coriolis/knik/src/MatrixVertex.cpp

443 lines
17 KiB
C++
Raw Normal View History

#include <algorithm>
#include "hurricane/Cell.h"
#include "hurricane/Box.h"
#include "crlcore/AllianceFramework.h"
#include "crlcore/CellGauge.h"
#include "knik/Graph.h"
#include "knik/MatrixVertex.h"
#include "knik/KnikEngine.h"
namespace Knik {
using namespace std;
using namespace CRL;
MatrixVertex::MatrixVertex ( Graph* routingGraph )
// ***********************************************
: _xInit(false)
, _yInit(false)
, _xRegular(false)
, _yRegular(false)
, _nbXTiles(0)
, _nbYTiles(0)
, _tileWidth(0)
, _tileHeight(0)
, _boundingBox(0,0,1,1)
, _routingGraph(routingGraph)
{
}
MatrixVertex* MatrixVertex::create ( Graph* routingGraph )
// *******************************************************
{
MatrixVertex* matrixVertex = new MatrixVertex(routingGraph);
return matrixVertex;
}
MatrixVertex::~MatrixVertex()
// **************************
{
}
void MatrixVertex::destroy()
// ************************
{
_preDestroy();
delete ( this );
}
void MatrixVertex::_preDestroy()
// ****************************
{
}
//void MatrixVertex::createXRegular ( RoutingGrid* routingGrid )
//// ***********************************************************
//{
//
// if ( _xInit )
// throw Error ("MatrixVertex::createXRegular(): cannot initialize X vector twice.");
// _lowerLeftX = routingGrid->getLowerLeftX();
// _nbXTiles = routingGrid->getNbXTiles();
// _tileWidth = routingGrid->getTileWidth();
// _xRegular = true;
// _xInit = true;
//
// if ( _xInit && _yInit )
// createMatrix();
//}
//void MatrixVertex::createYRegular ( RoutingGrid* routingGrid )
//// ***********************************************************
//{
// if ( _yInit )
// throw Error ("MatrixVertex::createYRegular(): cannot initialize Y vector twice.");
// _boundingBox.getYMin() = routingGrid->getLowerLeftY();
// _nbYTiles = routingGrid->getNbYTiles();
// _tileHeight = routingGrid->getTileHeight();
// _yRegular = true;
// _yInit = true;
//
// if ( _xInit && _yInit )
// createMatrix();
//}
Vertex* MatrixVertex::createRegularMatrix ( RoutingGrid* routingGrid )
// *******************************************************************
{
if ( _xInit || _yInit )
throw Error ("MatrixVertex::createRegularMatrix(): cannot initialize matrix twice.");
_boundingBox = routingGrid->getBoundingBox();
_nbXTiles = routingGrid->getNbXTiles();
_nbYTiles = routingGrid->getNbYTiles();
_tileWidth = routingGrid->getTileWidth();
_tileHeight = routingGrid->getTileHeight();
_xInit = true; // XXX Nécessaire pour les fonctions comme getLineIndex
_yInit = true;
_xRegular = true; // XXX Nécessaire pour les fonctions comme getLineIndex
_yRegular = true;
DbU::Unit halfWidth = _tileWidth / 2;
DbU::Unit halfHeight = _tileHeight / 2;
// On cree les vecteurs de vertex en meme temps que les vertex et aussi les edges !
