSet() ? "1" : "0")
+ ">";
return s;
}
void Vertex::notify ( Vertex* vertex, unsigned int flags )
{
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_log(111,0) << "Vertex::notify() " << vertex << endl;
// Take into account the GCell modification here.
}
Support for density estimation for the global router. * Bug: In Anabatic::Edge::getDistance(), remove the additionnal 0.1 added to horizontal edges. This was for testing before the hScaling parameter was added (to the distance computation in GlobalRoute). * New: Anabatic::Path_Edges, collectio to walkthrough all the edges between two node. More complex than in Knik as we are no longer using a regular grid. We may request the north bound path or south bound path. Collection returned by AnabaticEngine::getEdgesUnderPath(). * New: In Anabatic::NetData, add a new flag GlobalEstimated to tell if the net RMST has been computed (using FLUTE). * New: In Anabatic::PriorityQueue, used to sort Vertexes by increasing distances, add a new criterion to be used in case of distance equality. The attractor which should be the center of the search area. In case of equality, we choose the Vertex which is closest to the attractor. Give a small improvement, and more "dendritic" trees. For a more simple implementation of the comparison function it is made as a static member (so no two Dijkstra objects at the same time...). * Change: In Anabatic::Edge, make the estimate occupance a floating point number instead of an integer. * New: In Katana::GlobalRoute, finally implement the estimated congestion driven router. Net RMST estimated using FLUTE. Use the historic cost from Knik implementation and not the one given in Damien's thesis, which seems not be the same and a bit strange. * New: In KatanaEngine, add the ability to exclude nets from routing, and export it to Python.
2019-02-26 13:03:53 -06:00
// -------------------------------------------------------------------
// Class : "Anabatic::PrioriryQueue::CompareByDistance".
PriorityQueue* PriorityQueue::CompareByDistance::_pqueue = NULL;
bool PriorityQueue::CompareByDistance::operator() ( const Vertex* lhs, const Vertex* rhs ) const
Support for density estimation for the global router. * Bug: In Anabatic::Edge::getDistance(), remove the additionnal 0.1 added to horizontal edges. This was for testing before the hScaling parameter was added (to the distance computation in GlobalRoute). * New: Anabatic::Path_Edges, collectio to walkthrough all the edges between two node. More complex than in Knik as we are no longer using a regular grid. We may request the north bound path or south bound path. Collection returned by AnabaticEngine::getEdgesUnderPath(). * New: In Anabatic::NetData, add a new flag GlobalEstimated to tell if the net RMST has been computed (using FLUTE). * New: In Anabatic::PriorityQueue, used to sort Vertexes by increasing distances, add a new criterion to be used in case of distance equality. The attractor which should be the center of the search area. In case of equality, we choose the Vertex which is closest to the attractor. Give a small improvement, and more "dendritic" trees. For a more simple implementation of the comparison function it is made as a static member (so no two Dijkstra objects at the same time...). * Change: In Anabatic::Edge, make the estimate occupance a floating point number instead of an integer. * New: In Katana::GlobalRoute, finally implement the estimated congestion driven router. Net RMST estimated using FLUTE. Use the historic cost from Knik implementation and not the one given in Damien's thesis, which seems not be the same and a bit strange. * New: In KatanaEngine, add the ability to exclude nets from routing, and export it to Python.
2019-02-26 13:03:53 -06:00
{
if (lhs->getDistance() == rhs->getDistance()) {
if (_pqueue and _pqueue->hasAttractor()) {
DbU::Unit lhsDistance = _pqueue->getAttractor().manhattanDistance( lhs->getCenter() );
DbU::Unit rhsDistance = _pqueue->getAttractor().manhattanDistance( rhs->getCenter() );
cdebug_log(112,0) << "CompareByDistance: lhs:" << DbU::getValueString(lhsDistance)
<< " rhs:" << DbU::getValueString(rhsDistance) << endl;
if (lhsDistance != rhsDistance) return lhsDistance < rhsDistance;
}
return lhs->getBranchId() > rhs->getBranchId();
}
return lhs->getDistance() < rhs->getDistance();
}
// -------------------------------------------------------------------
// Class : "Anabatic::Dijkstra".
Dijkstra::Mode::~Mode ()
{ }
string Dijkstra::Mode::_getTypeName () const
{ return "Anabatic::Dijkstra::Mode"; }
string Dijkstra::Mode::_getString () const
{
string s = "";
s += (_flags & Standart ) ? 'S' : '-';
s += (_flags & Monotonic) ? 'M' : '-';
return s;
}
DbU::Unit Dijkstra::_distance ( const Vertex* current, const Vertex* vneighbour, const Edge* e )
{
if (Vertex::isRestricted(current, vneighbour, e)) return Vertex::unreachable;
else return current->getDistance() + e->getDistance();
}
2017-06-21 11:02:37 -05:00
/*U::Unit calcDistance( Point p1, Point p2 )
{
return abs(p1.getX()-p2.getX()) + abs(p1.getY()-p2.getY());
}
2017-06-21 11:02:37 -05:00
DbU::Unit calcMidIntersection( DbU::Unit imin1, DbU::Unit imax1, DbU::Unit imin2, DbU::Unit imax2 )
{
if ( (imin1 > imax1)
|| (imin2 > imax2)
){
cerr << "DbU::Unit calcMidIntersection(...): Wrong parameters." << endl;
return 0;
}
if ( (imin1 > imax2)
|| (imax1 < imin2)
) {
cerr << "DbU::Unit calcMidIntersection(...): No intersection." << endl;
return 0;
}
return ( max(imin1, imin2) + min(imax1, imax2) )/2;
}*/
Dijkstra::Dijkstra ( AnabaticEngine* anabatic )
: _anabatic (anabatic)
, _vertexes ()
, _distanceCb (_distance)
, _mode (Mode::Standart)
, _net (NULL)
, _stamp (-1)
, _sources ()
, _targets ()
, _searchArea ()
, _searchAreaHalo(0)
, _connectedsId (-1)
, _queue ()
, _flags (0)
{
const vector<GCell*>& gcells = _anabatic->getGCells();
for ( GCell* gcell : gcells ) {
_vertexes.push_back( new Vertex (gcell) );
}
_anabatic->getMatrix()->show();
}
Dijkstra::~Dijkstra ()
{
for ( Vertex* vertex : _vertexes ) delete vertex;
}
DbU::Unit Dijkstra::getAntennaGateMaxWL () const
{ return _anabatic->getAntennaGateMaxWL(); }
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
Point Dijkstra::_getPonderedPoint() const
{
vector<RoutingPad*> rps;
int cpt = 0;
DbU::Unit x = 0;
DbU::Unit y = 0;
for ( Component* component : _net->getComponents() ) {
RoutingPad* rp = dynamic_cast<RoutingPad*>( component );
if (rp) rps.push_back( rp );
}
for ( auto rp : rps ) {
x += rp->getBoundingBox().getCenter().getX();
y += rp->getBoundingBox().getCenter().getY();
cpt++;
}
return Point(x/cpt, y/cpt);
}
void Dijkstra::loadFixedGlobal ( Net* net )
{
NetData* netData = _anabatic->getNetData( net );
netData->setGlobalRouted( true );
netData->setGlobalFixed ( true );
for ( Component* component : net->getComponents() ) {
Horizontal* horizontal = dynamic_cast<Horizontal*>( component );
if (horizontal) {
if (not Session::isGLayer(horizontal->getLayer())) {
cerr << Error( "Dijsktra::loadFixedGlobal(): A component of \"%s\" has not a global layer.\n"
" (%s)"
, getString(net->getName()).c_str()
, getString(component).c_str()
) << endl;
continue;
}
GCell* begin = _anabatic->getGCellUnder( horizontal->getSource()->getPosition() );
GCell* end = _anabatic->getGCellUnder( horizontal->getTarget()->getPosition() );
for ( Edge* edge : _anabatic->getEdgesUnderPath(begin,end) )
edge->add( horizontal );
}
Vertical* vertical = dynamic_cast<Vertical*>( component );
if (vertical) {
if (not Session::isGLayer(vertical->getLayer())) {
cerr << Error( "Dijsktra::loadFixedGlobal(): A component of \"%s\" has not a global layer.\n"
" (%s)"
, getString(net->getName()).c_str()
, getString(component).c_str()
) << endl;
continue;
}
GCell* begin = _anabatic->getGCellUnder( vertical->getSource()->getPosition() );
GCell* end = _anabatic->getGCellUnder( vertical->getTarget()->getPosition() );
for ( Edge* edge : _anabatic->getEdgesUnderPath(begin,end,Flags::NorthPath) )
edge->add( vertical );
}
}
}
void Dijkstra::load ( Net* net )
{
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
_cleanup();
_net = net;
_stamp = _anabatic->incStamp();
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
DebugSession::open( _net, 112, 120 );
cdebug_log(112,1) << "Dijkstra::load() " << _net << endl;
vector<RoutingPad*> rps;
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
NetRoutingState* state = NetRoutingExtension::get( _net );
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
if (state) {
if (state->isSelfSym()) {
cdebug_log(112,0) << "Dijkstra::SELF SYMMETRY CASE " << DbU::getValueString(state->getSymAxis()) << endl;
}
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
state->unsetFlags( NetRoutingState::HasAntenna );
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
}
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
for ( Component* component : _net->getComponents() ) {
RoutingPad* rp = dynamic_cast<RoutingPad*>( component );
if (rp) {
if (_attachSymContactsHook(rp)) continue; // ANALOG
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "@ frp:" << rp << endl;
rps.push_back( rp );
}
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
}
if (rps.size() < 2) {
cdebug_tabw(112,-1);
return;
}
Analog integration part II. Analog place & route (slicing tree). * Change: In Hurricane::CellWidget, set the minimal size to 350 pixels to fit my normal DPI secondary screen... * Change: In Hurricane::Error(), reactivate the backtrace generation by default. Seriously slow down the program each time an Error is to be constructed. * Bug: In Analog::Device::preCreate(), check for NULL Technology before attempting to use it. * Change: In Hurricane/Analog, remove all '*Arguments*' classes and their Python interface. It was an obsoleted way of passing devices parameters to the Python layout generators (located in Oroshi). Now we just get them straight from the Device with the getParamter() method. * Change: In CRL::System CTOR, add Python pathes for Oroshi & Karakaze. * Change: In Oroshi/Python/WIP_*.py layout generator scripts, remove all uses of the "Arguments". Directly access the parameters through the device itself. Make the checkCoherency() with identical arguments as of layout(). * New: Bora tool that performs analog place & route. Based on a slicing tree representation. It is the thesis work of Eric Lao. Code beautyfication and some programming cleanup. * New: Karakaze tool, provide the Python base class AnalogDesign used to build an analog design. Create/configure devices and assemble them in a slicing tree. * Change: In Unicorn/cgt.py, display the stack trace in case of an ImportError exception as well as for other exceptions. Add Bora to the set for included tool engines.
