2016-07-18 07:48:37 -05:00
|
|
|
// -*- C++ -*-
|
|
|
|
//
|
|
|
|
// This file is part of the Coriolis Software.
|
2018-01-06 10:55:44 -06:00
|
|
|
// Copyright (c) UPMC 2008-2018, All Rights Reserved
|
2016-07-18 07:48:37 -05:00
|
|
|
//
|
|
|
|
// +-----------------------------------------------------------------+
|
|
|
|
// | C O R I O L I S |
|
|
|
|
// | A n a b a t i c - Routing Toolbox |
|
|
|
|
// | |
|
|
|
|
// | Author : Jean-Paul CHAPUT |
|
|
|
|
// | E-mail : Jean-Paul.Chaput@lip6.fr |
|
|
|
|
// | =============================================================== |
|
|
|
|
// | C++ Module : "./AutoSegment.cpp" |
|
|
|
|
// +-----------------------------------------------------------------+
|
|
|
|
|
|
|
|
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
#include "hurricane/DebugSession.h"
|
2016-07-18 07:48:37 -05:00
|
|
|
#include "hurricane/Warning.h"
|
|
|
|
#include "hurricane/Bug.h"
|
|
|
|
#include "hurricane/DataBase.h"
|
|
|
|
#include "hurricane/Technology.h"
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
#include "hurricane/ViaLayer.h"
|
2016-07-18 07:48:37 -05:00
|
|
|
#include "hurricane/Horizontal.h"
|
|
|
|
#include "hurricane/Vertical.h"
|
|
|
|
#include "crlcore/RoutingGauge.h"
|
|
|
|
#include "anabatic/Session.h"
|
|
|
|
#include "anabatic/AutoContact.h"
|
|
|
|
#include "anabatic/AutoSegment.h"
|
|
|
|
#include "anabatic/AutoHorizontal.h"
|
|
|
|
#include "anabatic/AutoVertical.h"
|
|
|
|
#include "anabatic/GCell.h"
|
|
|
|
#include "anabatic/AnabaticEngine.h"
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace CRL;
|
|
|
|
using namespace Hurricane;
|
|
|
|
using namespace Anabatic;
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------
|
|
|
|
// Local Variables.
|
|
|
|
|
|
|
|
|
|
|
|
const char* badAutoSegmentAnchor =
|
|
|
|
"AutoSegment::create() :\n\n"
|
|
|
|
" Source and/or target anchor is NOT an <AutoContact> (internal error).\n"
|
|
|
|
" Source: %s, Target: %s";
|
|
|
|
|
|
|
|
const char* dupAutoSegmentAnchor =
|
|
|
|
"AutoSegment::create() :\n\n"
|
|
|
|
" Source and Target anchor are the same : %s (internal error).";
|
|
|
|
|
|
|
|
const char* badSegment =
|
|
|
|
"Anabatic::AutoSegment::create () :\n\n"
|
|
|
|
" Segment between %s and %s\n"
|
|
|
|
" is neither horizontal nor vertical .\n";
|
|
|
|
|
|
|
|
const char* badSegmentSource =
|
|
|
|
"Anabatic::AutoSegment::create () :\n\n"
|
|
|
|
" Source anchor of segment %s is not a Contact\n"
|
|
|
|
" (%s)\n";
|
|
|
|
|
|
|
|
const char* badSegmentTarget =
|
|
|
|
"Anabatic::AutoSegment::create () :\n\n"
|
|
|
|
" Source anchor of segment %s is not a Contact\n"
|
|
|
|
" (%s)\n";
|
|
|
|
|
|
|
|
const char* mismatchSegmentSource =
|
|
|
|
"Anabatic::AutoSegment::create () :\n\n"
|
|
|
|
" Source anchor of segment %s is already an AutoContact\n"
|
|
|
|
" (%s)\n";
|
|
|
|
|
|
|
|
const char* mismatchSegmentTarget =
|
|
|
|
"Anabatic::AutoSegment::create () :\n\n"
|
|
|
|
" Target anchor of segment %s is already an AutoContact\n"
|
|
|
|
" (%s)\n";
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------
|
|
|
|
// Local Functions.
|
|
|
|
|
|
|
|
|
|
|
|
bool getTerminalInterval ( AutoSegment* autoSegment
|
|
|
|
, AutoContact* fromContact
|
|
|
|
, bool isHorizontal
|
|
|
|
, DbU::Unit& min
|
|
|
|
, DbU::Unit& max
|
|
|
|
)
|
|
|
|
{
|
|
|
|
AutoContact* terminalContact = NULL;
|
|
|
|
|
|
|
|
if ( !fromContact ) {
|
|
|
|
bool found = getTerminalInterval ( autoSegment
|
|
|
|
, autoSegment->getAutoSource()
|
|
|
|
, autoSegment->isHorizontal()
|
|
|
|
, min
|
|
|
|
, max );
|
|
|
|
if ( !found )
|
|
|
|
found = getTerminalInterval ( autoSegment
|
|
|
|
, autoSegment->getAutoTarget()
|
|
|
|
, autoSegment->isHorizontal()
|
|
|
|
, min
|
|
|
|
, max );
|
|
|
|
|
|
|
|
//if ( !found )
|
|
|
|
// cerr << "[ERROR] Cannot find terminal of " << autoSegment << "." << endl;
|
|
|
|
|
|
|
|
return found;
|
|
|
|
} else {
|
|
|
|
if ( autoSegment->isGlobal() ) return false;
|
|
|
|
|
|
|
|
cdebug_log(145,0) << "Examining " << autoSegment << " " << fromContact << endl;
|
|
|
|
|
|
|
|
if ( autoSegment->getSource() == autoSegment->getTarget() ) {
|
|
|
|
cerr << Error("Source & Target are the same :\n"
|
|
|
|
" %s\n %s"
|
|
|
|
,getString(autoSegment).c_str()
|
|
|
|
,getString(autoSegment->getSource()).c_str()) << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
terminalContact = autoSegment->getAutoSource();
|
|
|
|
if ( terminalContact == fromContact ) {
|
|
|
|
terminalContact = autoSegment->getAutoTarget();
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( !terminalContact->isTerminal() ) {
|
|
|
|
AutoSegment* segment = NULL;
|
|
|
|
size_t segmentCount = 0;
|
|
|
|
forEach ( Component*, icomponent, terminalContact->getSlaveComponents() ) {
|
|
|
|
if ( *icomponent == autoSegment->base() ) continue;
|
|
|
|
|
|
|
|
Segment* connex = dynamic_cast<Segment*>(*icomponent);
|
|
|
|
if ( !connex ) continue;
|
|
|
|
|
|
|
|
segment = Session::lookup ( connex );
|
|
|
|
if ( not segment or not segment->isWeakTerminal() ) continue;
|
|
|
|
|
|
|
|
segmentCount++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( segmentCount == 1 ) {
|
|
|
|
return getTerminalInterval ( segment, terminalContact, isHorizontal, min, max );
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
cdebug_log(145,0) << "Terminal is " << terminalContact << endl;
|
|
|
|
|
|
|
|
Box constraintBox = terminalContact->getConstraintBox();
|
|
|
|
if ( isHorizontal ) {
|
|
|
|
min = constraintBox.getXMin ();
|
|
|
|
max = constraintBox.getXMax ();
|
|
|
|
} else {
|
|
|
|
min = constraintBox.getYMin ();
|
|
|
|
max = constraintBox.getYMax ();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ---------------------------------------------------------------
|
|
|
|
// Class : "AttractorsMap".
|
|
|
|
|
|
|
|
|
|
|
|
class AttractorsMap {
|
|
|
|
// Constructor.
|
|
|
|
public:
|
|
|
|
inline AttractorsMap ();
|
|
|
|
inline size_t getAttractorsCount () const;
|
|
|
|
DbU::Unit getLowerMedian () const;
|
|
|
|
DbU::Unit getUpperMedian () const;
|
|
|
|
void addAttractor ( DbU::Unit position );
|
|
|
|
protected:
|
|
|
|
map<DbU::Unit,size_t> _attractors;
|
|
|
|
size_t _attractorsCount;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
inline AttractorsMap::AttractorsMap ()
|
|
|
|
: _attractors(), _attractorsCount(0)
|
|
|
|
{ }
|
|
|
|
|
|
|
|
|
|
|
|
inline size_t AttractorsMap::getAttractorsCount () const
|
|
|
|
{
|
|
|
|
return _attractorsCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AttractorsMap::addAttractor ( DbU::Unit position )
|
|
|
|
{
|
|
|
|
_attractors[position]++;
|
|
|
|
_attractorsCount++;
|
|
|
|
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
cdebug_log(145,0) << "add Attractor @" << DbU::getValueString(position)
|
2016-07-18 07:48:37 -05:00
|
|
|
<< " [" << _attractors[position] << "]" << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DbU::Unit AttractorsMap::getLowerMedian () const
|
|
|
|
{
|
|
|
|
size_t median = (_attractorsCount/2) + (_attractorsCount%2);
|
|
|
|
size_t lower = 0;
|
|
|
|
|
|
|
|
map<DbU::Unit,size_t>::const_iterator it = _attractors.begin ();
|
|
|
|
for ( ; it != _attractors.end() ; it++ ) {
|
|
|
|
lower += it->second;
|
|
|
|
if ( lower >= median ) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return it->first;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DbU::Unit AttractorsMap::getUpperMedian () const
|
|
|
|
{
|
|
|
|
size_t median = _attractorsCount / 2;
|
|
|
|
size_t upper = 0;
|
|
|
|
|
|
|
|
map<DbU::Unit,size_t>::const_iterator it = _attractors.begin ();
|
|
|
|
for ( ; it != _attractors.end() ; it++ ) {
|
|
|
|
upper += it->second;
|
|
|
|
if ( upper > median ) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return it->first;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
// ---------------------------------------------------------------
|
|
|
|
// Class : "SideStack".