for ( unsigned j = 0 ; j < _nbYTiles ; j++ ) {
vector<Vertex*> vect;
for ( unsigned i = 0 ; i < _nbXTiles ; i++ ) {
Point position ( _boundingBox.getXMin()+(i*_tileWidth)+halfWidth, _boundingBox.getYMin()+(j*_tileHeight)+halfHeight );
// on cree le vertex
Vertex* vertex = _routingGraph->createVertex ( position, halfWidth, halfHeight );
assert ( vertex );
// on l'ajoute dans la matrice
vect.push_back ( vertex );
// si i > 0 alors on peut creer une edge horizontale entre matrix[i-1][j] et matrix[i][j] c'est a dire vect[i-1] et vect[i]
if ( i > 0 ) {
Vertex* from = vect[i-1];
assert(from);
Vertex* to = vect[i];
assert(to);
_routingGraph->createHEdge ( from, to );
}
// si j > 0 alors on peut creer une edge verticale entre matrix[i][j-1] et matrix[i][j] c'est a dire _matrix[j-1][i] et vect[i]
if ( j > 0 ) { // _matrix est un vecteur de vecteur represantant les lignes -> _matrix[ligne][colonne]
Vertex* from = _matrix[j-1][i];
assert(from);
Vertex* to = vect[i];
assert(to);
_routingGraph->createVEdge ( from, to );
}
}
_matrix.push_back ( vect );
}
return _matrix[0][0];
}
Vertex* MatrixVertex::createRegularMatrix ()
// *****************************************
{
if ( _xInit || _yInit )
throw Error ("MatrixVertex::createRegularMatrix(): cannot initialize matrix twice.");
Cell* cell = _routingGraph->getCell();
DbU::Unit sliceHeight = AllianceFramework::get()->getCellGauge()->getSliceHeight();
DbU::Unit cellWidth = cell->getAbutmentBox().getWidth();
DbU::Unit cellHeight = cell->getAbutmentBox().getHeight();
_boundingBox = cell->getAbutmentBox();
_nbXTiles = (unsigned int)ceil(float(cellWidth) / float(sliceHeight));
_nbYTiles = (unsigned int)ceil(float(cellHeight) / float(sliceHeight));
_tileWidth = sliceHeight;
_tileHeight = sliceHeight;
DbU::Unit _latestTileWidth = cellWidth - ((_nbXTiles - 1) * _tileWidth);
DbU::Unit _latestTileHeight = cellHeight - ((_nbYTiles - 1) * _tileHeight);
_xInit = true; // XXX Nécessaire pour les fonctions comme getLineIndex
_yInit = true;
_xRegular = true; // XXX Nécessaire pour les fonctions comme getLineIndex
_yRegular = true;
// cerr << "Resume :" << endl
// << " - this : " << (void*)this << endl
// << " - cellWidth : " << cellWidth << endl
// << " - cellHeight : " << cellHeight << endl
// << " - boundingBox : " << _boundingBox << endl
// << " - nbXTiles : " << _nbXTiles << endl
// << " - nbYTiles : " << _nbYTiles << endl
// << " - tileWidth : " << _tileWidth << endl
// << " - tileHieght : " << _tileHeight << endl
// << " - latestTileWidth : " << _latestTileWidth << endl
// << " - latestTileHeight : " << _latestTileHeight << endl;
// On cree les vecteurs de vertex en meme temps que les vertex et aussi les edges !
size_t hreserved = KnikEngine::get( cell )->getHEdgeReservedLocal();
size_t vreserved = KnikEngine::get( cell )->getVEdgeReservedLocal();
for ( unsigned j = 0 ; j < _nbYTiles ; j++ ) {
vector<Vertex*> vect;
for ( unsigned i = 0 ; i < _nbXTiles ; i++ ) {
DbU::Unit halfWidth = (i == _nbXTiles - 1)?_latestTileWidth/2:_tileWidth/2;
DbU::Unit halfHeight = (j == _nbYTiles - 1)?_latestTileHeight/2:_tileHeight/2;
Point position ( _boundingBox.getXMin()+(i*_tileWidth)+halfWidth, _boundingBox.getYMin()+(j*_tileHeight)+halfHeight );
// on cree le vertex
Vertex* vertex = _routingGraph->createVertex ( position, halfWidth, halfHeight );
assert ( vertex );
//cerr << ". .. " << vertex << endl;
// on l'ajoute dans la matrice
vect.push_back ( vertex );
// si i > 0 alors on peut creer une edge horizontale entre matrix[i-1][j] et matrix[i][j] c'est a dire vect[i-1] et vect[i]
if ( i > 0 ) {
Vertex* from = vect[i-1];
assert(from);
Vertex* to = vect[i];
assert(to);
_routingGraph->createHEdge ( from, to, hreserved );
}