2018-10-18 11:10:01 -05:00
uint32_t driverCount = 0;
for ( auto rp : rps ) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (not _anabatic->getConfiguration()->selectRpComponent(rp))
cerr << Warning( "Dijktra::load(): %s has no components on grid.", getString(rp).c_str() ) << endl;
cdebug_log(112,0) << "@ rp: " << rp << ", getCenter(): " << rp->getBoundingBox().getCenter() << endl;
Point center = rp->getBoundingBox().getCenter();
GCell* gcell = _anabatic->getGCellUnder( center );
Box bb = rp->getBoundingBox();
bool isDriver = false;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << bb.getXMin() << " " << bb.getXMax() << endl;
cdebug_log(112,0) << "center X:" << center.getX() << " gcell Xmax:" << gcell->getXMax() << endl;
Migrating the initialisation system to be completely Python-like. * New: In bootstrap/coriolisEnv.py, add the "etc" directory to the PYTHONPATH as initialization are now Python modules. * New: In Hurricane/analogic, first groundwork for the integration of PIP/MIM/MOM multi-capacitors. Add C++ and Python interface for the allocation matrix and the list of capacities values. * Change: In Hurricane::RegularLayer, add a layer parameter to the constructor so the association between the RegularLayer and it's BasicLayer can readily be done. * Change: In Hurricane::Layer, add a new getCut() accessor to get the cut layer in ViaLayer. * Change: In Hurricane::DataBase::get(), the Python wrapper should no longer consider an error if the data-base has not been created yet. Just return None. * Bug: In Isobar::PyLayer::getEnclosure() wrapper, if the overall enclosure is requested, pass the right parameter to the C++ function. * Change: In AllianceFramework, make public _bindLibraries() and export it to the Python interface. * Change: In AllianceFramework::create(), do not longer call bindLibraries(). This now must be done explicitely and afterwards. * Change: In AllianceFramework::createLibrary() and Environement::addSYSTEM_LIBRARY(), minor bug corrections that I don't recall. * Change: In SearchPath::prepend(), set the selected index to zero and return it. * Change: In CRL::System CTOR, add "etc" to the PYTHONPATH as the configuration files are now organized as Python modules. * New: In PyCRL, export the CRL::System singleton, it's creation is no longer triggered by the one of AllianceFramework. * New: In CRL/etc/, convert most of the configuration files into the Python module format. For now, keep the old ".conf", but that are no longer used. For the real technologies, we cannot keep the directory name as "180" or "45" as it not allowed by Python syntax, so we create "node180" or "node45" instead. Most of the helpers and coriolisInit.py are no longer used now. To be removed in future commits after being sure that everything works... * Bug: In AutoSegment::makeDogleg(AutoContact*), the layer of the contacts where badly computed when one end of the original segment was attached to a non-preferred direction segment (mostly on terminal contacts). Now use the new AutoContact::updateLayer() method. * Bug: In Dijkstra::load(), limit symetric search area only if the net is a symmetric one ! * Change: In Katana/python/katanaInit.py, comply with the new initialisation scheme. * Change: In Unicorn/cgt.py, comply to the new inititalization scheme. * Change: In cumulus various Python scripts remove the call to helpers.staticInitialization() as they are not needed now (we run in only *one* interpreter, so we correctly share all init). In plugins/__init__.py, read the new NDA directory variable. * Bug: In cumulus/plugins/Chip.doCoronafloorplan(), self.railsNb was not correctly managed when there was no clock. * Change: In cumulus/plugins/Configuration.coronaContactArray(), compute the viaPitch from the technology instead of the hard-coded 4.0 lambdas. In Configuration.loadConfiguration(), read the "ioring.py" from the new user's settings module. * Bug: In stratus.dpgen_ADSB2F, gives coordinates translated into DbU to the XY functions. In st_model.Save(), use the VstUseConcat flag to get correct VST files. In st_net.hur_net(), when a net is POWER/GROUND or CLOCK also make it global. * Change: In Oroshi/python/WIP_Transistor.py, encapsulate the generator inside a try/except block to get prettier error (and stop at the first).
2019-10-28 12:09:14 -05:00
if (state and state->isSymmetric()) _limitSymSearchArea( rp );
if (not gcell) {
cerr << Error( "Dijkstra::load(): %s\n"
" @%s of %s is not under any GCell.\n"
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
" It will be ignored so the routing may be incomplete."
, getString(rp).c_str()
, getString(center).c_str()
, getString(_net).c_str()
) << endl;
continue;
}
Net* rpNet = NULL;
Plug* plug = dynamic_cast<Plug*>( rp->getPlugOccurrence().getEntity() );
if (plug) {
rpNet = plug->getMasterNet();
if (rpNet->getDirection() & Net::Direction::DirOut) {
cdebug_log(112,0) << "Driver/cell: " << rp << endl;
cdebug_log(112,0) << "masterNet: " << rpNet << endl;
++driverCount;
isDriver = true;
}
} else {
Pin* pin = dynamic_cast<Pin*>( rp->getPlugOccurrence().getEntity() );
if (pin) {
rpNet = pin->getNet();
if (rpNet->getDirection() & Net::Direction::DirIn) {
cdebug_log(112,0) << "Driver/pin: " << rp << endl;
cdebug_log(112,0) << "masterNet: " << rpNet << endl;
++driverCount;
isDriver = true;
}
}
}
_searchArea.merge( gcell->getBoundingBox() ); // TO CHANGE
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "| Merged search area: " << _searchArea << ", gcell: " << gcell << endl;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
Vertex* seed = gcell->getObserver<Vertex>(GCell::Observable::Vertex);
GCell* gseed = seed->getGCell();
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (gseed->isAnalog()) _setSourcesGRAData( seed, rp ); // ANALOG
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "| seed->isH(): " << seed->isH()
<< " seed->isV(): " << seed->isV() << endl;
if (seed->getConnexId() < 0) {
VertexSet connecteds;
_getConnecteds( seed, connecteds );
++_connectedsId;
for ( Vertex* vertex : connecteds ) {
Upgrade of Katana detailed router to support Arlet 6502. * Change: In Hurricane::SharedName, replace the incremental Id by a hash key. This is to ensure better deterministic properties. Between use cases, additional strings may have to be allocated, shitfing the ids. Even if hash can be duplicated, we should be able to ensure that the absolute order in map table should be preserved. Supplemental strings are inserted in a way that keep the previous order. * Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge" default parameter value ("sxlib"). * Change: In CRL/etc/common/technology.conf, define minimal spacing for symbolic layers too (added for METAL4 only for now). * Change: In CRL::Histogram, extend support to dynamically sized histograms. Add a text pretty print with table and pseudo-curve. * Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the block corona corners so the global router do not draw wire under them. This was creating deadlock for the detailed router. When the abutment has to be computed, directly use Etesian to do it instead of duplicating the computation in the Python plugin. * New: In Etesian, as Coloquinte seems reluctant to evenly spread the standard cells, we trick it by making them bigger during the placement stage. Furthermore, we do not not uniformely increase the size of the cells but create a "bloating profile" based on cell size, cell name or it's density of terminals. Currently only two profiles are defined, "disabled" which does nothing and "nsxlib" targeted on 4 metal layer technologies (aka AMS 350nm, c35b4). * Bug: In Knik::MatrixVertex, load the default routing gauge using the configuration parameter "katabatic.routingGauge" as the default one may not be the first registered one. * New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of the nets terminal numbers. * Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the contact cache when topology is invalidated. In case of multiple invalidations, if the first did not invalidate the cache, later one that may need it where not allowed to do so. The end result was correct nonetheless, but it did generate annoying error messages. * Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation of the contact's depth when delta == 2. * Bug: In Anabatic::Gcell::getCapacity(), was always returning the west edge capacity, even for the westermost GCell, should be the east edge in that case. * New: In Anabatic::AutoSegment, introduce a new measure "distance to terminal". This is the minimal number of segments separating the current one from the nearest RoutingPad. This replace the previous "strong terminal" and "weak terminal" flags. This distance is used by Katana to sort the events, we route the segments *from* the RoutingPads *outward*. The idea being that if we cannot event connect to the RoutingPad, there is no points continuing as thoses segments are the more constraineds. This gives an order close to the simple ascending metals but with better results. * New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable dogleg making on those segments. mainly intended for local segments directly connecteds to RoutingPads (distance == 0). * New: In Anabatic::AutoSegment, more aggressive reducing of segments. Now the only case where a segment cannot be reduced is when it is one horizontal branch in a HTee or a vertical on a VTee. Check if, when not accounted the source & target VIAs are still connex, if so, allow reducing. * New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg mainly to prevent making doglegs twice on a turn contact. This is to limit over-fragmentation. If one dogleg doesn't solve the problem, making a second one will make things worse only... * Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing the component with the *smallest* span instead of the *bigger* one. * New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that no turn go be made inside those GCells. Mainly used underneath a block corona. * New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage GCells with too many terminals. Slacken at least one RoutingPad access when there is more than 8 RoutingPad in the GCell (slacken or change a vertical METAL2 (non-preferred) into a METAL3). * Change: In Anabatic::NetBuilderHV, allow the use of terminal connection in non-preferred direction. That is, vertical METAL2 directly connected to the RoutingPad (then a horizontal METAL2). This alllows for short dogleg without clutering the METAL3 layer (critical for AMS c35b4). Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag. Perform some other tweaking on METAL1 access topologies, to also minimize METAL3 use. * New: In AnabaticEngine::computeNetConstraints(), also compute the distance to RoutingPad for segments. Set the Unbreakable flag, based on the distance and segment length (local, short global or long global). New local function "propagateDistanceFromRp()". * Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder, is modificated so net with a degree superior to 10 are sorted first, whatever their sparsity. This is to work in tandem with GlobalRouting. * New: In Katana::TrackSegmentNonPref, introduce a class to manage segment in non-preferred routing direction. Mostly intended for small METAL2 vertical directly connected to RoutingPad. Modifications to manage this new variant all through Katana. * Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag of the GCell. Do not make bend inside thoses GCells. * Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are routed first and whitout the global routing estimation. There should be few of them so they wont create saturations and we want them as straight as possible. Detour are for long be-points. Set the saerch halo to one GCell in the initial routing stage (before ripup). * Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints() inside NegociateWindow::run(), as segments are inserted into tracks only at that point so we cannot make the computation earlier. * Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to select whether to replace the perpandiculars *after* or *before* the current segment. * Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the segment is fully enclosed inside a global, the longest overlap cost is set to the shortest global hoverhang (before or after). When the cost is for a global, set an infinite cost if the overlapping segment has a RP distance less or equal to 1 (this is an access segment). * Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of the segments extension cap. * New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad. * Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints to any turn connected to the first segment of the RoutingPad so the perpandicular constraints got propagated to the perpandicular segment... * Change: In RoutingEvent, cache the "distance to RP" value. * Change: In RoutingEvent::Key::compare(), sort *first* on distance to RoutingPad, then layer depth. If both distance to RoutingPad is null, then sort on segment length. * Change: In RoutingEvent::_processRepair(), try a repack perpandicular with perpandiculars first (then with perpandicular last, then give up). * Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint when creating the insertion event. * Change: In SegmentFsm::_slackenStrap(), add a step through slacken between minimize and maximum slack (wihch directly end up in unimplemented). * Change: In Session::_addInsertEvent(), add an axis parameter needed when the axis of the segment is not the one of the track (case of wide segments or non-preferred direction). * Bug: In Track::_preDestroy(), bad management of the TrackElement reference count. Destroy the segment only when reaching zero... * Bug: In Track::expandFreeIneterval(), forgotten to manage case when there is a set of overlaping segments at the "end" of the track, the EndIsTrackMax was not set. * Change: In TrackCost::Compare, increase the cost when an overlaping segment is at it's ripup limit. We should try *not* to rip it up if we can. Add a dedicated flag "AtRipupLimit". * Change: In TrackElement, add proxies for isUnbreakable(), new function updateTrackSpan(). * New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is found, make the underlying GCells "GoStraight". * New: In TrackElement::canDogleg(GCell*), check for already done perpandicular dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
vertex->getGCell()->flags().reset( Flags::GoStraight );
vertex->setDistance ( Vertex::unreached );
vertex->setStamp ( _stamp );
vertex->setConnexId ( _connectedsId );
vertex->setBranchId ( 0 );
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
vertex->setDegree ( 0 );
vertex->setRpCount ( 0 );
vertex->setFrom ( NULL );
if (isDriver)
vertex->setDriver( true );
vertex->setFrom2 ( NULL);
vertex->unsetFlags ( Vertex::UseFromFrom2 );
vertex->clearRestriction();
_targets.insert( vertex );
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
}
for ( Vertex* vertex : connecteds ) {
int degree = 0;
for ( Edge* edge : vertex->getGCell()->getEdges() ) {
Vertex* neighbor = vertex->getNeighbor( edge );
if (vertex->hasValidStamp() and neighbor->hasValidStamp()) ++degree;
}
vertex->setDegree( degree );
cdebug_log(112,0) << "| Add: " << vertex << endl;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
}
}
seed->incRpCount();
Contact* vcontact = seed->getGContact( _net );
rp->getBodyHook()->detach();
rp->getBodyHook()->attach( vcontact->getBodyHook() );
}
if (driverCount == 0) {
cerr << Error( "Diskstra::load(): Net \"%s\" do not have a driver.\n"
, getString(_net->getName()).c_str()
) << endl;
}
if (driverCount > 1) {
cerr << Error( "Diskstra::load(): Net \"%s\" have multiple drivers (%u).\n"
, getString(_net->getName()).c_str(), driverCount
) << endl;
}
if (state and state->isSymmetric() and not state->isSelfSym() and state->isSymMaster()) {
if (state->isSymVertical()) {
if ( (_searchArea.getXMin() < state->getSymAxis())
and (_searchArea.getXMax() > state->getSymAxis()) ) {
cerr << Error( "Diskstra::load(): For net \"%s\" (paired with \"%s\"),\n"
" Vertical symmetry axis @%s is inside the net area %s."