|
|
|
|
|
|
|
|
class SideStack {
|
|
|
|
public:
|
2018-02-21 10:03:43 -06:00
|
|
|
SideStack ( Flags direction, DbU::Unit pitch );
|
|
|
|
inline bool isHoled () const;
|
|
|
|
const Interval& getSideAt ( DbU::Unit ) const;
|
|
|
|
inline const Interval& getGSide () const;
|
|
|
|
inline DbU::Unit getGSideMin () const;
|
|
|
|
inline DbU::Unit getGSideMax () const;
|
|
|
|
inline DbU::Unit getGSideCenter () const;
|
|
|
|
void addGCell ( const GCell* );
|
|
|
|
inline bool intersect ( const Interval& ) const;
|
|
|
|
inline void restrictGSide ( const Interval& );
|
|
|
|
void show () const;
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
private:
|
|
|
|
Flags _direction;
|
2018-02-21 10:03:43 -06:00
|
|
|
bool _holed;
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
DbU::Unit _pitch;
|
|
|
|
Interval _full;
|
|
|
|
Interval _gside;
|
|
|
|
map<DbU::Unit,Interval> _sides;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
SideStack::SideStack ( Flags direction, DbU::Unit pitch )
|
|
|
|
: _direction( (direction & Flags::Horizontal) ? Flags::Vertical : Flags::Horizontal )
|
2018-02-21 10:03:43 -06:00
|
|
|
, _holed (false)
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
, _pitch (pitch)
|
|
|
|
, _full (false)
|
|
|
|
, _gside (false)
|
|
|
|
, _sides ()
|
|
|
|
{ }
|
|
|
|
|
|
|
|
|
2018-02-21 10:03:43 -06:00
|
|
|
inline bool SideStack::isHoled () const { return _holed; }
|
|
|
|
inline const Interval& SideStack::getGSide () const { return _gside; }
|
|
|
|
inline DbU::Unit SideStack::getGSideMin () const { return _gside.getVMin(); }
|
|
|
|
inline DbU::Unit SideStack::getGSideMax () const { return _gside.getVMax(); }
|
|
|
|
inline DbU::Unit SideStack::getGSideCenter () const { return _gside.getVMax(); }
|
|
|
|
inline bool SideStack::intersect ( const Interval& side ) const { return _gside.intersect(side); }
|
|
|
|
inline void SideStack::restrictGSide ( const Interval& restrict ) { if (not _holed) _gside.intersection(restrict); }
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
|
|
|
|
|
|
|
|
const Interval& SideStack::getSideAt ( DbU::Unit position ) const
|
|
|
|
{
|
|
|
|
if (_sides.empty()) return _full;
|
|
|
|
if (_sides.size() == 1) return _sides.begin()->second;
|
|
|
|
|
|
|
|
if (_sides.begin()->first > position) return _sides.begin()->second;
|
|
|
|
for ( auto iside = ++_sides.begin() ; iside != _sides.end() ; ++iside ) {
|
|
|
|
if (iside->first >= position) return (--iside)->second;
|
|
|
|
}
|
|
|
|
return _sides.rbegin()->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void SideStack::addGCell ( const GCell* gcell )
|
|
|
|
{
|
|
|
|
Interval side = gcell->getSide( _direction, _pitch );
|
|
|
|
DbU::Unit position = (_direction & Flags::Vertical) ? gcell->getBoundingBox().getXMin()
|
|
|
|
: gcell->getBoundingBox().getYMin();
|
|
|
|
|
2018-02-21 10:03:43 -06:00
|
|
|
if (not _holed and intersect(side)) _gside.intersection( side );
|
|
|
|
else {
|
|
|
|
if (not _holed) {
|
|
|
|
_holed = true;
|
|
|
|
if (side.getVMin() > _gside.getVMax()) _gside = Interval( _gside.getVMax(), side.getVMin() );
|
|
|
|
else _gside = Interval( side.getVMax(), _gside.getVMin() );
|
|
|
|
} else {
|
|
|
|
if (not intersect(side)) {
|
|
|
|
if (side.getVMax() < _gside.getVMin()) _gside.merge( side.getVMax() );
|
|
|
|
else _gside.merge( side.getVMin() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
_sides.insert( make_pair(position,side) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void SideStack::show () const
|
|
|
|
{
|
|
|
|
cdebug_log(145,0) << "SideStack::show()" << endl;
|
|
|
|
for ( auto pside : _sides ) {
|
|
|
|
cdebug_log(145,0) << "@ " << DbU::getValueString(pside.first)
|
|
|
|
<< " " << pside.second << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
} // End of local namespace.
|
|
|
|
|
|
|
|
|
|
|
|
namespace Anabatic {
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Class : "Anabatic::AutoSegment::CompareByDepthLength".
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::CompareByDepthLength::operator() ( AutoSegment* lhs, AutoSegment* rhs ) const
|
|
|
|
{
|
|
|
|
int deltaDepth = (int)(Session::getRoutingGauge()->getLayerDepth(lhs->getLayer()))
|
|
|
|
- (int)(Session::getRoutingGauge()->getLayerDepth(rhs->getLayer()));
|
|
|
|
if ( deltaDepth < 0 ) return true; // Lowest layer first.
|
|
|
|
if ( deltaDepth > 0 ) return false;
|
|
|
|
|
|
|
|
DbU::Unit deltaUnit = lhs->getSourceU() - rhs->getSourceU();
|
|
|
|
if ( deltaUnit < 0 ) return true; // Smallest source first.
|
|
|
|
if ( deltaUnit > 0 ) return false;
|
|
|
|
|
|
|
|
deltaUnit = lhs->getLength() - rhs->getLength();
|
|
|
|
if ( deltaUnit > 0 ) return true; // Longest first.
|
|
|
|
if ( deltaUnit < 0 ) return true;
|
|
|
|
|
|
|
|
deltaUnit = lhs->getAxis() - rhs->getAxis();
|
|
|
|
if ( deltaUnit < 0 ) return true; // Smallest axis first.
|
|
|
|
if ( deltaUnit > 0 ) return false;
|
|
|
|
|
|
|
|
// if ( lhs->isCanonical () xor rhs->isCanonical () ) return lhs->isCanonical();
|
|
|
|
// if ( lhs->isCollapsed () xor rhs->isCollapsed () ) return rhs->isCollapsed();
|
|
|
|
// if ( lhs->isSlackenStrap() xor rhs->isSlackenStrap() ) return lhs->isSlackenStrap();
|
|
|
|
|
|
|
|
// if ( lhs->isGlobal () xor rhs->isGlobal () ) return lhs->isGlobal();
|
|
|
|
// if ( lhs->isTerminal () xor rhs->isTerminal () ) return rhs->isTerminal();
|
|
|
|
// if ( lhs->isHorizontal() xor rhs->isHorizontal() ) return lhs->isHorizontal();
|
|
|
|
|
|
|
|
// if ( lhs->isFixed() xor rhs->isFixed() ) return lhs->isFixed();
|
|
|
|
|
|
|
|
return lhs->getId() < rhs->getId();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Class : "Anabatic::AutoSegment::CompareByDepthAxis".
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::CompareByDepthAxis::operator() ( AutoSegment* lhs, AutoSegment* rhs ) const
|
|
|
|
{
|
|
|
|
int deltaDepth = (int)(Session::getRoutingGauge()->getLayerDepth(lhs->getLayer()))
|
|
|
|
- (int)(Session::getRoutingGauge()->getLayerDepth(rhs->getLayer()));
|
|
|
|
if ( deltaDepth < 0 ) return true; // Lowest layer first.
|
|
|
|
if ( deltaDepth > 0 ) return false;
|
|
|
|
|
|
|
|
DbU::Unit deltaUnit = lhs->getAxis() - rhs->getAxis();
|
|
|
|
if ( deltaUnit < 0 ) return true; // Smallest axis first.
|
|
|
|
if ( deltaUnit > 0 ) return false;
|
|
|
|
|
|
|
|
deltaUnit = lhs->getSourceU() - rhs->getSourceU();
|
|
|
|
if ( deltaUnit < 0 ) return true; // Smallest source first.
|
|
|
|
if ( deltaUnit > 0 ) return false;
|
|
|
|
|
|
|
|
return lhs->getId() < rhs->getId(); // Smallest Id first.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Class : "Anabatic::AutoSegment::CompareBySourceU".
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::CompareBySourceU::operator() ( AutoSegment* lhs, AutoSegment* rhs ) const
|
|
|
|
{
|
|
|
|
DbU::Unit deltaUnit = lhs->getSourceU() - rhs->getSourceU();
|
|
|
|
if (deltaUnit < 0) return true; // Smallest source first.
|
|
|
|
if (deltaUnit > 0) return false;
|
|
|
|
|
|
|
|
return lhs->getId() < rhs->getId(); // Smallest Id first.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Class : "Anabatic::AutoSegment".
|
|
|
|
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
size_t AutoSegment::_allocateds = 0;
|
|
|
|
size_t AutoSegment::_globalsCount = 0;
|
|
|
|
bool AutoSegment::_analogMode = false;
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
bool AutoSegment::_shortNetMode = false;
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
bool AutoSegment::_initialized = false;
|
|
|
|
vector< array<DbU::Unit*,3> > AutoSegment::_extensionCaps;
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
|
|
|
|
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
void AutoSegment::setAnalogMode ( bool state ) { _analogMode = state; }
|
|
|
|
bool AutoSegment::getAnalogMode () { return _analogMode; }
|
|
|
|
void AutoSegment::setShortNetMode ( bool state ) { _shortNetMode = state; }
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
void AutoSegment::_initialize ()
|
|
|
|
{
|
2018-02-20 17:16:50 -06:00
|
|
|
//cerr << "AutoSegment::_initialize()" << endl;
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
|
|
|
|
_initialized = true;
|
|
|
|
for ( size_t depth=0 ; depth<Session::getDepth() ; ++depth ) {
|
|
|
|
DbU::Unit* viaToTopCap = new DbU::Unit ( 0 );
|
|
|
|
DbU::Unit* viaToBottomCap = new DbU::Unit ( 0 );
|
|
|
|
DbU::Unit* viaToSameCap = new DbU::Unit ( 0 );
|
|
|
|
bool isVertical = (depth == 0) or (Session::getLayerGauge(depth)->isVertical());
|
|
|
|
uint32_t flags = (isVertical) ? Layer::EnclosureV : Layer::EnclosureH ;
|
|
|
|
|
2018-02-20 17:16:50 -06:00
|
|
|
//cerr << depth << ":" << Session::getLayerGauge(depth)->getLayer()->getName()
|
|
|
|
// << " isVertical:" << Session::getLayerGauge(depth)->isVertical() << endl;
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
|
|
|
|
*viaToSameCap = Session::getWireWidth(depth)/2;
|
|
|
|
|
|
|
|
// Bottom metal of the VIA going *up*.
|
|
|
|
const Layer* viaLayer = dynamic_cast<const ViaLayer*>( Session::getContactLayer(depth) );
|
|
|
|
if (viaLayer)
|
|
|
|
*viaToTopCap = Session::getViaWidth(depth)/2 + viaLayer->getBottomEnclosure( flags );
|
|
|
|
|
|
|
|
// Top metal of the VIA going *down*.