// si j > 0 alors on peut creer une edge verticale entre matrix[i][j-1] et matrix[i][j] c'est a dire _matrix[j-1][i] et vect[i]
if ( j > 0 ) { // _matrix est un vecteur de vecteur represantant les lignes -> _matrix[ligne][colonne]
Vertex* from = _matrix[j-1][i];
assert(from);
Vertex* to = vect[i];
assert(to);
_routingGraph->createVEdge ( from, to, vreserved );
}
}
_matrix.push_back ( vect );
}
//cerr << "---------------------------" << endl;
//print();
return _matrix[0][0];
}
//void MatrixVertex::createXIrregular ( NimbusEngine* nimbus )
//// *********************************************************
//{
// if ( _xInit )
// throw Error ("MatrixVertex::createXIrregular(): cannot initialize X vector twice.");
// GCell* gcell = nimbus->getGrid()->getLowerLeftCorner ( nimbus->getDepth() );
// assert(gcell);
// unsigned index = 0;
// _columnsIndexes.push_back ( pair<DbU::Unit,unsigned>(gcell->getXMin(),index++) );
// while ( gcell ) {
// //if ( gcell->getRightFence() ) pour la dernière gcell, on veut récupérer la fence virtuelle de droite
// _columnsIndexes.push_back ( pair<DbU::Unit,unsigned>(gcell->getXMax(),index++) );
// gcell = gcell->getRightOfMe();
// }
// _nbXTiles = index-1;
// //assert ( is_sorted(vertiCutLines.begin(), vertiCutLines.end()) );
// //for ( unsigned i = 0 ; i < vertiCutLines.size() ; i++ )
// // _columnsIndexes.push_back ( pair<DbU::Unit,unsigned> (vertiCutLines[i], i) );
// assert ( is_sorted(_columnsIndexes.begin(), _columnsIndexes.end(), IndexComp()) );
// //_nbXTiles = _columnsIndexes.size()-1;
// _xRegular = false;
// _xInit = true;
//
// if ( _xInit && _yInit )
// createMatrix();
//}
//void MatrixVertex::createYIrregular ( NimbusEngine* nimbus )
//// *********************************************************
//{
// if ( _yInit )
// throw Error ("MatrixVertex::createYIrregular(): cannot initialize Y vector twice.");
//
// GCell* gcell = nimbus->getGrid()->getLowerLeftCorner ( nimbus->getDepth() );
// assert(gcell);
// unsigned index = 0;
// _linesIndexes.push_back ( pair<DbU::Unit,unsigned>(gcell->getYMin(),index++) );
// while ( gcell ) {
// _linesIndexes.push_back ( pair<DbU::Unit,unsigned>(gcell->getYMax(),index++) );
// gcell = gcell->getUpOfMe();
// }
// assert ( is_sorted(_linesIndexes.begin(), _linesIndexes.end(), IndexComp()) );
// _nbYTiles = index-1;
// _yRegular = false;
// _yInit = true;
//
// if ( _xInit && _yInit )
// createMatrix();
//}
//void MatrixVertex::createMatrix()
//// ******************************
//{
// assert ( _xInit && _yInit );
// for ( unsigned j = 0 ; j < _nbYTiles ; j++ ) {
// vector<Vertex*> vect;
// for ( unsigned i = 0 ; i < _nbXTiles ; i++ ) {
// Vertex* vertex (NULL);
// vect.push_back ( vertex );
// }
// _matrix.push_back ( vect );
// }
//}
void MatrixVertex::setVertex ( pair<unsigned int,unsigned int> indexes, Vertex* vertex )
// *************************************************************************************
{
_matrix[indexes.second][indexes.first] = vertex;
}
void MatrixVertex::setVertex ( Point point, Vertex* vertex )
// *********************************************************
{
pair<unsigned int,unsigned int> indexes = getIJ ( point );
setVertex ( indexes, vertex );
}
unsigned int MatrixVertex::getLineIndex ( DbU::Unit y )
// ***********************************************
{
assert(_yInit );
if ( _yRegular ) {
// cerr << "y:" << DbU::getValueString(y-_boundingBox.getYMin()) << "/" << DbU::getValueString(_tileHeight)
// << "=" << (DbU::getLambda(y-_boundingBox.getYMin())/_tileHeight)
// << "<=>" << (unsigned int)floor((y-_boundingBox.getYMin())/_tileHeight) << endl;
if ( (y < _boundingBox.getYMin()) or (y > _boundingBox.getYMax()) )
throw Error ("MatrixVertex::getLineIndex(): search value (%s) is out of bounds [%s,%s]."