, getString(_net->getName()).c_str()
, getString(state->getSymNet()->getName()).c_str()
, DbU::getValueString(state->getSymAxis()).c_str()
, getString(_searchArea).c_str()
) << endl;
}
}
if (state->isSymHorizontal()) {
if ( (_searchArea.getYMin() < state->getSymAxis())
and (_searchArea.getYMax() > state->getSymAxis()) ) {
cerr << Error( "Diskstra::load(): For net \"%s\" (paired with \"%s\"),\n"
" Horizontal symmetry axis @%s is inside the net area %s."
, getString(_net->getName()).c_str()
, getString(state->getSymNet()->getName()).c_str()
, DbU::getValueString(state->getSymAxis()).c_str()
, getString(_searchArea).c_str()
) << endl;
}
}
}
_searchArea.inflate( _searchAreaHalo );
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
cdebug_log(112,0) << "Search halo: " << DbU::getValueString(_searchAreaHalo) << endl;
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_log(112,0) << "Search area: " << _searchArea << endl;
setAxisTargets();
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_tabw(112,-1);
DebugSession::close();
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
}
void Dijkstra::unsetAxisTargets ()
{
NetRoutingState* state = NetRoutingExtension::get( _net );
if (state){
if (state->isSelfSym()){
Cell* cell = _anabatic->getCell();
_queue.clear();
GCell* gcell = NULL;
if (state->isSymVertical()){
gcell = _anabatic->getGCellUnder( Point( state->getSymAxis()
, _anabatic->getCell()->getAbutmentBox().getYMin()
) );
} else if (state->isSymHorizontal()){
gcell = _anabatic->getGCellUnder( Point( _anabatic->getCell()->getAbutmentBox().getXMin()
, state->getSymAxis()
) );
}
if (gcell) {
_queue.push(gcell->getObserver<Vertex>(GCell::Observable::Vertex));
}
while ( not _queue.empty() ) {
Vertex* current = _queue.top();
_queue.pop();
if ( (state->isSymVertical() && (!current->isNRestricted()) && (!current->isSRestricted()))
||(state->isSymHorizontal() && (!current->isERestricted()) && (!current->isWRestricted()))
){
current->unsetFlags(Vertex::AxisTarget);
}
if (state->isSymVertical()){
// check North
for ( Edge* edge : current->getGCell()->getNorthEdges() ) {
GCell* gnext = edge->getOpposite(current->getGCell());
Vertex* vnext = gnext->getObserver<Vertex>(GCell::Observable::Vertex);
if ( (gnext->getXCenter() == state->getSymAxis())
&& (gnext->getYMin() <= cell->getAbutmentBox().getYMax())
) _queue.push( vnext );
}
} else if (state->isSymHorizontal()){
// check East
for ( Edge* edge : current->getGCell()->getNorthEdges() ) {
GCell* gnext = edge->getOpposite(current->getGCell());
Vertex* vnext = gnext->getObserver<Vertex>(GCell::Observable::Vertex);
2017-06-21 11:02:37 -05:00
if ( (gnext->getXCenter() == state->getSymAxis())
&& (gnext->getXMin() <= cell->getAbutmentBox().getXMax())
) _queue.push( vnext );
}
}
}
}
}
}
void Dijkstra::setAxisTargets ()
{
NetRoutingState* state = NetRoutingExtension::get( _net );
if (state){
if (state->isSelfSym()){
2017-05-11 04:24:19 -05:00
cdebug_log(112,0) << "void Dijkstra::setAxisTargets (): " << endl;
Cell* cell = _anabatic->getCell();
_queue.clear();
GCell* gcell = NULL;
if (state->isSymVertical()){
gcell = _anabatic->getGCellUnder( Point( state->getSymAxis()
, _anabatic->getCell()->getAbutmentBox().getYMin()
) );
} else if (state->isSymHorizontal()){
gcell = _anabatic->getGCellUnder( Point( _anabatic->getCell()->getAbutmentBox().getXMin()
, state->getSymAxis()
) );
}
if (gcell) {
_queue.push(gcell->getObserver<Vertex>(GCell::Observable::Vertex));
setFlags(Mode::AxisTarget);
cdebug_log(112,0) << "Find axis targets: " << endl;
}
while ( not _queue.empty() ) {
Vertex* current = _queue.top();
GCell* gcurr = current->getGCell();
_queue.pop();
if ( (state->isSymVertical() && (!current->isNRestricted()) && (!current->isSRestricted()) && (gcurr->getXCenter() == state->getSymAxis()) )
||(state->isSymHorizontal() && (!current->isERestricted()) && (!current->isWRestricted()) && (gcurr->getYCenter() == state->getSymAxis()) )
){
current->setDistance ( Vertex::unreached );
current->setStamp ( _stamp );
current->setConnexId( -1 );
current->setFlags(Vertex::AxisTarget);
cdebug_log(112,0) << "isAxisTarget: " << current << endl;
}
if (state->isSymVertical()){
// check North
for ( Edge* edge : current->getGCell()->getNorthEdges() ) {
GCell* gnext = edge->getOpposite(current->getGCell());
Vertex* vnext = gnext->getObserver<Vertex>(GCell::Observable::Vertex);
if ( ( (state->getSymAxis() >= gnext->getXMin()) && (state->getSymAxis() <= gnext->getXMax()) )
&& (gnext->getYMin() <= cell->getAbutmentBox().getYMax())
){
_queue.push( vnext );
} else { cdebug_log(112,0) << "isNOT: " << gnext << endl;
}
}
} else if (state->isSymHorizontal()){
// check East
for ( Edge* edge : current->getGCell()->getEastEdges() ) {
GCell* gnext = edge->getOpposite(current->getGCell());
Vertex* vnext = gnext->getObserver<Vertex>(GCell::Observable::Vertex);
if ( ( (state->getSymAxis() >= gnext->getYMin()) && (state->getSymAxis() <= gnext->getYMax()) )
&& (gnext->getXMin() <= cell->getAbutmentBox().getXMax())
) {
_queue.push( vnext );
} else { cdebug_log(112,0) << "isNOT: " << gnext << endl;
}
}
2017-06-21 11:02:37 -05:00
}
}
}
}
}
void Dijkstra::_selectFirstSource ()
{
if (_targets.empty()) {
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
#if 0
cparanoid << Error( "Dijkstra::_selectFirstSource(): %s has no vertexes to route, ignored."
, getString(_net).c_str()
) << endl;
#endif
return;
}
Vertex* firstSource = NULL;
VertexSet drivers;
for ( Vertex* vertex : _targets ) {
if (vertex->isDriver()) drivers.insert( vertex );
}
if (drivers.empty()) drivers = _targets;
#if THIS_IS_DISABLED
if (_mode & Mode::Monotonic) {
if (_targets.size() == 2) {
auto ivertex = _targets.begin();
Vertex* v1 = *ivertex;
Vertex* v2 = *(++ivertex);
firstSource = (v1->getCenter().getX() <= v2->getCenter().getY()) ? v1 : v2;
} else {
cerr << Error( "Dijkstra::_selectFirstSource(): %s cannot be routed in monotonic mode.\n"
" Must have exactly two terminals (%u), revert to Standart."