|
|
|
|
if (depth > 0) {
|
|
|
|
viaLayer = dynamic_cast<const ViaLayer*>( Session::getContactLayer(depth-1) );
|
|
|
|
if (viaLayer)
|
|
|
|
*viaToBottomCap = Session::getViaWidth(depth-1)/2 + viaLayer->getTopEnclosure( flags );
|
|
|
|
}
|
|
|
|
|
2018-02-20 17:16:50 -06:00
|
|
|
//cerr << " viaToTop width: " << DbU::getValueString( Session::getViaWidth(depth) ) << endl;
|
|
|
|
//cerr << " viaToTopCap: " << DbU::getValueString(*viaToTopCap ) << endl;
|
|
|
|
//if (depth > 0)
|
|
|
|
// cerr << " viaToBottom width:" << DbU::getValueString( Session::getViaWidth(depth-1)/2 ) << endl;
|
|
|
|
//cerr << " viaToBottomCap: " << DbU::getValueString(*viaToBottomCap) << endl;
|
|
|
|
//cerr << " viaToSameCap: " << DbU::getValueString(*viaToSameCap ) << endl;
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
|
|
|
|
_extensionCaps.push_back( std::array<DbU::Unit*,3>( { viaToTopCap, viaToBottomCap, viaToSameCap } ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
AutoSegment::AutoSegment ( Segment* segment )
|
|
|
|
: _id (segment->getId())
|
|
|
|
, _gcell (NULL)
|
|
|
|
, _flags (SegCreated)
|
|
|
|
, _depth (Session::getLayerDepth(segment->getLayer()))
|
|
|
|
, _optimalMin (0)
|
|
|
|
, _optimalMax (0)
|
|
|
|
, _reduceds (0)
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
, _rpDistance (15)
|
2016-07-18 07:48:37 -05:00
|
|
|
, _sourcePosition (0)
|
|
|
|
, _targetPosition (0)
|
|
|
|
, _userConstraints (false)
|
|
|
|
, _nativeConstraints(false)
|
|
|
|
, _parent (NULL)
|
|
|
|
, _observers ()
|
|
|
|
{
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
if (not _initialized) _initialize();
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
_allocateds++;
|
|
|
|
|
|
|
|
if (dynamic_cast<Horizontal*>(segment)) setFlags( SegHorizontal );
|
|
|
|
|
|
|
|
_globalsCount += isGlobal() ? 1 : 0;
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
AutoContact* source = Session::lookup(dynamic_cast<Contact*>(segment->getSource()));
|
|
|
|
AutoContact* target = Session::lookup(dynamic_cast<Contact*>(segment->getTarget()));
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
|
|
|
|
if (source->isTerminal()) setFlags( SegSourceTerminal );
|
|
|
|
if (target->isTerminal()) setFlags( SegTargetTerminal );
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
if (_analogMode) setFlags( SegAnalog );
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
if (_shortNetMode) setFlags( SegShortNet );
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
source->invalidate( Flags::Topology );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::_preCreate ( AutoContact* source, AutoContact* target )
|
|
|
|
{
|
|
|
|
if ( (source == NULL) or (target == NULL) )
|
|
|
|
throw Error( badAutoSegmentAnchor
|
|
|
|
, ((source)?getString(source).c_str():"NULL")
|
|
|
|
, ((target)?getString(target).c_str():"NULL")
|
|
|
|
);
|
|
|
|
|
|
|
|
if (source == target)
|
|
|
|
throw Error( dupAutoSegmentAnchor, getString(source).c_str() );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::_postCreate ()
|
|
|
|
{
|
|
|
|
Session::invalidate( getNet() );
|
|
|
|
Session::link( this );
|
|
|
|
updateOrient();
|
|
|
|
updatePositions();
|
|
|
|
invalidate( Flags::Topology );
|
|
|
|
|
|
|
|
_observers.notify( Create );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::_preDestroy ()
|
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::_preDestroy() - " << (void*)this << endl;
|
|
|
|
cdebug_tabw(145,1);
|
|
|
|
|
|
|
|
_observers.notify( Destroy );
|
|
|
|
|
|
|
|
Session::unlink( this );
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AutoSegment::~AutoSegment ()
|
|
|
|
{
|
|
|
|
_allocateds--;
|
|
|
|
if ( isGlobal() and (_globalsCount > 0) ) _globalsCount--;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DbU::Unit AutoSegment::getX () const
|
|
|
|
{ return base()->getX(); }
|
|
|
|
|
|
|
|
|
|
|
|
DbU::Unit AutoSegment::getY () const
|
|
|
|
{ return base()->getY(); }
|
|
|
|
|
|
|
|
|
|
|
|
AutoContact* AutoSegment::getOppositeAnchor ( AutoContact* anchor ) const
|
|
|
|
{ return Session::lookup(static_cast<Contact*>(getOppositeAnchor(anchor->base()))); }
|
|
|
|
|
|
|
|
|
|
|
|
Interval& AutoSegment::getOptimal ( Interval& i ) const
|
|
|
|
{
|
|
|
|
i.getVMin() = getOptimalMin();
|
|
|
|
i.getVMax() = getOptimalMax();
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::checkNotInvalidated () const
|
|
|
|
{
|
|
|
|
if (isInvalidated())
|
|
|
|
cerr << Error("%s is invalidated.",getString(this).c_str()) << endl;
|
|
|
|
|
|
|
|
return not isInvalidated();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
void AutoSegment::invalidate ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
if (Session::doDestroyTool()) return;
|
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
cdebug_log(149,0) << "AutoSegment::invalidate() " << flags.asString(FlagsFunction)
|
|
|
|
<< " " << this << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_tabw(149,1);
|
|
|
|
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
if (flags & Flags::Source) setFlags( SegInvalidatedSource );
|
|
|
|
if (flags & Flags::Target) setFlags( SegInvalidatedTarget );
|
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
if ( (getFlags() & SegSourceTerminal)
|
|
|
|
and getAutoSource()
|
|
|
|
and getAutoSource()->canDrag()
|
|
|
|
and not getAutoSource()->isInvalidated() )
|
|
|
|
getAutoSource()->invalidate( flags );
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
if ( (getFlags() & SegTargetTerminal)
|
|
|
|
and getAutoTarget()
|
|
|
|
and getAutoTarget()->canDrag()
|
|
|
|
and not getAutoTarget()->isInvalidated() )
|
|
|
|
getAutoTarget()->invalidate( flags );
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
|
|
|
|
if (isInvalidated()) { cdebug_tabw(149,-1); return; }
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
_invalidate();
|
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
2018-03-27 11:03:51 -05:00
|
|
|
for ( AutoSegment* segment : getAligneds(flags & Flags::NoCheckLayer) ) {
|
|
|
|
if (not segment->isInvalidated()) segment->_invalidate();
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::_invalidate ()
|
|
|
|
{
|
|
|
|
if (isInvalidated()) return;
|
|
|
|
cdebug_log(145,0) << "AutoSegment::_invalidate() " << this << endl;
|
|
|
|
|
|
|
|
setFlags( SegInvalidated );
|
|
|
|
Session::invalidate( this );
|
|
|
|
|
|
|
|
_observers.notify( Invalidate );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::invalidate ( AutoContact* contact )
|
|
|
|
{
|
|
|
|
if (Session::doDestroyTool()) return;
|
|
|
|
if (contact == getAutoSource()) setFlags( SegInvalidatedSource );
|
|
|
|
if (contact == getAutoTarget()) setFlags( SegInvalidatedTarget );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::revalidate ()
|
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::revalidate() " << this << endl;
|
|
|
|
if (not isInvalidated()) return;
|
|
|
|
|
|
|
|
cdebug_tabw(149,1);
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
updateOrient();
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
uint64_t oldSpinFlags = _flags & SegDepthSpin;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if (_flags & (SegInvalidatedSource|SegCreated)) {
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
const Layer* contactLayer = source->getLayer();
|
|
|
|
const Layer* segmentLayer = getLayer();
|
|
|
|
cdebug_log(149,0) << "Changed source: " << source << endl;
|
|
|
|
|
|
|
|
unsetFlags( SegSourceTop|SegSourceBottom );
|
2016-10-05 16:43:07 -05:00
|
|
|
if (contactLayer->getMask() != segmentLayer->getMask())
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
setFlags( (segmentLayer->getMask() == contactLayer->getTop()->getMask()) ? SegSourceBottom : SegSourceTop );
|
2016-07-18 07:48:37 -05:00
|
|
|
if (source->isTurn() and source->getPerpandicular(this)->isReduced())
|
|
|
|
incReduceds();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_flags & (SegInvalidatedTarget|SegCreated)) {
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
const Layer* contactLayer = target->getLayer();
|
|
|
|
const Layer* segmentLayer = getLayer();
|
|
|
|
cdebug_log(149,0) << "Changed target: " << target << endl;
|
|
|
|
|
|
|
|
unsetFlags( SegTargetTop|SegTargetBottom );
|
2016-10-05 16:43:07 -05:00
|
|
|
if (contactLayer->getMask() != segmentLayer->getMask())
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
setFlags( (segmentLayer->getMask() == contactLayer->getTop()->getMask()) ? SegTargetBottom : SegTargetTop );
|
2016-07-18 07:48:37 -05:00
|
|
|
if (target->isTurn() and target->getPerpandicular(this)->isReduced())
|
|
|
|
incReduceds();
|
|
|
|
}
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
updatePositions();
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
unsigned int observerFlags = Revalidate;
|
|
|
|
if ( (_flags & SegCreated) or (oldSpinFlags != (_flags & SegDepthSpin)) )
|
|
|
|
observerFlags |= RevalidatePPitch;
|
|
|
|
|
|
|
|
unsetFlags( SegInvalidated
|
|
|
|
| SegInvalidatedSource
|
|
|
|
| SegInvalidatedTarget
|
|
|
|
| SegInvalidatedLayer
|
|
|
|
| SegCreated
|
|
|
|
);
|
|
|
|
|
|
|
|
_observers.notify( observerFlags );
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "Updated: " << this << endl;
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::isStrongTerminal ( Flags flags ) const
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (isTerminal()) return true;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
for ( AutoSegment* segment : const_cast<AutoSegment*>(this)->getAligneds() ) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (segment->isTerminal()) return true;
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DbU::Unit AutoSegment::getPPitch () const
|
|
|
|
{
|
|
|
|
unsigned int depth = getDepth();
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
DbU::Unit topPPitch = Session::getPitch( depth + ( ((_flags & SegSpinTop ) and (depth+1 < Session::getDepth())) ? 1 : 0) );
|
2016-07-18 07:48:37 -05:00
|
|
|
DbU::Unit bottomPPitch = Session::getPitch( depth - ( ((_flags & SegSpinBottom) and (depth > 0))? 1 : 0) );
|
|
|
|
|
|
|
|
return std::max( topPPitch, bottomPPitch );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
DbU::Unit AutoSegment::getExtensionCap ( Flags flags ) const
|
2017-06-10 05:27:25 -05:00
|
|
|
{
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
size_t depth = Session::getLayerDepth( getLayer() );
|
|
|
|
DbU::Unit cap = 0;
|
|
|
|
|
|
|
|
if (flags & Flags::Source) {
|
|
|
|
if (getFlags() & SegSourceTop ) cap = getViaToTopCap (depth);
|
|
|
|
else if (getFlags() & SegSourceBottom) cap = getViaToBottomCap(depth);
|
|
|
|
else cap = getViaToSameCap (depth);
|
|
|
|
cdebug_log(159,0) << "getExtensionCap(): flags:" << getFlags()
|
|
|
|
<< " VIA cap:" << DbU::getValueString(cap)
|
|
|
|
<< " " << (getFlags() & SegSourceBottom)
|
|
|
|
<< endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flags & Flags::Target) {
|
|
|
|
if (getFlags() & SegTargetTop ) cap = getViaToTopCap (depth);
|
|
|
|
else if (getFlags() & SegTargetBottom) cap = getViaToBottomCap(depth);
|
|
|
|
else cap = getViaToSameCap (depth);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cap < getWidth()/2) cap = getWidth()/2;
|
|
|
|
return cap + getLayer()->getMinimalSpacing()/2;;
|
2017-06-10 05:27:25 -05:00
|
|
|
}
|
|
|
|
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
DbU::Unit AutoSegment::getSlack () const
|
|
|
|
{
|
|
|
|
DbU::Unit constraintMin;
|
|
|
|
DbU::Unit constraintMax;
|
|
|
|
|
|
|
|
getConstraints( constraintMin, constraintMax );
|
|
|
|
|
|
|
|
return constraintMax - constraintMin;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
DbU::Unit AutoSegment::getCost ( DbU::Unit axis ) const
|
|
|
|
{
|
|
|
|
DbU::Unit optimal = getOptimalMin();
|
|
|
|
if (axis < optimal) return optimal - axis;
|
|
|
|
|
|
|
|
optimal = getOptimalMax();
|
|
|
|
if (axis > optimal) return axis - optimal;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AutoSegment* AutoSegment::getCanonical ( DbU::Unit& min, DbU::Unit& max )
|
|
|
|
{
|
|
|
|
cdebug_log(145,0) << "AutoSegment::getCanonical() - " << this << endl;
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
min = getSourcePosition();
|
|
|
|
max = getTargetPosition();
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if (max < min) swap( min, max );
|
|
|
|
|
|
|
|
//cdebug_log(145,0) << "[" << DbU::getValueString(min) << " " << DbU::getValueString(max) << "]" << endl;
|
|
|
|
|
|
|
|
AutoSegment* canonical = this;
|
|
|
|
size_t canonicals = isCanonical();
|
|
|
|
size_t aligneds = 1;
|
|
|
|
DbU::Unit collapsedMin;
|
|
|
|
DbU::Unit collapsedMax;
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
for ( AutoSegment* segment : getAligneds() ) {
|
|
|
|
if (segment->isCanonical()) {
|
|
|
|
canonical = segment;
|
2016-07-18 07:48:37 -05:00
|
|
|
canonicals++;
|
|
|
|
}
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
collapsedMin = segment->getSourcePosition();
|
|
|
|
collapsedMax = segment->getTargetPosition();
|
2016-07-18 07:48:37 -05:00
|
|
|
if (collapsedMax < collapsedMin) swap( collapsedMin, collapsedMax );
|
|
|
|
if (collapsedMin < min) min = collapsedMin;
|
|
|
|
if (collapsedMax > max) max = collapsedMax;
|
|
|
|
|
|
|
|
aligneds++;
|
|
|
|
}
|
|
|
|
//cdebug_log(145,0) << "[" << DbU::getValueString(min) << " " << DbU::getValueString(max) << "]" << endl;
|
|
|
|
cdebug_log(145,0) << "Canonical: " << canonical << endl;
|
|
|
|
|
|
|
|
if ( (canonicals > 1) or ( not canonicals and (aligneds > 2) ) ) {
|
|
|
|
cerr << Bug("AutoSegment::getCanonical(): %p:%s"
|
|
|
|
"\n Bad canonization: %d canonicals out of %d collapseds."