,DbU::getValueString(y).c_str()
,DbU::getValueString(_boundingBox.getYMin()).c_str()
,DbU::getValueString(_boundingBox.getYMax()).c_str());
unsigned int index = (unsigned int)floor((y-_boundingBox.getYMin())/_tileHeight);
if ( y == _boundingBox.getYMax() ) --index;
return index;
}
assert(is_sorted(_linesIndexes.begin(), _linesIndexes.end()));
if ( _linesIndexes.empty() )
throw Error ( "MatrixVertex::getLineIndex(): Indexes map is empty." );
pair<pairIterator,pairIterator> result = equal_range (_linesIndexes.begin(), _linesIndexes.end()
, pair<DbU::Unit,unsigned>(y,0), MatrixVertex::IndexComp());
if ( result.second == _linesIndexes.begin() )
throw Error ("MatrixVertex::getLineIndex(): search value (%s) is lower than lowest bound (%s)."
,DbU::getValueString(y).c_str()
,DbU::getValueString((*_linesIndexes.begin()).first).c_str());
if ( result.second == _linesIndexes.end() )
throw Error ("MatrixVertex::getLineIndex(): search value (%s) is upper than uppest bound (%s)."
,DbU::getValueString(y).c_str()
,DbU::getValueString((*_linesIndexes.rbegin()).first).c_str());
return ((*result.second).second-1);
}
unsigned int MatrixVertex::getColumnIndex ( DbU::Unit x )
// *************************************************
{
assert(_xInit );
if ( _xRegular ) {
// cerr << "x:" << DbU::getValueString(x-DbU::lambda(_boundingBox.getXMin())) << "/" << _tileWidth << "=" << (DbU::getLambda(x-DbU::lambda(_lowerLeftX))/_tileWidth)
// << "<=>" << (unsigned int)floor(DbU::getLambda(x-DbU::lambda(_boundingBox.getXMin()))/_tileWidth) << endl;
if ( (x < _boundingBox.getXMin()) or (x > _boundingBox.getXMax()) )
throw Error ("MatrixVertex::getColumnIndex(): search value (%s) is out of bounds [%s,%s]."
,DbU::getValueString(x).c_str()
,DbU::getValueString(_boundingBox.getXMin()).c_str()
,DbU::getValueString(_boundingBox.getXMax()).c_str());
unsigned int index = (unsigned int)floor((x-_boundingBox.getXMin())/_tileWidth);
if ( x == _boundingBox.getXMax() ) --index;
return index;
}
assert(is_sorted(_columnsIndexes.begin(),_columnsIndexes.end()));
if ( _columnsIndexes.empty() )
throw Error ( "MatrixVertex::getColumnIndex(): Indexes map is empty." );
pair<pairIterator,pairIterator> result = equal_range (_columnsIndexes.begin(), _columnsIndexes.end()
, pair<DbU::Unit,unsigned>(x,0), MatrixVertex::IndexComp());
if ( result.second == _columnsIndexes.begin() )
throw Error ("MatrixVertex::getColumnIndex(): search value is lower than lowest bound.");
if ( result.second == _columnsIndexes.end() )
throw Error ("MatrixVertex::getColumnIndex(): search value is upper than uppest bound.");
return ((*result.second).second-1);
}
pair<unsigned int,unsigned int> MatrixVertex::getIJ ( DbU::Unit x, DbU::Unit y )
// *******************************************************************
{
return pair<unsigned int,unsigned int> (getColumnIndex(x),getLineIndex(y));
}
pair<unsigned int,unsigned int> MatrixVertex::getIJ ( const Point& point )
// ***********************************************************************
{
return pair<unsigned int,unsigned int> (getColumnIndex(point.getX()),getLineIndex(point.getY()));
}
Vertex* MatrixVertex::getVertex ( pair<unsigned int,unsigned int> indexes )
// ************************************************************************
{
return _matrix[indexes.second][indexes.first];
}
Vertex* MatrixVertex::getVertex ( Point point )
// ********************************************
{
pair<unsigned int,unsigned int> indexes = getIJ ( point );
Added support for "same layer" dogleg. Big fix for pad routing. * Change: In Knik, in Vertex, add a "blocked" flag to signal disabled vertexes in the grid (must not be used by the global router). Modificate the Graph::getVertex() method so that when a vertex is geometrically queried, if is a blocked one, return a non-blocked neighbor. This mechanism is introduced to, at last, prevent the global router to go *under* the pad in case of a commplete chip. * New: In Katabatic, in AutoSegment, a new state has been added: "reduced". A reduced segment is in the same layer as it's perpandiculars. To be reduced, a segments has to be connected on source & target to AutoContactTurn, both of the