, getString(_net).c_str()
, _targets.size()
) << endl;
_mode = Mode::Standart;
}
}
#endif
if (not firstSource) {
// Standart routing.
bool hasDevice = false;
for ( Vertex* vertex : drivers ) {
if (vertex->getGCell()->isDevice()) hasDevice = true;
}
Point areaCenter;
if (hasDevice) areaCenter = _getPonderedPoint();
else areaCenter = _searchArea.getCenter();
auto ivertex = drivers.begin();
firstSource = *ivertex++;
DbU::Unit minDistance = areaCenter.manhattanDistance( firstSource->getCenter() );
for ( ; ivertex != drivers.end() ; ++ivertex ) {
DbU::Unit distance = areaCenter.manhattanDistance( (*ivertex)->getCenter() );
if (distance < minDistance) {
minDistance = distance;
firstSource = *ivertex;
}
}
}
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
for ( auto ivertex = _targets.begin() ; ivertex != _targets.end() ; ) {
auto inext = ivertex; inext++;
if ((*ivertex)->getConnexId() == firstSource->getConnexId()) {
_sources.insert( *ivertex );
_targets.erase ( ivertex );
}
ivertex = inext;
}
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_log(112,0) << "Dijkstra::_selectFirstSource() " << *_sources.begin() << endl;
}
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
void Dijkstra::_cleanup ()
{
//_checkEdges();
_sources.clear();
_targets.clear();
_queue.clear();
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
_searchArea.makeEmpty();
_connectedsId = 0;
}
bool Dijkstra::_propagate ( Flags enabledSides )
{
2017-05-11 04:24:19 -05:00
cdebug_log(112,1) << "Dijkstra::_propagate() " << _net << endl;
while ( not _queue.empty() ) {
cdebug_log(111,0) << "Number of targets left: " << _targets.size()
<< " and needaxis? " << needAxisTarget() << endl;
_queue.dump();
Vertex* current = _queue.top();
GCell* gcurrent = current->getGCell();
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,1) << "Current:" << current << endl;
//cdebug_log(111,0) << "isAxisTarget():" << current->isAxisTarget() << endl;
_queue.pop();
if ( current->isAxisTarget() and needAxisTarget()) unsetFlags(Mode::AxisTarget);
else if ((current->getConnexId() == _connectedsId) or (current->getConnexId() < 0)) {
2017-06-21 11:02:37 -05:00
cdebug_log(111,0) << "Looking for neighbors:" << endl;
for ( Edge* edge : current->getGCell()->getEdges() ) {
cdebug_log(111,0) << "@ Edge " << edge << endl;
if (edge == current->getFrom()) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Reject: edge == current->getFrom()" << endl;
continue;
}
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if ((gcurrent->isAnalog()) and _checkFrom2(edge, current)) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Reject: _checkFrom2()" << endl;
continue;
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
Vertex* vneighbor = current->getNeighbor( edge );
if (vneighbor->isAnalog()) vneighbor->createAData();
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "| Neighbor:" << vneighbor << endl;
if (vneighbor->getConnexId() == _connectedsId) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Reject: Neighbor already reached (has connectedsId)" << endl;
continue;
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (not _searchArea.intersect(vneighbor->getBoundingBox())) {
cdebug_log(111,0) << "> Reject: not in _searchArea: " << _searchArea << ", vneighbor area: " << vneighbor->getBoundingBox() << endl;
continue;
}
////////////////////////////////////// DEBUG //////////////////////////////////////
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
//if (current->getFrom()) {
// cdebug_log(111,0) << "| From: " << current->getFrom()->getOpposite(gcurrent) << endl;
////current->getIntervFrom().print();
//}
//if (gcurrent->isAnalog() and current->getFrom2()) {
// cdebug_log(111,0) << "| From2: " << current->getFrom2()->getOpposite(gcurrent) << endl;
// current->getIntervFrom2().print();
//}
//if ( (vneighbor->getFrom() != NULL) and (vneighbor->hasValidStamp()) ) {
// cdebug_log(111,0) << "| Neighbor GETFROM:" << vneighbor->getFrom()->getOpposite( gneighbor ) << endl;
// cdebug_log(111,0) << "Distance prev : " << DbU::getValueString(vneighbor->getDistance()) << endl;
//}
///////////////////////////////////////////////////////////////////////////////////
DbU::Unit distance = _distanceCb( current, vneighbor, edge );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "| Distance:" << Vertex::getValueString(distance) << endl;
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
bool isDistance2shorter = false;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (gcurrent->isAnalog() and vneighbor->isAnalog())
isDistance2shorter = _isDistance2Shorter ( distance, current, vneighbor, edge );
bool push = false;
if (distance != Vertex::unreachable){
if (not vneighbor->hasValidStamp()) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Vertex reached for the first time" << endl;
vneighbor->setConnexId( -1 );
vneighbor->setStamp ( _stamp );
vneighbor->setDegree ( 1 );
vneighbor->setRpCount ( 0 );
vneighbor->unsetFlags(Vertex::AxisTarget);
vneighbor->resetIntervals();
push = true;
} else {
if ( (distance == vneighbor->getDistance())
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
and (vneighbor->isAnalog())
and (vneighbor->getFrom2() == NULL)
) {
_pushEqualDistance( distance, isDistance2shorter, current, vneighbor, edge ); // ANALOG
} else if (distance < vneighbor->getDistance()) {
if (vneighbor->getDistance() != Vertex::unreached) _queue.erase( vneighbor );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Vertex reached through a shorter path (prev: "
<< DbU::getValueString(vneighbor->getDistance()) << ")" << endl;
push = true;
} else {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Reject: Vertex reached through a *longer* path or unreachable:"
<< boolalpha << (distance == Vertex::unreachable)
<< endl;
}
}
} else {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "> Reject: Vertex unreachable" << endl;
}
if (push){
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (vneighbor->isAnalog()) // Vneighbor only not current gcell
_updateGRAData( vneighbor, isDistance2shorter, current );
vneighbor->setBranchId( current->getBranchId() );
vneighbor->setDistance( distance );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "| setFrom1: " << vneighbor << endl;
vneighbor->setFrom ( edge );
_queue.push( vneighbor );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(111,0) << "| Push: (size:" << _queue.size() << ") " << vneighbor << ", isFromFrom2: " << vneighbor->isFromFrom2() << endl;
}
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
/* ------------------------------------------------------------------- */
/*if ( (distance == vneighbor->getDistance())
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
and gcurrent->isAnalog()
and gneighbor->isAnalog()
and (vneighbor->getFrom2() == NULL) ) {
_pushEqualDistance( distance, isDistance2shorter, current, vneighbor, edge ); // ANALOG
} else {
if ((distance != Vertex::unreachable) and (not vneighbor->hasValidStamp())) {
cdebug_log(111,0) << "Vertex reached for the first time" << endl;
vneighbor->setConnexId( -1 );
vneighbor->setStamp ( _stamp );
vneighbor->setDegree ( 1 );
vneighbor->setRpCount ( 0 );
vneighbor->unsetFlags(Vertex::AxisTarget);
vneighbor->resetIntervals();
//cdebug_log(111,0) << "Vertex reached through a shorter path" << endl;
if (gneighbor->isAnalog()) // Gneighbor only not current gcell
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
_updateGRAData( vneighbor, isDistance2shorter, current );
vneighbor->setBranchId( current->getBranchId() );
vneighbor->setDistance( distance );
cdebug_log(111,0) << "setFrom1: " << vneighbor << endl;
vneighbor->setFrom ( edge );
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (gneighbor->isAnalog()) vneighbor->setFrom2( NULL );
_queue.push( vneighbor );
cdebug_log(111,0) << "Push: (size:" << _queue.size() << ") " << vneighbor << endl;
} else {
if ( (distance < vneighbor->getDistance()) and (distance != Vertex::unreachable) ) {
if (vneighbor->getDistance() != Vertex::unreached) _queue.erase( vneighbor );*/
/*else {
if (not vneighbor->hasValidStamp()) {
cdebug_log(111,0) << "Vertex reached for the first time" << endl;
vneighbor->setConnexId( -1 );
vneighbor->setStamp ( _stamp );
vneighbor->setDegree ( 1 );
vneighbor->setRpCount ( 0 );
vneighbor->unsetFlags(Vertex::AxisTarget);
vneighbor->resetIntervals();
}*/
// }
//}
/*cdebug_log(111,0) << "Vertex reached through a shorter path" << endl;
if (gneighbor->isAnalog()) // Gneighbor only not current gcell
_updateGRAData( vneighbor, isDistance2shorter, current );
vneighbor->setBranchId( current->getBranchId() );
vneighbor->setDistance( distance );
cdebug_log(111,0) << "setFrom1: " << vneighbor << endl;
vneighbor->setFrom ( edge );
if (gneighbor->isAnalog()) vneighbor->setFrom2( NULL );
_queue.push( vneighbor );
cdebug_log(111,0) << "Push: (size:" << _queue.size() << ") " << vneighbor << endl;
} else {
cdebug_log(111,0) << "Reject: Vertex reached through a *longer* path or unreachable:"
<< boolalpha << (distance == Vertex::unreachable)
<< endl;
}
}
}
}*/
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_tabw(111,-1);
continue;
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_tabw(111,-1);
// We did reach another target (different <connexId>).
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
// Tag back the path, with a higher <branchId>.
_traceback( current );
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
cdebug_tabw(112,-1);
return true;
}
cerr << Error( "Dijkstra::propagate(): %s has unreachable targets."
, getString(_net).c_str()
) << endl;
cdebug_log(112, 0) << "Unreached targets:" << endl;
for ( Vertex* v : _targets )
cdebug_log(112, 0) << "| " << v << endl;
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_tabw(112,-1);
return false;
}
void Dijkstra::_traceback ( Vertex* current )
{
cdebug_log(112,1) << "Dijkstra::_traceback() " << _net << " branchId:" << _sources.size() << endl;
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
cdebug_log(112,0) << "From: " << current << endl;
int branchId = _sources.size();
_toSources( current, _connectedsId );
bool isfirst = true;
bool useFrom2 = false;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (current->isAnalog()) {
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
_initiateUpdateIntervals( current );
} else {
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
current->incDegree();
current = current->getPredecessor();
isfirst = false;
}
Edge* from = NULL;
while ( current ) {
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
cdebug_log(112,0) << "+ " << current << endl;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (current->isAnalog()) {
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (_updateIntervals( isfirst, current, useFrom2, branchId, from )) break;
Vertex* next = NULL;
next = current->getPredecessor();
if (current == next){
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "[ERROR] Current's predecessor is current." << endl;
break;
}
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (current->isFromFrom2()) {
useFrom2 = true;
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
current->unsetFlags( Vertex::UseFromFrom2 );
} else {
useFrom2 = false;
}
current = next;
} else {
current->incDegree();
if (current->getConnexId() == _connectedsId) break;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
from = current->getFrom();
if (not from) break;
current->setDistance( 0.0 );
current->setConnexId( _connectedsId );
current->setBranchId( branchId );
_sources.insert( current );
_queue.push( current );
current = current->getPredecessor();
}
}
cdebug_tabw(112,-1);
}
void Dijkstra::_materialize ()
{
cdebug_log(112,1) << "Dijkstra::_materialize() " << _net << " _sources:" << _sources.size() << endl;
Improved handling of short nets (fully included in one GCell). The short net mode degrade the routing in some cases. This will be fixed in a next batch of commits. * New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets that are completly inside *one* GCell. * Bug: In CRL::BlifParser::Model::staticInit(), when looking for the output of zero and one cell, also skip the blockage net (as well as automatic and supplies). * New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the segment is part of a short net (fully included in *one* GCell). Also add accessor/mutators for the _analogMode flag (was it ever used before?). * New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is vertically small, add a vertical segment to give it some slack. * New: In Anabatic::Dijkstra::_materialize(), detect "short net" as they have only one GCell in their source list... * Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment "short net" and "analog mode" creation flags between two different nets. * New: In Katana::Configuration, added dedicated ripup for short net segmnts. * New: In Katana: partially implemented support for "short dogleg", that is dogleg that are always kept in same metal because they connect neighboring perpandicular tracks. Not finished neither activated yet. * New: In Katana::TreckElement and derived, export the the *short net* support from AutoSegment. * Bug: In Katana::RoutingEvent::_processRepair(), when a segment is successfully inserted, re-process any perpandicular that is in repair state, as it may have a new chance to be placed. * New: In Katana::SegmentFsm::slackenTopology(), always reject short nets. * Bug: In Katana::Track::check(), correctly handle wide segments instead of issuing false check messages.