|
|
|
|
, base(), _getString().c_str(), canonicals, aligneds ) << endl;
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
cerr << " " << count++ << ": " << this << endl;
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
for ( AutoSegment* segment : getAligneds() )
|
|
|
|
cerr << " " << count++ << ": " << segment << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return canonical;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
void AutoSegment::getEndAxes ( DbU::Unit& sourceAxis, DbU::Unit& targetAxis ) const
|
|
|
|
{
|
|
|
|
cdebug_log(145,0) << "AutoSegment::getEndAxes() - " << this << endl;
|
|
|
|
|
|
|
|
sourceAxis = getSourceU();
|
|
|
|
targetAxis = getTargetU();
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
|
|
|
for( AutoSegment* aligned : const_cast<AutoSegment*>(this)->getAligneds() ) {
|
|
|
|
sourceAxis = std::min( sourceAxis, aligned->getSourceU() );
|
|
|
|
targetAxis = std::min( targetAxis, aligned->getTargetU() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegments AutoSegment::getOnSourceContact ( Flags direction )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
return AutoSegments_OnContact
|
|
|
|
( this, getSource() ).getSubSet( AutoSegments_InDirection(direction) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegments AutoSegment::getOnTargetContact ( Flags direction )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
return AutoSegments_OnContact
|
|
|
|
( this, getTarget() ).getSubSet( AutoSegments_InDirection(direction) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegments AutoSegment::getCachedOnSourceContact ( Flags direction )
|
2016-07-18 07:48:37 -05:00
|
|
|
{ return AutoSegments_CachedOnContact( getAutoSource(), direction ); }
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegments AutoSegment::getCachedOnTargetContact ( Flags direction )
|
2016-07-18 07:48:37 -05:00
|
|
|
{ return AutoSegments_CachedOnContact( getAutoTarget(), direction ); }
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegments AutoSegment::getAligneds ( Flags flags )
|
2017-05-22 17:20:31 -05:00
|
|
|
{ return AutoSegments_Aligneds( this, flags ); }
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegments AutoSegment::getConnecteds ( Flags flags )
|
2017-05-22 17:20:31 -05:00
|
|
|
{ return AutoSegments_Connecteds( this, flags ); }
|
Apaired segments building for symmetric routing (step 1).
* Change: In Hurricane::BaseFlags, store flags in uint64_t instead of
unsigned int because we start to need more than 32 different flags
in some tools.
* New: In ::getString() & ::getRecord() templates, add support for
std::array<>.
* Change: In CRL::ToolEngine, add support for timer (time & memory
measurements) displaced from Katabatic. This way all ToolEngine
can use this feature. The _postCreate() method display the
memory just after ToolEngine allocation.
* Change: In Etesian::EtesianEngine, make use of the ToolEngine
builtin timer (remove the local one). Forgot to call the base
class _postCreate() and _preDestroy().
* Change: In Anabatic::AnabaticEngine, make use of the ToolEngine
builtin timer (remove the local one).
* New: In Anabatic, new AutoSegments_Connecteds() collection. This
Collection allows a deterministic walkthough *all* the AutoSegments
connected either to source or target of one AutoSegment.
* New: In Anabatic::AutoContactTerminal::isEndPoint() to check if an
AutoContactTerminal is the *only one* anchored on a RoutingPad,
thus being a true "end point" and not a kind of feed-through.
* New: In Katana::KatanaEngine, added support for symmetric nets.
Created new class DataSymmetric to store symmetric information
of a net (mainly the paired AutoSegments).
Added KatanaEngine::runSymmetricRouter(), for now only build
the DataSymmetric informations. More to come...
* Change: In Katana::GraphicKatanaEngine::_runTest(), now perform
symmetric information building the non-symmetric routing.
2017-03-12 13:34:12 -05:00
|
|
|
|
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
AutoSegments AutoSegment::getPerpandiculars ( Flags flags )
|
|
|
|
{ return AutoSegments_Perpandiculars( this, flags ); }
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::checkDepthSpin () const
|
|
|
|
{
|
|
|
|
bool valid = true;
|
|
|
|
const Layer* sourceLayer = getAutoSource()->getLayer();
|
|
|
|
const Layer* targetLayer = getAutoTarget()->getLayer();
|
|
|
|
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
if ( (_flags & SegSourceTop)
|
|
|
|
and (sourceLayer->getBottom()->getMask() != getLayer()->getMask()) ) {
|
|
|
|
cerr << Error( "%s\n"
|
|
|
|
" Source is not going above, connected to *top* of %s.\n"
|
|
|
|
" bottom:%s mask:%s\n"
|
|
|
|
" layer:%s mask:%s\n"
|
2016-07-18 07:48:37 -05:00
|
|
|
, getString(this).c_str()
|
|
|
|
, getString(getAutoSource()).c_str()
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
, getString(sourceLayer->getBottom()).c_str()
|
|
|
|
, getString(sourceLayer->getBottom()->getMask()).c_str()
|
|
|
|
, getString(getLayer()).c_str()
|
|
|
|
, getString(getLayer()->getMask()).c_str()
|
2016-07-18 07:48:37 -05:00
|
|
|
) << endl;
|
|
|
|
valid = false;
|
|
|
|
}
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
if ( (_flags & SegSourceBottom)
|
|
|
|
and (sourceLayer->getTop()->getMask() != getLayer()->getMask()) ) {
|
2016-07-18 07:48:37 -05:00
|
|
|
cerr << Error("%s\n"
|
|
|
|
" Source is not going below, connected to *bottom* of %s."
|
|
|
|
, getString(this).c_str()
|
|
|
|
, getString(getAutoSource()).c_str()
|
|
|
|
) << endl;
|
|
|
|
valid = false;
|
|
|
|
}
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
if ( (_flags & SegTargetTop)
|
|
|
|
and (targetLayer->getBottom()->getMask() != getLayer()->getMask()) ) {
|
2016-07-18 07:48:37 -05:00
|
|
|
cerr << Error("%s\n"
|
|
|
|
" Target is not going above connected to *top* of %s."
|
|
|
|
, getString(this).c_str()
|
|
|
|
, getString(getAutoTarget()).c_str()
|
|
|
|
) << endl;
|
|
|
|
valid = false;
|
|
|
|
}
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
if ( (_flags & SegTargetBottom)
|
|
|
|
and (targetLayer->getTop()->getMask() != getLayer()->getMask()) ) {
|
2016-07-18 07:48:37 -05:00
|
|
|
cerr << Error("%s\n"
|
|
|
|
" Target is not going below, connected to *bottom* of %s."
|
|
|
|
, getString(this).c_str()
|
|
|
|
, getString(getAutoTarget()).c_str()
|
|
|
|
) << endl;
|
|
|
|
valid = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return valid;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
void AutoSegment::setFlagsOnAligneds ( uint64_t flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
setFlags( flags );
|
|
|
|
if (not isNotAligned()) {
|
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah!
* Bug: In Hurricane, in StaticObservable::getObserver(), if the slot
pointer is NULL, do not try to access the owner. Returns NULL, so
the caller can be aware of the situation...
* Change: In Hurricane, in BreakpointWidget & ExceptionWidget some
cosmetic changes (fonts and window sizes).
* Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account
the constraints from the source AutoContact, as it holds the constraints
transmitted by the RoutingPads and sets up by propageConstraintsFromRp().
It is likely to be a bug affecting the original Katabatic as well.
* Change: In Anabatic, in RawGCellsUnder(), check that the segment is not
completly oustside the cell abutment box and truncate the coordinates
to the part that is inside. Use the "shrink" if we reach the east/north
border.
* Change: In Anabatic, in Configuration, no more decorator because we will
use a true derived relationship. Katana *derives* from *Anabatic* and do
not *decorate* it, so the Configuration can do the same. It also implies
that we directly create a Katana engine, not an Anabatic one.
* Change: In Anabatic, in Session, do not allow the opening of the Session
in a standalone fashion (with a static method). Instead it must be opened
using the relevant method of the Anabatic/Katana engine. This ensure we
are opening the right Session type.
* Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment
is not part of the collection by default, but will be included if the
Flags::WithSelf is set.
* Change: In Configuration, all the flags value are now defined in two steps.
Declared in the header and initialized in the module. This is to prevent
the fact that on some cases, in relation with the Python "extern C" part
modules, we need a true allocated variable. It was causing weird linking
problems.
A side effect is that they can no longer be used as entry is switches,
have to replace them by if/else.
* New: In Anabatic, new GCell::getNeighborAt() utility function.
* Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with
the grid type... Back annote all the edges capacity (north & east) with
the reserved local capacity.
* New: Complete portage of Kite over Anabatic. The new engine is christened
"Katana" for Kite-Analogic. When it's capabilities and performances
will be on a part with Kite, it is to completly replace it (and take
back the "Kite" name). Preliminary tests seems to show that, contrary
to intuition (because built on a more complex/slower grid), it is even
slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
|
|
|
for( AutoSegment* segment : getAligneds() )
|
|
|
|
segment->setFlags( flags );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::sourceDetach ()
|
|
|
|
{
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
if (source) {
|
|
|
|
if (source->isTurn()) {
|
|
|
|
AutoSegment* perpandicular = source->getPerpandicular(this);
|
|
|
|
if (perpandicular and perpandicular->isReduced())
|
|
|
|
decReduceds();
|
|
|
|
}
|
|
|
|
base()->getSourceHook()->detach();
|
|
|
|
source->cacheDetach( this );
|
|
|
|
unsetFlags( SegNotSourceAligned );
|
|
|
|
setFlags( SegInvalidatedSource );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::targetDetach ()
|
|
|
|
{
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
if (target) {
|
|
|
|
if (target->isTurn()) {
|
|
|
|
AutoSegment* perpandicular = target->getPerpandicular(this);
|
|
|
|
if (perpandicular and perpandicular->isReduced())
|
|
|
|
decReduceds();
|
|
|
|
}
|
|
|
|
base()->getTargetHook()->detach();
|
|
|
|
target->cacheDetach( this );
|
|
|
|
unsetFlags( SegNotTargetAligned );
|
|
|
|
setFlags( SegInvalidatedTarget );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::sourceAttach ( AutoContact* source )
|
|
|
|
{
|
|
|
|
if (source) {
|
|
|
|
if (not base()->getSourceHook()->isAttached())
|
|
|
|
base()->getSourceHook()->attach( source->base()->getBodyHook() );
|
|
|
|
source->cacheAttach( this );
|
|
|
|
|
|
|
|
// if (source->isHTee() and isHorizontal()) return;
|
|
|
|
// else if (source->isVTee() and isVertical ()) return;
|
|
|
|
// setFlags( SegNotSourceAligned );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::targetAttach ( AutoContact* target )
|
|
|
|
{
|
|
|
|
if (target) {
|
|
|
|
if (not base()->getTargetHook()->isAttached())
|
|
|
|
base()->getTargetHook()->attach( target->base()->getBodyHook() );
|
|
|
|
target->cacheAttach( this );
|
|
|
|
|
|
|
|
// if (target->isHTee() and isHorizontal()) return;
|
|
|
|
// else if (target->isVTee() and isVertical ()) return;
|
|
|
|
// setFlags( SegNotTargetAligned );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::mergeUserConstraints ( const Interval& constraints )
|
|
|
|
{
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
DebugSession::open( getNet(), 149, 160 );
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_log(149,0) << "mergeUserConstraints() " << this << endl;
|
|
|
|
cdebug_log(149,0) << "| " << constraints << " merged with " << _userConstraints << endl;
|
|
|
|
_userConstraints.intersection(constraints);
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
DebugSession::close();
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::toConstraintAxis ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,1) << "toConstraintAxis() " << this << endl;
|
|
|
|
|
|
|
|
if (not isCanonical()) { cdebug_tabw(149,-1); return false; }
|
|
|
|
|
|
|
|
DbU::Unit constraintMin;
|
|
|
|
DbU::Unit constraintMax;
|
|
|
|
|
|
|
|
getConstraints( constraintMin, constraintMax );
|
|
|
|
|
|
|
|
// Empty constraint interval: ignore.
|
|
|
|
if (constraintMin > constraintMax) { cdebug_tabw(149,-1); return false; }
|
|
|
|
|
|
|
|
if (isDogleg()) {
|
|
|
|
DbU::Unit halfSideLength = getAutoSource()->getGCell()->getSide
|
|
|
|
( isHorizontal() ? Flags::Vertical : Flags::Horizontal ).getHalfSize();
|
|
|
|
constraintMin -= halfSideLength;
|
|
|
|
constraintMax += halfSideLength;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (getAxis() < constraintMin) {
|
|
|
|
setAxis( constraintMin, flags );
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (getAxis() > constraintMax) {
|
|
|
|
setAxis( constraintMax, flags );
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::toOptimalAxis ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,1) << "toOptimalAxis() " << this << endl;
|
|
|
|
|
|
|
|
if (not isCanonical()) { cdebug_tabw(149,-1); return false; }
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (not isUnsetAxis()) {
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return toConstraintAxis( flags );
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
DbU::Unit constraintMin;
|
|
|
|
DbU::Unit constraintMax;
|
|
|
|
|
|
|
|
getConstraints( constraintMin, constraintMax );
|
|
|
|
|
|
|
|
DbU::Unit optimalMin = max( min(getOptimalMin(),constraintMax), constraintMin );
|
|
|
|
DbU::Unit optimalMax = min( max(getOptimalMax(),constraintMin), constraintMax );
|
|
|
|
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
cdebug_log(149,0) << "optimal:[" << DbU::getValueString(optimalMin)
|
Support for symmetric routing in Anabatic/Katabatic.
* New: In Katana::SegmentFsm, the object is now able to handle two events
at the same time. The master and it's symmetric. When there is no
symmetric, the corresponing data is just left blank. This makes a
bigger object, but as there is only one when running, it is not an
issue.
Candidates tracks are now an vector of array<2> (pairs), the
TrackCost::Compare() functor has to be wrapped through CompareCostArray.
The compined TrackCost of the two tracks is accumulated into the first
element.
Everything related to events gets duplicated: _event is now _event1
and _event2, and so on.
As there can be now two Manipulator actions done with SegmentFsm,
this class now completly hide the Manipulator level from the
RoutingEvent processing.
New function ::bindToTrack() to perform the track insertion.
* New: In Katana::TrackCost, add a new ::merge() function.
* New: In Katana::TrackElement and Katana::TrackSegment, add symmetric
management. Allows to know if a TrackElement has a symmetric and to
access it.
* New: In Katana::DataSymmetric, add new overload for ::getSymmetrical()
to handle DbU::Unit and intervals.
* Change: In Katana::RoutingEvent, remove all direct uses of Manipulator
objects. Now any change to the event associated segment must go through
call to Segment Fsm.
* Change: In Katana, adjust the debug level so internal informations are
put below level 156.
* New: In Hurricane::DbU, in ::getValueString(), special display when the
value is Min or Max (more helpful than a gigantic number).
2017-04-30 16:46:33 -05:00
|
|
|
<< " " << DbU::getValueString(optimalMax) << "]" << endl;
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (getAxis() < optimalMin) {
|
|
|
|
setAxis( optimalMin, flags );
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return true;
|
|
|
|
}
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (getAxis() > optimalMax) {
|
|
|
|
setAxis( optimalMax, flags );
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flags & Flags::Realignate) setAxis( getAxis(), flags );
|
|
|
|
|
2017-05-27 13:35:28 -05:00
|
|
|
//setAxis( optimalMin, flags );
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
void AutoSegment::setAxis ( DbU::Unit axis, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
if (not isCanonical()) return;
|
|
|
|
|
|
|
|
if ( (axis == getAxis()) and not (flags & Flags::Realignate) ) return;
|
|
|
|
|
2016-08-28 12:09:07 -05:00
|
|
|
cdebug_log(159,0) << "setAxis() @"
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
<< ((isHorizontal())?"Y ":"X ") << DbU::getValueString(getAxis())
|
|
|
|
<< " to " << DbU::getValueString(axis) << " on " << this << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_tabw(145,1);
|
|
|
|
|
|
|
|
_setAxis( axis );
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
Anabatic transient commit 18. Port of Kite (Katana), Yeah, Baby! Yeah!
* Bug: In Hurricane, in StaticObservable::getObserver(), if the slot
pointer is NULL, do not try to access the owner. Returns NULL, so
the caller can be aware of the situation...
* Change: In Hurricane, in BreakpointWidget & ExceptionWidget some
cosmetic changes (fonts and window sizes).
* Bug: In Anabatic, In AutoHorizontal::getConstraints(), take into account
the constraints from the source AutoContact, as it holds the constraints
transmitted by the RoutingPads and sets up by propageConstraintsFromRp().
It is likely to be a bug affecting the original Katabatic as well.
* Change: In Anabatic, in RawGCellsUnder(), check that the segment is not
completly oustside the cell abutment box and truncate the coordinates
to the part that is inside. Use the "shrink" if we reach the east/north
border.
* Change: In Anabatic, in Configuration, no more decorator because we will
use a true derived relationship. Katana *derives* from *Anabatic* and do
not *decorate* it, so the Configuration can do the same. It also implies
that we directly create a Katana engine, not an Anabatic one.
* Change: In Anabatic, in Session, do not allow the opening of the Session
in a standalone fashion (with a static method). Instead it must be opened
using the relevant method of the Anabatic/Katana engine. This ensure we
are opening the right Session type.
* Change: In Anabatic, in AutoSegment_Aligneds() collection the seed segment
is not part of the collection by default, but will be included if the
Flags::WithSelf is set.
* Change: In Configuration, all the flags value are now defined in two steps.
Declared in the header and initialized in the module. This is to prevent
the fact that on some cases, in relation with the Python "extern C" part
modules, we need a true allocated variable. It was causing weird linking
problems.
A side effect is that they can no longer be used as entry is switches,
have to replace them by if/else.
* New: In Anabatic, new GCell::getNeighborAt() utility function.
* Bug: In Anabatic, in GCell::doGrid(), tag all the GCells of the grid with
the grid type... Back annote all the edges capacity (north & east) with
the reserved local capacity.
* New: Complete portage of Kite over Anabatic. The new engine is christened
"Katana" for Kite-Analogic. When it's capabilities and performances
will be on a part with Kite, it is to completly replace it (and take
back the "Kite" name). Preliminary tests seems to show that, contrary
to intuition (because built on a more complex/slower grid), it is even
slightly faster than Kite 8-).