perpandiculars must be of the same layer (below or above) and it's length must not exceed one pitch in the perpandicular direction. To reduce an AutoSegment, call ::reduce() and to revert the state, call ::raise(). Two associated predicates are associated: ::canReduce() and ::mustRaise(). Note: No two adjacent segments can be reduced at the same time. * Bug: In Katabatic, in GCellTopology, add a new method ::doRp_AccessPad() to connect to the pads. Create wiring, fixed and non managed by Katabatic, to connect the pad connector layer to the lowest routing layers (depth 1 & 2). The former implementation was sometimes leading to gaps (sheared contact) that *must not* occurs during the building stage. Remark: This bug did put under the light the fact that the initial wiring must be created without gaps. Gaps are closed by making doglegs on contacts. But this mechanism could only work when the database if fully initialised (the cache is up to date). Otherwise various problems arise, in the canonization process for example. * New: In Katabatic, in AutoContactTerminal::getNativeConstraintBox(), when anchored on a RoutingPad, now take account the potential rotation of the Path's transformation. Here again, for the chip's pads. * New: In Kite, support for reduced AutoSegment. TrackSegment associateds to reduced AutoSegment are *not* inserted into track to become effectively invisibles. When a segment becomes reduced, a TrackEvent is generated to remove it. Conversely when it is raised a RoutingEvent is created/rescheduled to insert it. All this is mostly managed inside the Session::revalidate() method. * New: In Kite, in KiteEngine::createGlobalGraph(), in case of a chip, mark all global routing vertexes (Knik) that are under a pad, as blockeds. * Bug: In Cumulus, in PadsCorona.Side.getAxis(), inversion between X and Y coordinate of the chip size. Did not show until a non-square chip was routed (i.e. our MIPS R3000). * Change: In Stratus1, in st_placement.py add the ClockBuffer class for backward compatibility with the MIPS32 bench. Have to review this functionnality coming from the deprecated placeAndroute.py. In st_instance.py, no longer creates the Plug ring of a Net. In my opinion it just clutter the display until the P&R is called. Can re-enable later as an option (in Unicorn). * Change: In Unicorn, in cgt.py, more reliable way of loading then running user supplied scripts. Borrowed from alliance-checker-toolkit doChip.py .
2015-08-16 16:29:28 -05:00
Vertex* vertex = getVertex ( indexes );
if (vertex and vertex->isBlocked()) {
Vertex* neighbor = NULL;
for ( size_t i=0; i<4 ; ++i ) {
neighbor = vertex->getFirstEdges(i)->getOpposite( vertex );
if (neighbor and not neighbor->isBlocked())
return neighbor;
}
}
if (not vertex) {
cerr << Error( "MatrixVertex::getVertex(Point): On %s,\n"
" blocked and it's neighbors are also blocked (vertex unreachable)."
, getString(vertex).c_str() ) << endl;
}
return vertex;
}
Vertex* MatrixVertex::getVertex ( DbU::Unit x, DbU::Unit y )
// *********************************************************
{
pair<unsigned int,unsigned int> indexes = getIJ ( x, y );
return getVertex ( indexes );
}
Vertex* MatrixVertex::getVertexFromIndexes ( unsigned lineIdx, unsigned columnIdx )
// ********************************************************************************
{
return _matrix[lineIdx][columnIdx];
}
void MatrixVertex::print()
// ***********************
{
//cerr << "\'_linesIndexes\';" << endl;
//for ( unsigned i = 0 ; i < _linesIndexes.size() ; ) {
// cerr << "\'<" << _linesIndexes[i].first << "," << _linesIndexes[i].second << ">\'";
// if ( ++i %10 )
// cerr << ",";
// else
// cerr << ";" << endl;
//}
//cerr << ";" << endl;
//cerr << "\'_columnsIndexes\';" << endl;
//for ( unsigned i = 0 ; i < _columnsIndexes.size() ; ) {
// cerr << "\'<" << _columnsIndexes[i].first << "," << _columnsIndexes[i].second << ">\'";
// if ( ++i %10 )
// cerr << ",";
// else
// cerr << ";" << endl;
//}
//cerr << ";" << endl;
for ( unsigned j = 0 ; j < _nbYTiles ; j++ )
for ( unsigned i = 0 ; i < _nbXTiles ; i++ )
cerr << i << "," << j << " " << _matrix[j][i] << endl;
}
} // end namespace