2018-07-16 04:16:51 -05:00
if (_sources.size() < 2)
NetRoutingExtension::create( _net )->setFlags( NetRoutingState::ShortNet
| NetRoutingState::AutomaticGlobalRoute );
if (_sources.size() < 2) { cdebug_tabw(112,-1); return; }
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
DbU::Unit gWL = 0;
NetRoutingState* state = NetRoutingExtension::get( _net );
//cerr << "state: " << state << endl;
2017-06-21 11:02:37 -05:00
for ( Vertex* startVertex : _sources ) {
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
cdebug_log(112,0) << "@ " << startVertex << endl;
if (not startVertex->getFrom()) {
cdebug_log(112,0) << "> skip: no getFrom()." << endl;
continue;
}
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if ( not startVertex->hasGContact(_net)
and not startVertex->getRpCount()
and (startVertex->getDegree() < 3)
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
and not startVertex->isAxisTarget() ) {
cdebug_log(112,0) << "> skip: not a good starting point." << endl;
continue;
}
Vertex* source = startVertex;
while ( source ) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "@ " << source << endl;
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
bool isAnalog = source->getGCell()->isAnalog();
//if (isAnalog) source->resetIntervals();
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
Edge* from = source->getFrom();
vector<Edge*> aligneds;
aligneds.push_back( from );
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
Vertex* target = source->getPredecessor();
Interval constraint = from->getSide();
source->setFrom( NULL );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "| " << target << endl;
if (target->getConnexId() < 0) {
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
cdebug_log(112,0) << "> break (abort: false start)." << endl;
break;
}
while ( true ) {
from = target->getFrom();
if ( not from
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
or (target->getGCell()->isAnalog())
or (target->hasGContact(_net))
or (target->getRpCount())
or (target->getDegree() > 2)
or (aligneds.back()->isHorizontal() xor from->isHorizontal())
or not constraint.intersect(from->getSide())) break;
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
// U-turn detection. All edges must have the same *spin*.
if ( (aligneds[0]->getSource() == source->getGCell())
xor (from ->getSource() == target->getGCell()) ) break;
// Always break vertical in channel (2M routing).
if (target->getGCell()->isChannelRow() and aligneds.back()->isVertical())
break;
aligneds.push_back( from );
constraint.merge( from->getSide() );
Vertex* nextTarget = target->getPredecessor();
target->setFrom( NULL );
target = nextTarget;
cdebug_log(112,0) << "| " << target << endl;
}
Corrections in the Dijkstra global routing (ripup) mechanism. * Bug: In Anabatic::Dijkstra, the degree of a vertex (the number of neighbors belonging to the same net) was miscalculated. This was leading, in the materialize step to some feed-through vertexes not being broken. Leading in turn to incomplete transformation of the detailed routing. Also in _trackback(), the degree of the first vertex we were backtracking from was not incremented. * Bug: In Anabatic::Dijkstra::materialize(), systematically use GCell::breakGoThrough() on both source and target. This is needed when we are in the ripup phase as both source and target can be go-through. This was also leading to incomplete detailed routing transformation. * Change: In Anabatic::Edge::ripup(), ripup one third of the segments instead of thoses exeeding the global length threshold. This way we are sure to desaturate an edge. Needs to be further calibrated. * Change: In Aanabatic::GCell::breakGoThrough(), no longer return NULL. Return existing gcontact if any. Break if it is a go-through and create a new gcontact in last resort. Maybe rename this function. * New: In Anabatic::Configuration, new parameters: - anabatic.edgeHScaling, to adjust the length of the horizontal edges relative to the vertical ones (this is a ratio). - anabatic.globalIterations, set the maximum number of ripup passes of the global router. * New: In CRL/etc/*/kite.conf, added new parameters anabatic.edgeHScaling and anabatic.globalIterations. * New: In Katana::GlobalRoute::DigitalDistance, take into account the new edgeHScaling factor. Must be used when the capacity of V-edges differs greatly for H-edges (case of AMS 350nm c35b4 for instance). * Bug: In Katana::GlobalRoute::DigitalDistance, the historic cost is computed for an edge length of "1". Must be multiplicated by the current edge length to have any measurable effect. This bug is finally explaining why the ripup was producing the same solutions over and over, the historical cost was negligible!
2018-04-16 05:10:48 -05:00
Contact* sourceContact = source->breakGoThrough( _net );
Contact* targetContact = target->breakGoThrough( _net );
Segment* segment = NULL;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "> aligneds.front():" << aligneds.front()
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
<< " isHorizontal():" << aligneds.front()->isHorizontal() << endl;
if (aligneds.front()->isHorizontal()) {
if (sourceContact->getX() > targetContact->getX())
std::swap( sourceContact, targetContact );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
DbU::Unit width = Session::getGHorizontalPitch();
2017-06-21 11:02:37 -05:00
if (state) width *= state->getWPitch();
segment = Horizontal::create( sourceContact
, targetContact
, _anabatic->getConfiguration()->getGHorizontalLayer()
, constraint.getCenter()
, width
);
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
gWL += segment->getLength();
cdebug_log(112,0) << "| ref: " << segment << endl;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
for ( Edge* through : aligneds ) through->add( segment );
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (state) {
if (state->isSymmetric()) _createSelfSymSeg ( segment );
}
} else {
if (sourceContact->getY() > targetContact->getY())
std::swap( sourceContact, targetContact );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
DbU::Unit width = Session::getGVerticalPitch();
2017-06-21 11:02:37 -05:00
if (state) width *= state->getWPitch();
segment = Vertical::create( sourceContact
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
, targetContact
, _anabatic->getConfiguration()->getGVerticalLayer()
, constraint.getCenter()
, width
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
);
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
gWL += segment->getLength();
cdebug_log(112,0) << "| ref: " << segment << endl;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
for ( Edge* through : aligneds ) through->add( segment );
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (state) {
if (state->isSymmetric()) _createSelfSymSeg ( segment );
}
}
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
cdebug_log(112,0) << "| break (U-turn, turn, branch or terminal)." << endl;
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "+ " << segment << endl;
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
Vertex* prevSource = source;
source = (target->getFrom()) ? target : NULL;
Added support for 2-Metal block routing in Anabatic & Katana. * New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary workaround for a Hurricane problems. When an instance is moved, the RoutingPads that use it must be moved accordingly, but they are not invalidated so they stay in the wrong QuadTree. New method ::_resizeMatrix() to be called when the associated Cell is resized. * Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(), the *target* constraints where never merged. * Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(), now return a boolean to tell if it was ok (must not encounter a NULL GCell while progessing from source to target). * New: In Anabatic::Configuration and Anabatic:Session, create new methods: - getDHorizontalLayer() - getDhorizontalDepth() - getDHorizontalWidth() - getDHorizontalPitch() And so on for Vertical and Contact. They supply depth-independant informations about the H/V layers to build the initial detailed routing. The AutoSegment::create() methods have been modificated accordingly. * New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow" for implementing 2-Metal blocks. Rename the GCell::setXY() method in GCell::setSouthWestCorner(), move the contents of GCell::updateContactsPosition() into it and suppress it. WARNING: In case of a GCell shrink this may cause problems. But for now we only expand... New method GCell::getNetCount() to count the number of Net going though the GCell. * Change: In Anabatic::Edge, add specific support for capacity of 2-Metal routing channels. * Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()" calls by "not gcell->isAnalog()". Add more check so that the methods pertaining to the analog routing (GRData) are not called in digital mode. * New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific cases. That is, always break in case of vertical pass-through or U-turn. The global routing must always be broken in H-Channel. * New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism to ensure the revalidation. The "::revalidate()" method is then moved as "::materialize()" (overload of Go) and "::_invalidate()" becomes "::invalidate()" * Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX. * New: In GCellTopology, added support for building 2-Metal topologies. * ForkStack is now an object attribute as many methods do need it. * To push segments/hook on the stack, a new method "push()" is available. Perform NULL and fromHook checking. Can also setup _southWestContact or _northEastContact if it is the "from" edge. * N/S/E/W edges are now vector as in digital channel mode there can be more than one. * Added build topological build methods: - doRp_2m_Access() RoutingPad stem access. - _do_2m_1G_1M1() North or south access. - _do_2m_2G_1M1() North AND south access. - _do_2m_xG() H-Channel routing. * New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds. * New: In Anabatic::Vertex, new static method ::getValueString() for a friendly text rendering. * New: In Katana::DigitalDistance, support for channel routing. * Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(), for channel routing, calls to setupPowerRails() and protectRoutingPads() must be called after the core block has been fully dimensionned. ::runGlobalrouter() contains the code tasked with the grid creation and channel sizing. * New: In KatanaEngine: Added support for core block, for 2-Metal routing. May be expanded for over-the-cell routing in the future. Added methods : - isDigitalMode() - isAnalogMode() - isMixedMode() - isChannelMode() - getBlock() / addBlock() - setupChannelMode() - createChannel() * New: In Katana, new class Block to manage core blocks and perform channel routing. * New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
if (isAnalog) prevSource->clearFrom2();
}
}
if (gWL > getAntennaGateMaxWL()) {
Second version of the antenna effect protection. * Change: In EtesianEngine::globalPlace(), disable the call to antennaProtect(). First reason is that, after all, Coloquinte do not handle so well the resizing of the cells "on the fly", it overspill the boundaries sometimes. Second reason is that as we cannot know the routing tree at this stage, we will not be able to choose the correct points for diode insertions. We only have a Steiner tree wich may not be the same as a density driven Dijkstra. * Change: In Etesian::Area, the Occurrence to the Instances where not stored in a uniform way. Some where starting from the placed sub-block, some where starting from the top level (corona), making their processing (and remembering it) tricky. Now, they are all expressed from the top cell (corona). The coordinate system is now systematically the one of the top block (*not* the block). Create various overloaded functions EtesianEngine::toCell() and EtesianEngine::toBlock() to ease Occurrence & coordinate translations. * New: In Etesian::Slice::createDiodeUnder(), add a X position hint. Search is done by going through the whole slice range and minimizing the distance to the hint. If it starts to be too slow, we may optimize. * Bug: In EtesianEngine::toColoquinte(), the placement of the top level external pins was not taken into account (this at last explain their weird positioning). * New: AnabaticEngine::antennaProtect(), new algorithm to avoid antenna effect. This step must be done *after* global routing and *before* detailed routing. This way we have access to the real routing and can mend it (along with the netlist) to insert diodes at the rigth points. From the global routing we build clusters (DiodeCluster) of RoutingPads connected through a set of wire whose total length is below the antenna effect threshold. Long wires connecting the clusters are also tagged because we need to put a diode between them and the first RoutingPad of the cluster. This is to avoid a long METAL2 wire connecting to the RoutingPad before the diode is connected through METAL3 (in case of misalignment). This protection is not even enough. For *very long* wires, we needs to put *more* than one diode (this is to be implemented).