2016-08-15 09:30:13 -05:00
|
|
|
for ( AutoSegment* segment : getAligneds() ) {
|
|
|
|
segment->_setAxis( getAxis() );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
cdebug_log(149,0) << "No need to process parallels." << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::computeTerminal ()
|
|
|
|
{
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if (source->isTerminal()) {
|
|
|
|
unsetFlags( SegWeakTerminal );
|
|
|
|
setFlags ( SegSourceTerminal );
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (not target->isTerminal())
|
|
|
|
target->setFlags( CntWeakTerminal );
|
|
|
|
} else if (target->isTerminal()) {
|
|
|
|
unsetFlags( SegWeakTerminal );
|
|
|
|
setFlags ( SegTargetTerminal );
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (not source->isTerminal())
|
|
|
|
source->setFlags( CntWeakTerminal );
|
|
|
|
} else {
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
uint64_t terminalFlag = 0;
|
2016-07-18 07:48:37 -05:00
|
|
|
switch ( _getFlags() & SegWeakTerminal ) {
|
|
|
|
case 0: break;
|
|
|
|
case SegSourceTerminal|SegTargetTerminal:
|
|
|
|
case SegSourceTerminal:
|
|
|
|
case SegTargetTerminal: terminalFlag = SegWeakTerminal1; break;
|
|
|
|
case SegWeakTerminal1: terminalFlag = SegWeakTerminal1; break;
|
|
|
|
case SegWeakTerminal2: terminalFlag = SegWeakTerminal2; break;
|
|
|
|
default:
|
2016-08-28 09:12:05 -05:00
|
|
|
cerr << Warning("%s has multiple terminal flag sets:%s (%x)."
|
2016-07-18 07:48:37 -05:00
|
|
|
,getString(this).c_str()
|
2016-08-28 09:12:05 -05:00
|
|
|
,_getStringFlags().c_str()
|
2016-07-18 07:48:37 -05:00
|
|
|
,_flags
|
|
|
|
) << endl;
|
|
|
|
terminalFlag = SegWeakTerminal2; break;
|
|
|
|
}
|
|
|
|
unsetFlags( SegWeakTerminal );
|
|
|
|
setFlags ( terminalFlag );
|
|
|
|
}
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
|
|
|
|
cdebug_log(145,0) << "computeTerminal() S:" << source->isTerminal()
|
|
|
|
<< " T:" << target->isTerminal()
|
|
|
|
<< " " << this << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::computeOptimal ( set<AutoSegment*>& processeds )
|
|
|
|
{
|
|
|
|
cdebug_log(145,1) << "computeOptimal() - " << this << endl;
|
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
DbU::Unit optimalMin;
|
|
|
|
DbU::Unit optimalMax;
|
|
|
|
DbU::Unit constraintMin;
|
|
|
|
DbU::Unit constraintMax;
|
|
|
|
vector<AutoSegment*> aligneds;
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
SideStack sideStack ( (isHorizontal() ? Flags::Horizontal : Flags::Vertical), getPitch() );
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
getConstraints( constraintMin, constraintMax );
|
2017-05-22 17:20:31 -05:00
|
|
|
cdebug_log(145,0) << "Constraints: [" << DbU::getValueString(constraintMin)
|
|
|
|
<< " " << DbU::getValueString(constraintMax) << "]" << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
2018-03-24 18:58:22 -05:00
|
|
|
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
if (isLocal() and source->isTurn() and target->isTurn() and not isUserDefined()) {
|
|
|
|
AutoSegment* sourcePerpand = source->getPerpandicular(this);
|
|
|
|
AutoSegment* targetPerpand = target->getPerpandicular(this);
|
|
|
|
|
|
|
|
sourcePerpand->updateOrient();
|
|
|
|
targetPerpand->updateOrient();
|
|
|
|
|
|
|
|
if (not ( (sourcePerpand->getAutoSource() == source)
|
|
|
|
xor (targetPerpand->getAutoSource() == target) ) ) {
|
|
|
|
// This is a U-Turn.
|
Validating channel routing mode (two metals) on SNX.
* New: In Hurricane::Entity, add an id counter limit and a memory size
limit. The two limits are checked only when a new Entity object is
created. This should help avoiding massive memory links.
* New: In CRL Core, add a "crlcore.groundName" and a "crlcore.powerName"
parameter to specify the name of the ground/power signals to be
created if they are missing in a Cell. For Alliance libraries it
would be "vss" & "vdd" (default values), but for real technologies,
it is often "gnd!" & "vdd!".
The Blif parser is modificated to make use of it.
* Bug: In AnabaticEngine::unify(), set the resulting unified segment in
the center of the GCells common side. Gcells under a segment are
found by using the edge that cover the segment axis. When we have
a "bend" GCell stack and the axis is wrong, they could be ommited.
This was causing deleted segments to be not removed from some
Edges, then core dump.
* Change: In Anabatic::AutoSegment::create(), smarter choosing of the
reference contact, select the fixed or terminal one instead of
always the source one.
* New: In Anabatic::Edge::isEnding(), new function to check if a
segment going through an Edge is starting/ending in either source
or target GCell of the edge (active only when running in channel
mode).
* New: In Anabatic::Edge::add(), a segment takes part in the occupancy
only if it is not ending in either source or target (channel mode
only). The occupancy due to terminal is pre-computed in Katana.
* New: In Anabatic::Edge::ripup(), in channel mode, never ripup a
segment which is ending in either source or target (we *have* to
access this edge to connect to the terminal).
* Bug: In Anabatic::GCell::hcut() and vcut(), force the update of
the Edge which is on the side that will get splitted by the cut.
It's capacity will be reduced to it must be updated.
* Change: In Anabatic::GCell::updateGContacts() add a flag to conditionnally
update horizontals or verticals only. We may require only a partial
update when resizing the GCell in only one direction.
This, again, related to the fact that we compute the GCells under
a segment thanks to it's axis position, so we need to be very careful
when modificating axis.
* Change: In Katana::Block::resizeChannels(), only update GContact vertical
position. Do not disturb X positions of segments.
* Bug: In Katana::GlobalRoute::DigitalDistance, in channel mode, some
Edges can have a zero capacity, but still be reachable if the net has
a terminal in either source or target. Look for this case and return
a distance of zero instead of "unreachable". This was causing the
global routing not to complete in channel mode.
For computing the edge distance, makes the vertical edges much more
long (10 times) than the horizontal ones as the vertical capacity is
very limited. Hard coded for now, should make it a parameter in the
future.
* Change: In KatanaEngine::annotateGlobalGraph(), decrease the capacity
of edges with reserveCapacity for each terminal inside a GCell.
Both north and south edges are decreased as we a terminal will
block both north and south edges.
As a counterpart, the Edge capacity is not decreased when the
global router connect to a terminal.
* Change: In Katana::RoutingEvent::revalidate(), when in repair stage,
do not expand the slack for horizontal segments in channel mode.
So they may not overlap the standard cell row.
* Bug: In Stratus documentation, do not use the french option in babel,
the documentation is in english!
* New: In Documentation, added Hurricane/Python tutorial, part for drawing
layout.
2018-03-16 10:20:04 -05:00
|
|
|
cdebug_log(145,0) << "U-Turn special case." << endl;
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
DbU::Unit optimal = 0;
|
|
|
|
|
|
|
|
if (sourcePerpand->getAutoSource() == source) {
|
|
|
|
optimal = std::min( sourcePerpand->getTargetU(), targetPerpand->getTargetU() );
|
|
|
|
optimal = std::min( optimal, constraintMax );
|
|
|
|
} else {
|
|
|
|
optimal = std::max( sourcePerpand->getSourceU(), targetPerpand->getSourceU() );
|
|
|
|
optimal = std::max( optimal, constraintMin );
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_log(145,0) << "| Source perpandicular: " << sourcePerpand << endl;
|
|
|
|
cdebug_log(145,0) << "| Target perpandicular: " << targetPerpand << endl;
|
|
|
|
cdebug_log(145,0) << "Applying constraint (U-Turn) on: " << this << endl;
|
|
|
|
cdebug_log(145,0) << "optimal: " << DbU::getValueString(optimal) << endl;
|
|
|
|
|
|
|
|
setOptimalMin( optimal );
|
|
|
|
setOptimalMax( optimal );
|
|
|
|
processeds.insert( this );
|
|
|
|
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (isUserDefined()) {
|
|
|
|
optimalMin = optimalMax = getAxis();
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
aligneds.push_back( this );
|
2016-07-18 07:48:37 -05:00
|
|
|
} else {
|
|
|
|
DbU::Unit terminalMin;
|
|
|
|
DbU::Unit terminalMax;
|
|
|
|
AttractorsMap attractors;
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
|
|
|
|
Flags flags = (isAnalog() ? Flags::WithDoglegs : Flags::NoFlags);
|
|
|
|
|
|
|
|
getAligneds( Flags::WithSelf|flags ).fill( aligneds );
|
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
if (getGCell()->isMatrix()) {
|
|
|
|
sideStack.addGCell( getGCell() );
|
|
|
|
} else {
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
vector<GCell*> gcells;
|
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
cdebug_log(145,0) << "Using pitch for L/T shrink:" << DbU::getValueString(getPitch()) << endl;
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
for ( AutoSegment* aligned : aligneds ) {
|
2018-02-21 10:03:43 -06:00
|
|
|
cdebug_log(145,0) << "@ " << aligned << endl;
|
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
aligned->getGCells( gcells );
|
|
|
|
for ( GCell* gcell : gcells ) {
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
sideStack.addGCell( gcell );
|
|
|
|
cdebug_log(145,0) << "| gcellSide:" << sideStack.getGSide() << " (from " << gcell << ")" << endl;
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
}
|
2018-02-21 10:03:43 -06:00
|
|
|
if (aligned->isStrongTerminal() and not sideStack.isHoled()) {
|
|
|
|
cdebug_log(145,0) << "> Is strong terminal, restrict." << aligned << endl;
|
|
|
|
|
2017-05-22 17:20:31 -05:00
|
|
|
Interval terminalConstraints;
|
|
|
|
aligned->getConstraints( terminalConstraints );
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
sideStack.restrictGSide( terminalConstraints );
|
2018-02-21 10:03:43 -06:00
|
|
|
cdebug_log(145,0) << "| " << terminalConstraints.intersection(sideStack.getGSide()) << endl;
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
cdebug_log(145,0) << "| gcellSide:" << sideStack.getGSide() << " (from " << aligned << ")" << endl;
|
2017-05-22 17:20:31 -05:00
|
|
|
}
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
}
|
|
|
|
}
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
sideStack.show();
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
cdebug_log(145,0) << "GCell interval " << sideStack.getGSide() << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
AutoContact* anchor = getAutoSource();
|
|
|
|
if (anchor->isTerminal()) {
|
|
|
|
Box constraintBox = anchor->getConstraintBox();
|
|
|
|
if ( isHorizontal() ) {
|
|
|
|
terminalMin = constraintBox.getYMin();
|
|
|
|
terminalMax = constraintBox.getYMax();
|
|
|
|
} else {
|
|
|
|
terminalMin = constraintBox.getXMin();
|
|
|
|
terminalMax = constraintBox.getXMax();
|
|
|
|
}
|
|
|
|
|
|
|
|
attractors.addAttractor( terminalMin );
|
|
|
|
if (terminalMin != terminalMax)
|
|
|
|
attractors.addAttractor( terminalMax );
|
|
|
|
}
|
|
|
|
|
|
|
|
anchor = getAutoTarget();
|
|
|
|
if (anchor->isTerminal()) {
|
|
|
|
Box constraintBox = anchor->getConstraintBox();
|
|
|
|
if (isHorizontal()) {
|
|
|
|
terminalMin = constraintBox.getYMin();
|
|
|
|
terminalMax = constraintBox.getYMax();
|
|
|
|
} else {
|
|
|
|
terminalMin = constraintBox.getXMin();
|
|
|
|
terminalMax = constraintBox.getXMax();
|
|
|
|
}
|
|
|
|
|
|
|
|
attractors.addAttractor( terminalMin );
|
|
|
|
if (terminalMin != terminalMax)
|
|
|
|
attractors.addAttractor( terminalMax );
|
|
|
|
}
|
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
for ( AutoSegment* autoSegment : getPerpandiculars(flags) ) {
|
|
|
|
cdebug_log(145,1) << "| Perpandicular " << autoSegment << endl;
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
if (autoSegment->isGlobal()) {
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
cdebug_log(145,0) << "Used as global." << endl;
|
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
const Interval& side = sideStack.getSideAt( autoSegment->getAxis() );
|
|
|
|
cdebug_log(145,0) << "Side @" << DbU::getValueString(autoSegment->getAxis())
|
|
|
|
<< " " << side << endl;
|
|
|
|
|
|
|
|
if (autoSegment->getSourceU() < side.getVMin()) attractors.addAttractor( sideStack.getGSideMin() );
|
|
|
|
if (autoSegment->getTargetU() > side.getVMax()) attractors.addAttractor( sideStack.getGSideMax() );
|
|
|
|
|
|
|
|
// // Sloppy implentation.
|
|
|
|
// DbU::Unit perpandMin = autoSegment->getSourceU();
|
|
|
|
// DbU::Unit perpandMax = autoSegment->getTargetU();
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
|
Synchronize priority of TrackSegments connecteds through doglegs.