2021-01-27 04:38:00 -06:00
cdebug_log(113,0) << "| \"" << _net->getName() << "\" may have antenna effect, "
<< DbU::getValueString(gWL)
<< endl;
if (state)
state->setFlags( NetRoutingState::HasAntenna );
}
cdebug_tabw(112,-1);
}
void Dijkstra::run ( Dijkstra::Mode mode )
{
DebugSession::open( _net, 111, 120 );
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_log(112,1) << "Dijkstra::run() on " << _net << " mode:" << mode << endl;
_mode = mode;
_selectFirstSource();
if (_sources.empty()) {
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_log(112,0) << "No source to start, not routed." << endl;
cdebug_tabw(112,-1);
return;
}
Flags enabledEdges = Flags::AllSides;
if (_mode & Mode::Monotonic) {
if ((*_sources.begin())->getCenter().getY() <= (*_targets.begin())->getCenter().getY())
enabledEdges = Flags::EastSide | Flags::NorthSide;
else
enabledEdges = Flags::EastSide | Flags::SouthSide;
}
_queue.clear();
Support for density estimation for the global router. * Bug: In Anabatic::Edge::getDistance(), remove the additionnal 0.1 added to horizontal edges. This was for testing before the hScaling parameter was added (to the distance computation in GlobalRoute). * New: Anabatic::Path_Edges, collectio to walkthrough all the edges between two node. More complex than in Knik as we are no longer using a regular grid. We may request the north bound path or south bound path. Collection returned by AnabaticEngine::getEdgesUnderPath(). * New: In Anabatic::NetData, add a new flag GlobalEstimated to tell if the net RMST has been computed (using FLUTE). * New: In Anabatic::PriorityQueue, used to sort Vertexes by increasing distances, add a new criterion to be used in case of distance equality. The attractor which should be the center of the search area. In case of equality, we choose the Vertex which is closest to the attractor. Give a small improvement, and more "dendritic" trees. For a more simple implementation of the comparison function it is made as a static member (so no two Dijkstra objects at the same time...). * Change: In Anabatic::Edge, make the estimate occupance a floating point number instead of an integer. * New: In Katana::GlobalRoute, finally implement the estimated congestion driven router. Net RMST estimated using FLUTE. Use the historic cost from Knik implementation and not the one given in Damien's thesis, which seems not be the same and a bit strange. * New: In KatanaEngine, add the ability to exclude nets from routing, and export it to Python.
2019-02-26 13:03:53 -06:00
_queue.setAttractor( _searchArea.getCenter() );
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
_connectedsId = (*_sources.begin())->getConnexId();
for ( Vertex* source : _sources ) {
_queue.push( source );
source->setDistance( 0.0 );
cdebug_log(112,0) << "Push source: (size:" << _queue.size() << ") "
<< source
<< " _connectedsId:" << _connectedsId << endl;
}
while ( ((not _targets.empty()) || needAxisTarget()) and _propagate(enabledEdges) );
_queue.clear();
_materialize();
unsetAxisTargets();
_anabatic->getNetData( _net )->setGlobalRouted( true );
Anabatic transient commit 8. More Dijkstra bugs correcteds. * Bug: In Anabatic: - In _propagate(), on reaching a target, forgot to remove it from the queue before pushing it back with the new distance. It also simplificate the core algorithm as target as treated normal nodes. * New: In Anabatic: - Update cdebug to use the fastest macro version. - More readable drawings of GCells and Edges. - Added timer support. - The distance is now computed in DbU::Unit (aka long) and not in normalized float. - The distance function is now a callback (std::function<>) that can be changed (a default is provided at initialization). - New concept of branch in the agglomerated connex component. Each trace back part create a "branch" (tagged with a "branchId"). When a node is reached with the same distance, but from two different branches, choose the the branch that was lastly created. This create a slightly different tree which grows outward from the newest branches. - Makes the horizontal edges *slightly* longer than the vertical ones to skew the tree to use vertical edges, as it is usually less congested than the horiontal one (due to metal1 cell terminals). It is also my understanding that it is useful to reduce the number of vias, whithout introducing a via cost. * New: In Bootstrap: - Script sprof.py to perform sprof & demangle libraries execution profile. * ToDo: In Anabatic: - Corner optimization. Sometimes when two corners are possible, the wrong one is choosen. That is, one of it's edge cannot be used for further grow of the tree.
2016-06-17 06:09:34 -05:00
cdebug_tabw(112,-1);
DebugSession::close();
}
void Dijkstra::_toSources ( Vertex* source, int connexId )
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
{
cdebug_log(112,1) << "Dijkstra::_toSources() " << endl;
cdebug_log(112,0) << "* from: " << source << endl;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
source->setConnexId( connexId );
source->setDistance( 0.0 );
_targets.erase ( source );
_sources.insert( source );
_queue.push( source );
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
VertexSet stack;
stack.insert( source );
while ( not stack.empty() ) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
Vertex* current = *stack.begin();
stack.erase( current );
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(112,0) << "@ source:" << current << " stack.size():" << stack.size() << endl;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
for ( Edge* edge : current->getEdges() ) {
if (not edge->hasNet(_net)) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(110,0) << "| Not connected:" << edge
<< " to:" << (current->getNeighbor(edge)) << endl;
continue;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
Vertex* vneighbor = current->getNeighbor( edge );
cdebug_log(110,0) << "| connected to: " << vneighbor<< endl;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
if (not vneighbor->hasValidStamp()) continue;
if (vneighbor->getConnexId() == connexId) continue;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
vneighbor->setConnexId( connexId );
vneighbor->setDistance( 0.0 );
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
if (vneighbor != source) vneighbor->setFrom( NULL );
_targets.erase ( vneighbor );
_sources.insert( vneighbor );
_queue.push( vneighbor );
stack.insert( vneighbor );
}
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
}
cdebug_tabw(112,-1);
}
void Dijkstra::_getConnecteds ( Vertex* source, VertexSet& connecteds )
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
{
cdebug_log(112,1) << "Dijkstra::_getConnecteds()" << endl;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
connecteds.clear();
connecteds.insert( source );
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
VertexSet stack;
stack.insert( source );
while ( not stack.empty() ) {
source = *stack.begin();
stack.erase( source );
cdebug_log(112,0) << "| source:" << source << " stack.size():" << stack.size() << endl;
for ( Edge* edge : source->getGCell()->getEdges() ) {
if (not edge->hasNet(_net)) {
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
cdebug_log(110,0) << " Not connected:" << edge << endl;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
continue;
}
In Anabatic/Katana, add support for VH gauges (real technos). * Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(), when the anchor is a RoutingPad (which must be always the case), perform the true computation of it's position based on the segment occurrence. It is a important change, previously the area was in fact the "center line" of the connector while now it is really an area (mandatory for "half-offgrid" terminals of real technologies). The change is not complete yet, the area should be shrinked by the half size of a VIA, because the area applies to the center coordinate of the VIA (to be done quickly). * Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg is created (restore connexity after a layer change) the layer of the VIA, based on the segments it connects to must be re-computed *after* the dogleg has been made. * Change: In all files of Anabatic, when comparing two layers, no longer use the Layer pointer itself, but the layer mask. This allow a transparent management of both real and symbolic layers (which do share the same mask). Real metal layers (not VIAs) will be BasicLayer and symbolic metal layers will be RegularLayer. * New: Anabatic::Configuration::selectRpComponent(), select the best RoutingPad component for metal1 terminals. Look for the metal1 component with the biggest accessibility on-grid. RoutingPad using other metals are left untoucheds. * New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the neighbor Vertex through an Edge*. This method allows to write clearer code as we no longer need to access the neighbor through the underlying GCell. Also add proxies for GCell methods in Vertex. * Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when a component with multiples vertexes is reached *and* two of it's vertexes are reached *at the same time* (one from which we backtrack and one still in the queue) extraneous edges may be created by _materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1". To solve this, Dijkstra::_toSource() is modificated, the "from" edges of the newly reacheds vertexes are reset to NULL, *except* for the one we will be backtracking from. That is, the one given in the source argument. * Change: In Anabatic::NetBuilder class, put the various Hooks and RoutingPad sorting functions as class ones. * Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag. This unset flag was causing AutoContactTurn::updateTopology() to not work as expected and making gaps, this was the cause of the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
Vertex* vneighbor = source->getNeighbor( edge );
if (connecteds.find(vneighbor) != connecteds.end()) continue;
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
stack.insert( vneighbor );
connecteds.insert( vneighbor );
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
}
}
cdebug_tabw(112,-1);
}
void Dijkstra::_checkEdges () const
{
cdebug_log(112,1) << "Dijkstra::_checkEdges()" << endl;
// for ( Vertex* vertex : _vertexes ) {
// for ( Edge* edge : vertex->getGCell()->getEdges(Flags::EastSide|Flags::NorthSide) ) {
// }
// }
Anabatic transient commit 10. Ripup & reroute support in Dijsktra. * New: In Anabatic: - In AnabaticEngine, keep track of overflowed edges. - In AnabaticEngine, getNetsFromedge() to lookup all nets going through an Edge. - In Configuration, read the Kite "reserved local" parameter to decrease the Edge capacity (it's a guessing of the cost of the local routing). - In Edge, add an attribute to know if there is an associated segment of the current net (set by Dijkstra::_traceback()). Transparently manage the overflowed edges. - In GCell_Edges, correct a filtering bug when not all sides are selecteds. - New GCell::getEdgeTo() to find the edge between two adjacent GCells. - New GCell::unrefContact() to automatically removes global contacts no longer used by any global segments (used during the ripup step). - In Dijkstra::load(), now able to "reload" and already partially or completly routed net (look for Contact of "gcontact" layer and their attached segments). - In Dijkstra, keep the last net loaded until the next one is. Put the cleanup operations in an isolated function "_cleanup()". - In Dijkstra::_selectFirstsource() and run(), load first source component made of multiple vertexes. - In Dijkstra::_trackback(), link the Net segments to the Edges. - New Dijkstra::ripup(), Dijkstra::_propagateRipup() to perform the ripup of one edge of a Net (must be loaded in Dijkstra first). Dijkstra::_tagConnecteds() setup the connexId of a set of Vertexes - that are connecteds through edges *with* segments. - In GraphicAnabaticengine & GlobalRoute.cpp, embryo of a global routing tool with ripup & reroute.