* Bug: In Anabatic::Dijsktra, correct the indentation in cdebug calls
(lots of them causing a big shift right).
* New: In Anabatic::TrackSegment, new helper structure SideStack to
manage a set of aligned GCells and their various sides sizes.
* Change: In Anabatic::TrackSegment::computeOptimal(), more accurate
computation of attractors from global segments and variable size
GCells using SideStack.
* Change: In Katana::DataSymmetric::checkPairing(), increase the tolerance
for misaligned symmetrics from 2 to 5 tracks (should be enough for our
narrow channel routing).
* New: In Katana::TrackSegment, add a first flag to enable locking of
priority. If it is set, calls to either "computePriority()" or
"forcePriority()" will have no effect. Added the uint32_t flags
paraphernalia.
* New: In ::computeNetPriority(), overall function to control the call
of TrackSegment::computeAlignedPriority(). The call is done from
NegociateWindow::run().
* New: Katana::TrackSegment::computeAlignedPriority(), order the
TrackSegments aligneds through doglegs to the one with the highest
priority is routed first and others progressively from him. Done by
forcing an ever decreasing priority on the aligneds ones.
The amount of decrease is small so the aligned segments got routed
(ordered) in close, if not contiguous, sequence. Priority is locked
for the order to remain.
* Bug: In Katana::TrackSegment::computePriority(), correct computation
of the priority when there is more than 10 free tracks
(a DbU::toLambda() call was missing, leading to very big priorities).
* Change: In katana::TrackCost CTOR, do not compute a distance to fixed
in the case of analog segments, this is backfiring.
Slight change of the compare function when delta differs. Seems
to improve a little.
2017-05-30 15:33:06 -05:00
|
|
|
// if (perpandMin < minGCell) attractors.addAttractor( minGCell );
|
|
|
|
// if (perpandMax > maxGCell) attractors.addAttractor( maxGCell );
|
First intergration of the Analogic router parts.
* New: In Anabatic::AutoSegment, introduce a the kind (associated to a
flag) "LongLocal". Analog GCells can be very wide, so at least some
carefuly choosen long local segments must be took into account as
attractors in the computation of the optimal axis.
* New: In Anabatic::AutoSegment::computeOptimal(), take LongLocal into
account as attractors.
* Change: In ::GCellTopology constructors compare the layers of the
RoutingPads using layer masks instead of Layer pointers. Allows to
find both "METALx" (symbolic) and "metalX" (real).
* Change: In ::GCellTopology::_doHChannel(), _doChannel(), _doStrut()
and _doDevice(), tag long locals as "LongLocal". This need to be
reviewed as it as bind done a bit too quickly.
* Change: In Anabatic::AutoSegment, due too a much bigger span of the
analogic GCells the _optimalMin & _optimalMax bitfields must use
16 bits instead of 8 (they where overflowed).
* New: In Katana, reorganisation of the initialization procedure to fit
both digital and analogic cases. Create an analogInit() method.
* Change: In Katana::RoutingEvent, the _tracksNb and _tracksFree bitfields
where too short for the Analog GCell size, now uses 16 bits instead of
6.
* Bug: In Katana::GraphicKatanEngine::drawGCell(), skip drawing of a
GCell if *both* width and height are under 150 pixels.
* New: In Katana::Session, add a new isOpen() method.
2016-10-04 10:12:58 -05:00
|
|
|
} else if (autoSegment->isLocal()) {
|
Support for symmetric routing in Anabatic/Katabatic.
* New: In Katana::SegmentFsm, the object is now able to handle two events
at the same time. The master and it's symmetric. When there is no
symmetric, the corresponing data is just left blank. This makes a
bigger object, but as there is only one when running, it is not an
issue.
Candidates tracks are now an vector of array<2> (pairs), the
TrackCost::Compare() functor has to be wrapped through CompareCostArray.
The compined TrackCost of the two tracks is accumulated into the first
element.
Everything related to events gets duplicated: _event is now _event1
and _event2, and so on.
As there can be now two Manipulator actions done with SegmentFsm,
this class now completly hide the Manipulator level from the
RoutingEvent processing.
New function ::bindToTrack() to perform the track insertion.
* New: In Katana::TrackCost, add a new ::merge() function.
* New: In Katana::TrackElement and Katana::TrackSegment, add symmetric
management. Allows to know if a TrackElement has a symmetric and to
access it.
* New: In Katana::DataSymmetric, add new overload for ::getSymmetrical()
to handle DbU::Unit and intervals.
* Change: In Katana::RoutingEvent, remove all direct uses of Manipulator
objects. Now any change to the event associated segment must go through
call to Segment Fsm.
* Change: In Katana, adjust the debug level so internal informations are
put below level 156.
* New: In Hurricane::DbU, in ::getValueString(), special display when the
value is Min or Max (more helpful than a gigantic number).
2017-04-30 16:46:33 -05:00
|
|
|
if (autoSegment->isStrongTerminal()) {
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
cdebug_log(145,0) << "Used as strong terminal." << endl;
|
|
|
|
|
Support for symmetric routing in Anabatic/Katabatic.
* New: In Katana::SegmentFsm, the object is now able to handle two events
at the same time. The master and it's symmetric. When there is no
symmetric, the corresponing data is just left blank. This makes a
bigger object, but as there is only one when running, it is not an
issue.
Candidates tracks are now an vector of array<2> (pairs), the
TrackCost::Compare() functor has to be wrapped through CompareCostArray.
The compined TrackCost of the two tracks is accumulated into the first
element.
Everything related to events gets duplicated: _event is now _event1
and _event2, and so on.
As there can be now two Manipulator actions done with SegmentFsm,
this class now completly hide the Manipulator level from the
RoutingEvent processing.
New function ::bindToTrack() to perform the track insertion.
* New: In Katana::TrackCost, add a new ::merge() function.
* New: In Katana::TrackElement and Katana::TrackSegment, add symmetric
management. Allows to know if a TrackElement has a symmetric and to
access it.
* New: In Katana::DataSymmetric, add new overload for ::getSymmetrical()
to handle DbU::Unit and intervals.
* Change: In Katana::RoutingEvent, remove all direct uses of Manipulator
objects. Now any change to the event associated segment must go through
call to Segment Fsm.
* Change: In Katana, adjust the debug level so internal informations are
put below level 156.
* New: In Hurricane::DbU, in ::getValueString(), special display when the
value is Min or Max (more helpful than a gigantic number).
2017-04-30 16:46:33 -05:00
|
|
|
DbU::Unit terminalMin;
|
|
|
|
DbU::Unit terminalMax;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
if (getTerminalInterval( autoSegment
|
Support for symmetric routing in Anabatic/Katabatic.
* New: In Katana::SegmentFsm, the object is now able to handle two events
at the same time. The master and it's symmetric. When there is no
symmetric, the corresponing data is just left blank. This makes a
bigger object, but as there is only one when running, it is not an
issue.
Candidates tracks are now an vector of array<2> (pairs), the
TrackCost::Compare() functor has to be wrapped through CompareCostArray.
The compined TrackCost of the two tracks is accumulated into the first
element.
Everything related to events gets duplicated: _event is now _event1
and _event2, and so on.
As there can be now two Manipulator actions done with SegmentFsm,
this class now completly hide the Manipulator level from the
RoutingEvent processing.
New function ::bindToTrack() to perform the track insertion.
* New: In Katana::TrackCost, add a new ::merge() function.
* New: In Katana::TrackElement and Katana::TrackSegment, add symmetric
management. Allows to know if a TrackElement has a symmetric and to
access it.
* New: In Katana::DataSymmetric, add new overload for ::getSymmetrical()
to handle DbU::Unit and intervals.
* Change: In Katana::RoutingEvent, remove all direct uses of Manipulator
objects. Now any change to the event associated segment must go through
call to Segment Fsm.
* Change: In Katana, adjust the debug level so internal informations are
put below level 156.
* New: In Hurricane::DbU, in ::getValueString(), special display when the
value is Min or Max (more helpful than a gigantic number).
2017-04-30 16:46:33 -05:00
|
|
|
, NULL
|
|
|
|
, isHorizontal()
|
|
|
|
, terminalMin
|
|
|
|
, terminalMax )) {
|
|
|
|
attractors.addAttractor( terminalMin );
|
|
|
|
if (terminalMin != terminalMax)
|
|
|
|
attractors.addAttractor( terminalMax );
|
|
|
|
}
|
2017-05-22 17:20:31 -05:00
|
|
|
} else if (autoSegment->isLongLocal() or (autoSegment->getLength() > getPPitch()*20)) {
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
cdebug_log(145,0) << "Used as long global attractor." << endl;
|
Support for symmetric routing in Anabatic/Katabatic.
* New: In Katana::SegmentFsm, the object is now able to handle two events
at the same time. The master and it's symmetric. When there is no
symmetric, the corresponing data is just left blank. This makes a
bigger object, but as there is only one when running, it is not an
issue.
Candidates tracks are now an vector of array<2> (pairs), the
TrackCost::Compare() functor has to be wrapped through CompareCostArray.
The compined TrackCost of the two tracks is accumulated into the first
element.
Everything related to events gets duplicated: _event is now _event1
and _event2, and so on.
As there can be now two Manipulator actions done with SegmentFsm,
this class now completly hide the Manipulator level from the
RoutingEvent processing.
New function ::bindToTrack() to perform the track insertion.
* New: In Katana::TrackCost, add a new ::merge() function.
* New: In Katana::TrackElement and Katana::TrackSegment, add symmetric
management. Allows to know if a TrackElement has a symmetric and to
access it.
* New: In Katana::DataSymmetric, add new overload for ::getSymmetrical()
to handle DbU::Unit and intervals.
* Change: In Katana::RoutingEvent, remove all direct uses of Manipulator
objects. Now any change to the event associated segment must go through
call to Segment Fsm.
* Change: In Katana, adjust the debug level so internal informations are
put below level 156.
* New: In Hurricane::DbU, in ::getValueString(), special display when the
value is Min or Max (more helpful than a gigantic number).