2016-06-26 07:32:32 -05:00
cdebug_tabw(112,-1);
}
void Dijkstra::_createSelfSymSeg ( Segment* segment )
{
cdebug_log(112,1) << "Dijkstra::_createSelfSymSeg(): " << segment << endl;
NetRoutingState* state = NetRoutingExtension::get( _net );
if (state and segment) {
Horizontal* h = dynamic_cast<Horizontal*>(segment);
Vertical* v = dynamic_cast<Vertical *>(segment);
Point sp;
Point tp;
DbU::Unit axis;
Component* sourceContact = segment->getSource();
Component* targetContact = segment->getTarget();
cdebug_log(112,0) << "source: " << sourceContact << endl;
cdebug_log(112,0) << "target: " << targetContact << endl;
cdebug_log(112,0) << "sym axis: " << DbU::getValueString(state->getSymAxis()) << endl;
if (h) {
if (state->isSymHorizontal()) {
cdebug_log(112,0) << "Horizontal + Horizontal symmetry." << endl;
sp = Point( sourceContact->getX(), state->getSymValue(sourceContact->getY()) );
tp = Point( targetContact->getX(), state->getSymValue(targetContact->getY()) );
axis = state->getSymValue( segment->getY() );
} else if (state->isSymVertical()) {
cdebug_log(112,0) << "Horizontal + Vertical symmetry." << endl;
sp = Point( state->getSymValue(targetContact->getX()), targetContact->getY() );
tp = Point( state->getSymValue(sourceContact->getX()), sourceContact->getY() );
axis = segment->getY();
} else {
cdebug_log(112,0) << "Dijkstra::_materialize(): Horizontal + Unknown symmetry. " << endl;
cdebug_tabw(112,-1);
return;
}
cdebug_log(112,0) << "sp: " << sp << endl;
cdebug_log(112,0) << "tp: " << tp << endl;
GCell* sgcell = _anabatic->getGCellUnder( sp );
GCell* tgcell = _anabatic->getGCellUnder( tp );
cdebug_log(112,0) << "GCell: " << sgcell << endl;
cdebug_log(112,0) << "GCell: " << tgcell << endl;
Vertex* svertex = sgcell->getObserver<Vertex>(GCell::Observable::Vertex);
Vertex* tvertex = tgcell->getObserver<Vertex>(GCell::Observable::Vertex);
Contact* sourceSym = NULL;
Contact* targetSym = NULL;
if (state->isSelfSym()) {
cdebug_log(112,0) << "Symmetrical to myself (isSelfSym)." << endl;
sourceSym = svertex->getGContact( _net );
targetSym = tvertex->getGContact( _net );
} else if (state->isSymMaster()){
cdebug_log(112,0) << "Symmetrical to (isSymPair): " << state->getSymNet() << endl;
sourceSym = svertex->getGContact( state->getSymNet() );
targetSym = tvertex->getGContact( state->getSymNet() );
} else {
cdebug_log(112,0) << "Dijkstra::_materialize(): Unknown Net pairing symmetry. " << endl;
cdebug_tabw(112,-1);
return;
}
cdebug_log(112,0) << "sourceSym:" << sourceSym << endl;
cdebug_log(112,0) << "targetSym:" << targetSym << endl;
Segment* segment2 = Horizontal::create( sourceSym
, targetSym
, _anabatic->getConfiguration()->getGHorizontalLayer()
, axis
, state->getWPitch()*Session::getPitch(Hurricane::DataBase::getDB()->getTechnology()->getLayer("METAL2"))
);
cdebug_log(112,0) << "| dup:" << segment2 << endl;
} else if (v) {
if (state->isSymVertical()){
//cerr << "V case Vertical" << endl;
sp = Point(state->getSymValue(sourceContact->getX()), sourceContact->getY() );
tp = Point(state->getSymValue(targetContact->getX()), targetContact->getY() );
axis = state->getSymValue(segment->getX());
} else if (state->isSymHorizontal()){
//cerr << "V case Horizontal" << endl;
sp = Point( targetContact->getX(), state->getSymValue(targetContact->getY()) );
tp = Point( sourceContact->getX(), state->getSymValue(sourceContact->getY()) );
axis = segment->getX();
} else {
cdebug_log(112,0) << "Dijkstra::_materialize(): Something is wrong here. " << endl;
cdebug_tabw(112,-1);
return;
}
GCell* sgcell = _anabatic->getGCellUnder( sp );
GCell* tgcell = _anabatic->getGCellUnder( tp );
Vertex* svertex = sgcell->getObserver<Vertex>(GCell::Observable::Vertex);
Vertex* tvertex = tgcell->getObserver<Vertex>(GCell::Observable::Vertex);
Contact* sourceSym = NULL;
Contact* targetSym = NULL;
if (state->isSelfSym()){
sourceSym = svertex->getGContact( _net );
targetSym = tvertex->getGContact( _net );
} else if (state->isSymMaster()){
sourceSym = svertex->getGContact( state->getSymNet() );
targetSym = tvertex->getGContact( state->getSymNet() );
} else {
cdebug_log(112,0) << "Dijkstra::_materialize(): Something is wrong with the symmetry. " << endl;
cdebug_tabw(112,-1);
return;
}
cdebug_log(112,0) << "sourceSym:" << sourceSym << endl;
cdebug_log(112,0) << "targetSym:" << targetSym << endl;
Segment* segment2 = Vertical::create( sourceSym
, targetSym
, _anabatic->getConfiguration()->getGVerticalLayer()
, axis
, state->getWPitch()*Session::getPitch(Hurricane::DataBase::getDB()->getTechnology()->getLayer("METAL3"))
);
cdebug_log(112,0) << "|| " << segment2 << endl;
}
}
cdebug_tabw(112,-1);
}
bool Dijkstra::_checkFrom2 ( Edge* edge, Vertex* current )
{
if (current->getFrom2()){
if (edge == current->getFrom2()) {
cdebug_log(111,0) << "edge == current->getFrom2()" << endl;
return true;
} else {
//cdebug_log(111,0) << "edge != current->getFrom2(): " << current->getFrom2() << endl;
return false;
}
} else {
//cdebug_log(111,0) << "current->getFrom2() = NULL" << endl;
return false;
}
}
bool Dijkstra::_isDistance2Shorter ( DbU::Unit& distance, Vertex* current, Vertex* vneighbor, Edge* edge )
{
cdebug_log(111,1) << "Dijkstra::_isDistance2Shorter()" << endl;
DbU::Unit distance2 = Vertex::unreachable;
bool isDistance2shorter = false;
GCell* gneighbor = edge->getOpposite(current->getGCell());
if (current->getFrom2()) {
cdebug_log(111,0) << "Has second ::getFrom()" << edge << endl;
current->setFlags(Vertex::From2Mode);
distance2 = _distanceCb( current, vneighbor, edge );
current->unsetFlags(Vertex::From2Mode);
cdebug_log(111,0) << "Distance 1 from current: " << DbU::getValueString(distance) << endl;
cdebug_log(111,0) << "Distance 2 from current: " << DbU::getValueString(distance2) << endl;
if (distance > distance2) {
cdebug_log(111,0) << "* Distance 2 is shorter" << endl;
isDistance2shorter = true;
distance = distance2;
} else if (distance == distance2) {
cdebug_log(111,0) << "* Distance 1 equal Distance 2" << endl;
Point pcurr = current->getStartPathPoint(vneighbor);
current->setFlags( Vertex::From2Mode );
Point pcurr2 = current->getStartPathPoint(vneighbor);
current->unsetFlags( Vertex::From2Mode );
Point pnext = gneighbor->getCenter();
if (calcDistance(pcurr,pnext) > calcDistance(pcurr2,pnext)) {
cdebug_log(111,0) << "* Distance 2 is shorter" << endl;
isDistance2shorter = true;
distance = distance2;
} else {
cdebug_log(111,0) << "* Distance 1 is shorter" << endl;
}
} else {
cdebug_log(111,0) << "* Distance 1 is shorter" << endl;
}
} else {
cdebug_log(111,0) << "No second ::getFrom()" << endl;
cdebug_log(111,0) << "Distance 1 from current: " << DbU::getValueString(distance) << endl;
}
cdebug_tabw(111,-1);
return isDistance2shorter;
}
void Dijkstra::_pushEqualDistance ( DbU::Unit distance, bool isDistance2shorter, Vertex* current, Vertex* vneighbor, Edge* edge )
{
GCell* gneighbor = edge->getOpposite(current->getGCell());
GCell* gnext = vneighbor->getGCell();
GCell* gprev = vneighbor->getFrom()->getOpposite(gnext);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
if ((distance == vneighbor->getDistance()) and vneighbor->areSameSide(vprev, current)){
cdebug_log(111,0) << "[case: Distance EQUAL + SameSide]" << endl;
cdebug_log(111,0) << "Previous getfrom:" << vneighbor->getFrom()->getOpposite( gneighbor ) << endl;
cdebug_log(111,0) << "[case: Other GetFROM]" << endl;
cdebug_log(111,0) << "setFrom2: " << vneighbor << endl;
vneighbor->setFrom2 ( edge );
vneighbor->setFlags(Vertex::From2Mode);
vneighbor->setIntervals( current );
vneighbor->unsetFlags(Vertex::From2Mode);
if (isDistance2shorter) {
vneighbor->setFlags(Vertex::UseFromFrom2);
//cdebug_log(111,0) << "setFromFrom2: " << vneighbor << endl;
}
cdebug_log(111,0) << "Push BIS : " << vneighbor << endl;
cdebug_log(111,0) << "From1: " << vneighbor->getFrom()->getOpposite(vneighbor->getGCell()) << endl;
cdebug_log(111,0) << "From2: " << vneighbor->getFrom2()->getOpposite(vneighbor->getGCell()) << endl;
vneighbor->getIntervFrom().print();
vneighbor->getIntervFrom2().print();
}
}
void Dijkstra::_updateGRAData ( Vertex* vneighbor, bool isDistance2shorter, Vertex* current )
{
vneighbor->unsetFlags(Vertex::UseFromFrom2);
//cdebug_log(111,0) << "unsetFromFrom2: " << vneighbor << endl;
vneighbor->clearFrom2();
if (isDistance2shorter) {
vneighbor->setFlags(Vertex::UseFromFrom2);
cdebug_log(111,0) << "setFlags(Vertex::UseFromFrom2): " << vneighbor << endl;
} else {
vneighbor->unsetFlags(Vertex::UseFromFrom2);
cdebug_log(111,0) << "unsetFlags(Vertex::UseFromFrom2): " << vneighbor << endl;
}
// else cdebug_log(111,0) << "setFrom1: " << vneighbor << endl;
vneighbor->setIntervals( current );
vneighbor->getIntervFrom().print();
}
2017-06-21 11:02:37 -05:00
void Dijkstra::_initiateUpdateIntervals ( Vertex* current )
{
2017-06-21 11:02:37 -05:00
if (!current->getGCell()->isMatrix()){
GCell* gcurr = current->getGCell();
GCell* gprev = current->getFrom()->getOpposite(gcurr);
Vertex* vprev = gprev->getObserver<Vertex>(GCell::Observable::Vertex);
Point pcurrent = vprev->getStartPathPoint(current);
Point pentry = vprev->getNextPathPoint( pcurrent, current );
//cdebug_log(112,0) << "current : " << gcurr << endl;
//cdebug_log(112,0) << "previous: " << gprev << endl;
//cdebug_log(112,0) << "pcurr : x: " << DbU::getValueString(pcurrent.getX()) << ", y: " << DbU::getValueString(pcurrent.getY()) << endl;
//cdebug_log(112,0) << "pentry: x: " << DbU::getValueString(pentry.getX()) << ", y: " << DbU::getValueString(pentry.getY()) << endl;
//cdebug_log(112,0) << "| " << current << " | " << endl;
2017-06-21 11:02:37 -05:00
if (current->isH()){
if (pentry.getX() < current->getIMin()){
2017-06-21 11:02:37 -05:00
current->setInterv(pentry.getX(), current->getIMax(), current->getIAxis());
cdebug_log(112,0) << "[Interval update1]: min : " << DbU::getValueString(pentry.getX());
cdebug_log(112,0) << ", max : " << DbU::getValueString(current->getIMax());
cdebug_log(112,0) << ", axis: " << DbU::getValueString(current->getIAxis()) << endl;
} else if (pentry.getX() > current->getIMax()){
current->setInterv(current->getIMin(), pentry.getX(), current->getIAxis());
cdebug_log(112,0) << "[Interval update2]: min : " << DbU::getValueString(current->getIMin());
cdebug_log(112,0) << ", max : " << DbU::getValueString(pentry.getX());
cdebug_log(112,0) << ", axis: " << DbU::getValueString(current->getIAxis()) << endl;
}
2017-06-21 11:02:37 -05:00
} else if (current->isV()){
if (pentry.getY() < current->getIMin()){
current->setInterv(pentry.getY(), current->getIMax(), current->getIAxis());
cdebug_log(112,0) << "[Interval update3]: min : " << DbU::getValueString(pentry.getY());
cdebug_log(112,0) << ", max : " << DbU::getValueString(current->getIMax());
cdebug_log(112,0) << ", axis: " << DbU::getValueString(current->getIAxis()) << endl;
2017-06-21 11:02:37 -05:00
} else if (pentry.getY() > current->getIMax()){
current->setInterv(current->getIMin(), pentry.getY(), current->getIAxis());
cdebug_log(112,0) << "[Interval update4]: min : " << DbU::getValueString(current->getIMin());
cdebug_log(112,0) << ", max : " << DbU::getValueString(pentry.getY());
cdebug_log(112,0) << ", axis: " << DbU::getValueString(current->getIAxis()) << endl;
}
}
//cdebug_log(112,0) << "isiSet: " << current->isiSet() << endl;
2017-06-21 11:02:37 -05:00
}
}
bool Dijkstra::_updateIntervals( bool& isfirst, Vertex* current, bool& useFrom2, int& branchId, Edge* from )
{
if (!isfirst){
//cdebug_log(112,0) << "Is not first" << endl;
current->incDegree();
if (current->getConnexId() == _connectedsId){
cdebug_log(112,0) << "| (current->getConnexId() == _connectedsId)" << endl;
return true;
}
from = NULL;
if (useFrom2) {
if (current->getFrom2()) {
//cdebug_log(112,0) << "| USE FROM2: " << endl;
//cdebug_log(112,0) << "| current->getFrom2(): " << current->getFrom2() << endl;
//cdebug_log(112,0) << "| current->getGCell(): " << current->getGCell() << endl;
//cdebug_log(112,0) << "| getOpposite(): " << current->getFrom2()->getOpposite(current->getGCell()) << endl;
current->setFrom(current->getFrom2());
current->setIntervfrom(current->getPIMin2(), current->getPIMax2(), current->getPIAxis2());
current->clearFrom2();
} else {
cdebug_log(112,0) << "[Warning]: Current has no getfrom2 anymore. " << endl;
}
}
from = current->getFrom();
if (not from) return true;
current->setDistance( 0.0 );
current->setConnexId( _connectedsId );
current->setBranchId( branchId );
_sources.insert( current );
_queue.push( current );
} else {
//cdebug_log(112,0) << "Is first" << endl;
isfirst = false;
}
2017-06-21 11:02:37 -05:00
if ((current->getPredecessor() != NULL)&&(!current->getGCell()->isMatrix())){
//cdebug_log(112,0) << "Predecessor() : " << current->getPredecessor() << endl;
//cdebug_log(112,0) << "| [Interval update]: min : " << DbU::getValueString(current->getPIMin());
//cdebug_log(112,0) << ", max : " << DbU::getValueString(current->getPIMax());
//cdebug_log(112,0) << ", axis: " << DbU::getValueString(current->getPIAxis()) << endl;
current->getPredecessor()->setInterv(current->getPIMin(), current->getPIMax(), current->getPIAxis());
//current->getIntervFrom().print();
//if (current->getPredecessor()->getGCell()->isStrut()) _updateRealOccupancy( current );
}
return false;
}
bool Dijkstra::_attachSymContactsHook( RoutingPad* rp )
{
NetRoutingState* state = NetRoutingExtension::get( _net );
if (state){
if (state->isSelfSym()){
if ( ( (state->isSymHorizontal())&&(rp->getBoundingBox().getYMin() > state->getSymAxis()) )
||( (state->isSymVertical() )&&(rp->getBoundingBox().getXMin() > state->getSymAxis()) )
){
Point center = rp->getBoundingBox().getCenter();
GCell* gcell = _anabatic->getGCellUnder( center );
Vertex* seed = gcell->getObserver<Vertex>(GCell::Observable::Vertex);
Contact* vcontact = seed->getGContact( _net );
rp->getBodyHook()->detach();
rp->getBodyHook()->attach( vcontact->getBodyHook() );
return true;
}
}
}
return false;
}
void Dijkstra::_limitSymSearchArea( RoutingPad* rp )
{
NetRoutingState* state = NetRoutingExtension::get( _net );
Point center = rp->getBoundingBox().getCenter();
GCell* gcell = _anabatic->getGCellUnder( center );
if (state){
if (state->isSymHorizontal()){
_searchArea.merge( Box( _net->getCell()->getAbutmentBox().getXMin()
, _net->getCell()->getAbutmentBox().getYMin()
, _net->getCell()->getAbutmentBox().getXMax()
, state->getSymAxis()
)
);
} else if (state->isSymVertical()){
_searchArea.merge( Box( _net->getCell()->getAbutmentBox().getXMin()
, _net->getCell()->getAbutmentBox().getYMin()
, state->getSymAxis()
, _net->getCell()->getAbutmentBox().getYMax()
)
);
} else if (gcell->isDevice()){
_searchArea.merge( _net->getCell()->getAbutmentBox() );
}
} else if (gcell->isDevice()){
_searchArea.merge( _net->getCell()->getAbutmentBox() );
}
}
void Dijkstra::_setSourcesGRAData( Vertex* seed, RoutingPad* rp )
{
cdebug_log(112,0) << "void Dijkstra::_setSourcesGRAData() : " << seed << endl;
2017-06-21 11:02:37 -05:00
GCell* gseed = seed->getGCell();
Horizontal* h = dynamic_cast<Horizontal*>(rp->_getEntityAs<Segment>());
Vertical* v = dynamic_cast<Vertical*> (rp->_getEntityAs<Segment>());
if (h) {
cdebug_log(112,0) << "case H " << endl;
seed->unsetFlags(Vertex::iHorizontal);
seed->unsetFlags(Vertex::iVertical);
seed->setFlags(Vertex::iHorizontal);
2017-06-21 11:02:37 -05:00
if (!gseed->isMatrix()){
seed->createAData();
seed->setInterv( max(rp->getBoundingBox().getXMin(), gseed->getXMin())
, min(rp->getBoundingBox().getXMax(), gseed->getXMax())
, rp->getBoundingBox().getYCenter()
);
2017-06-21 11:02:37 -05:00
}
} else if (v) {
cdebug_log(112,0) << "case V " << endl;
seed->unsetFlags(Vertex::iHorizontal);
seed->unsetFlags(Vertex::iVertical);
seed->setFlags(Vertex::iVertical);
2017-06-21 11:02:37 -05:00
if (!gseed->isMatrix()) {
seed->createAData();
seed->setInterv( max(rp->getBoundingBox().getYMin(), gseed->getYMin())
, min(rp->getBoundingBox().getYMax(), gseed->getYMax())
, rp->getBoundingBox().getXCenter()
);
2017-06-21 11:02:37 -05:00
}
}
}
void Dijkstra::_updateRealOccupancy ( Vertex* current )
{
//cerr << "void Dijkstra::_updateRealOccupancy ( Vertex* current ): " << current << endl;
GCell* gcurrent = current->getGCell();
GCell* gnext = current->getPredecessor()->getGCell();
Edge* e = gcurrent->getEdgeTo(gnext);
NetRoutingState* state = NetRoutingExtension::get( _net );
//cerr << "e: " << e << endl;
e->incRealOccupancy2(state->getWPitch());
//cerr << "e: " << e << endl;
if (current->getGCell()->getWestEdge()) cerr << "W occupancy: " << current->getGCell()->getWestEdge()->getRealOccupancy() << "/" << current->getGCell()->getWestEdge()->getCapacity() << endl;
if (current->getGCell()->getEastEdge()) cerr << "E occupancy: " << current->getGCell()->getEastEdge()->getRealOccupancy() << "/" << current->getGCell()->getEastEdge()->getCapacity() << endl;
if (current->getGCell()->getNorthEdge()) cerr << "N occupancy: " << current->getGCell()->getNorthEdge()->getRealOccupancy() << "/" << current->getGCell()->getNorthEdge()->getCapacity() << endl;
if (current->getGCell()->getSouthEdge()) cerr << "S occupancy: " << current->getGCell()->getSouthEdge()->getRealOccupancy() << "/" << current->getGCell()->getSouthEdge()->getCapacity() << endl;
}
} // Anabatic namespace.