2017-04-30 16:46:33 -05:00
|
|
|
|
|
|
|
DbU::Unit perpandMin = autoSegment->getSourceU();
|
|
|
|
DbU::Unit perpandMax = autoSegment->getTargetU();
|
|
|
|
|
|
|
|
if (perpandMin != perpandMax) {
|
|
|
|
if (perpandMin == getAxis()) attractors.addAttractor( perpandMax );
|
|
|
|
if (perpandMax == getAxis()) attractors.addAttractor( perpandMin );
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
}
|
|
|
|
|
2018-02-21 10:03:43 -06:00
|
|
|
if (sideStack.isHoled()) {
|
|
|
|
optimalMin = optimalMax = sideStack.getGSideCenter();
|
2016-07-18 07:48:37 -05:00
|
|
|
} else {
|
2018-02-21 10:03:43 -06:00
|
|
|
if (attractors.getAttractorsCount()) {
|
|
|
|
optimalMin = attractors.getLowerMedian();
|
|
|
|
optimalMax = attractors.getUpperMedian();
|
|
|
|
} else {
|
|
|
|
cdebug_log(145,0) << "No attractors, reverting to GCell bounding box" << endl;
|
|
|
|
|
|
|
|
optimalMin = 0;
|
|
|
|
optimalMax = (isHorizontal()) ? _gcell->getBoundingBox().getYMax()
|
|
|
|
: _gcell->getBoundingBox().getXMax();
|
|
|
|
}
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
|
2018-02-21 10:03:43 -06:00
|
|
|
setInBound( sideStack.getGSideMin(), sideStack.getGSideMax(), optimalMin );
|
|
|
|
setInBound( sideStack.getGSideMin(), sideStack.getGSideMax(), optimalMax );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
2017-05-22 17:20:31 -05:00
|
|
|
|
|
|
|
cdebug_log(145,0) << "optimalMin: " << DbU::getValueString(optimalMin) << endl;
|
|
|
|
cdebug_log(145,0) << "optimalMax: " << DbU::getValueString(optimalMax) << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
setInBound( constraintMin, constraintMax, optimalMin );
|
|
|
|
setInBound( constraintMin, constraintMax, optimalMax );
|
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
for ( AutoSegment* aligned : aligneds ) {
|
|
|
|
cdebug_log(145,0) << "Applying constraint on: " << aligned << endl;
|
|
|
|
aligned->setOptimalMin( optimalMin );
|
|
|
|
aligned->setOptimalMax( optimalMax );
|
|
|
|
processeds.insert( aligned );
|
|
|
|
}
|
|
|
|
|
|
|
|
// cdebug_log(145,0) << "Applying constraint on: " << this << endl;
|
|
|
|
// setOptimalMin( optimalMin );
|
|
|
|
// setOptimalMax( optimalMax );
|
|
|
|
// processeds.insert( this );
|
|
|
|
// if (not isNotAligned()) {
|
|
|
|
// for ( AutoSegment* autoSegment : getAligneds() ) {
|
|
|
|
// cdebug_log(145,0) << "Applying constraint on: " << autoSegment << endl;
|
|
|
|
// autoSegment->setOptimalMin( optimalMin );
|
|
|
|
// autoSegment->setOptimalMax( optimalMax );
|
|
|
|
// processeds.insert( autoSegment );
|
|
|
|
// }
|
|
|
|
// }
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegment* AutoSegment::canonize ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "canonize() - " << this << endl;
|
|
|
|
|
|
|
|
// if (isCanonical() and isGlobal()) {
|
|
|
|
// cdebug_log(149,0) << "* " << this << " canonical" << endl;
|
|
|
|
// return this;
|
|
|
|
// }
|
|
|
|
|
|
|
|
vector<AutoSegment*> segments;
|
|
|
|
AutoSegment* canonical = this;
|
|
|
|
bool hasCanonical = isCanonical();
|
|
|
|
bool hasGlobal = isGlobal();
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
|
|
|
forEach( AutoSegment*, isegment, getAligneds(flags) ) {
|
|
|
|
if (isegment->isFixed()) continue;
|
|
|
|
|
|
|
|
hasGlobal = hasGlobal or isegment->isGlobal();
|
|
|
|
segments.push_back( *isegment );
|
|
|
|
|
|
|
|
if (not hasCanonical) {
|
|
|
|
if (isegment->isCanonical()) {
|
|
|
|
cdebug_log(149,0) << "* " << *isegment << " canonical already set" << endl;
|
|
|
|
canonical = *isegment;
|
|
|
|
hasCanonical = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CompareId()(*isegment,canonical)) canonical = *isegment;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
canonical->setFlags( SegCanonical );
|
|
|
|
if (hasGlobal) {
|
|
|
|
for ( size_t i=0 ; i<segments.size() ; ++i ) {
|
|
|
|
if (not segments[i]->isGlobal())
|
|
|
|
segments[i]->setFlags( SegWeakGlobal );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for ( size_t i=0 ; i<segments.size() ; ++i )
|
|
|
|
segments[i]->unsetFlags( SegWeakGlobal );
|
|
|
|
}
|
|
|
|
if (segments.empty()) setFlags( SegNotAligned );
|
|
|
|
|
|
|
|
if (isCanonical()) { cdebug_log(149,0) << "* " << this << " canonical" << endl; }
|
|
|
|
else {
|
|
|
|
cdebug_log(149,0) << "* " << this << " not canonical" << endl;
|
|
|
|
cdebug_log(149,0) << "* " << canonical << " *is* the canonical" << endl;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
setFlags ( SegCanonical );
|
|
|
|
unsetFlags( SegWeakGlobal );
|
|
|
|
}
|
|
|
|
|
|
|
|
return canonical;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
size_t AutoSegment::getAlignedContacts ( map<AutoContact*,int>& innerContacts ) const
|
|
|
|
{
|
|
|
|
map<AutoContact*,int>::iterator icontact;
|
|
|
|
|
|
|
|
innerContacts.clear();
|
|
|
|
innerContacts.insert( make_pair(getAutoSource(),0x1) );
|
|
|
|
innerContacts.insert( make_pair(getAutoTarget(),0x4) );
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
|
|
|
forEach ( AutoSegment*, isegment, const_cast<AutoSegment*>(this)->getAligneds() ) {
|
|
|
|
if ( (icontact = innerContacts.find(isegment->getAutoSource())) != innerContacts.end() ) {
|
|
|
|
if (icontact->second & 0x1) icontact->second |= 0x2;
|
|
|
|
else icontact->second |= 0x1;
|
|
|
|
} else
|
|
|
|
innerContacts.insert( make_pair(getAutoSource(),0x1) );
|
|
|
|
|
|
|
|
if ( (icontact = innerContacts.find(isegment->getAutoTarget())) != innerContacts.end() ) {
|
|
|
|
if (icontact->second & 0x4) icontact->second |= 0x8;
|
|
|
|
else icontact->second |= 0x4;
|
|
|
|
} else
|
|
|
|
innerContacts.insert( make_pair(getAutoTarget(),0x4) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return innerContacts.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Interval AutoSegment::getMinSpanU () const
|
|
|
|
{
|
|
|
|
map<AutoContact*,int> contacts;
|
|
|
|
map<AutoContact*,int>::iterator icontact;
|
|
|
|
|
|
|
|
getAlignedContacts( contacts );
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
DbU::Unit spanMin = DbU::Min;
|
|
|
|
DbU::Unit spanMax = DbU::Max;
|
|
|
|
Interval constraints;
|
|
|
|
Flags direction = getDirection();
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
for ( icontact=contacts.begin() ; icontact != contacts.end() ; icontact++ ) {
|
|
|
|
constraints = icontact->first->getUConstraints( direction );
|
|
|
|
if (icontact->second == 0x1) {
|
|
|
|
spanMin = max( spanMin, constraints.getVMax() );
|
|
|
|
}
|
|
|
|
if (icontact->second == 0x4) {
|
|
|
|
spanMax = min( spanMax, constraints.getVMin() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Interval(spanMin,spanMax);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
size_t AutoSegment::getPerpandicularsBound ( set<AutoSegment*>& bounds )
|
|
|
|
{
|
|
|
|
map<AutoContact*,int> contacts;
|
|
|
|
map<AutoContact*,int>::iterator icontact;
|
|
|
|
|
|
|
|
getAlignedContacts( contacts );
|
|
|
|
|
|
|
|
for ( icontact=contacts.begin() ; icontact != contacts.end() ; icontact++ ) {
|
|
|
|
if ( (icontact->second == 0x1) or (icontact->second == 0x4) ) {
|
|
|
|
forEach ( Segment*, isegment, icontact->first->getSlaveComponents().getSubSet<Segment*>() ) {
|
|
|
|
AutoSegment* autoSegment = Session::lookup ( *isegment );
|
|
|
|
if (not autoSegment) continue;
|
|
|
|
if (autoSegment->getDirection() == getDirection()) continue;
|
|
|
|
|
|
|
|
bounds.insert( autoSegment );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return bounds.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::isUTurn () const
|
|
|
|
{
|
|
|
|
if (isGlobal()) return false;
|
|
|
|
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
|
|
|
|
cerr << "AutoSegment::isUTurn():" << endl;
|
|
|
|
|
|
|
|
if (not source->isTurn() or not target->isTurn()) return false;
|
|
|
|
|
|
|
|
cerr << " Turn connected" << endl;
|
|
|
|
|
|
|
|
AutoSegment* perpandicular = source->getPerpandicular( this );
|
|
|
|
bool onPSourceSource = (perpandicular->getAutoSource() == source);
|
|
|
|
|
|
|
|
perpandicular = target->getPerpandicular( this );
|
|
|
|
bool onPTargetSource = (perpandicular->getAutoSource() == target);
|
|
|
|
|
|
|
|
cerr << " PSource:" << onPSourceSource << " PTarget:" << onPTargetSource << endl;
|
|
|
|
|
|
|
|
return not (onPSourceSource xor onPTargetSource);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::isReduceCandidate () const
|
|
|
|
{
|
|
|
|
if (isGlobal()) return false;
|
|
|
|
if (not isSpinTopOrBottom()) return false;
|
|
|
|
if (_reduceds) return false;
|
|
|
|
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
|
|
|
|
if (not source->isTurn() or not target->isTurn()) return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::canReduce () const
|
|
|
|
{
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_log(159,0) << "AutoSegment::canReduce():" << this << endl;
|
|
|
|
cdebug_log(159,0) << " _reduceds:" << _reduceds << endl;
|
|
|
|
|
|
|
|
if (isGlobal() or isDrag() or isFixed()) return false;
|
2016-07-18 07:48:37 -05:00
|
|
|
if (not isSpinTopOrBottom()) return false;
|
|
|
|
if (_reduceds) return false;
|
|
|
|
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_log(159,0) << " source:" << source->isHTee() << "+" << source->isVTee() << endl;
|
|
|
|
cdebug_log(159,0) << " target:" << target->isHTee() << "+" << target->isVTee() << endl;
|
|
|
|
|
|
|
|
if ( ((source->isHTee() or target->isHTee()) and isHorizontal())
|
|
|
|
or ((source->isVTee() or target->isVTee()) and isVertical ()) ) return false;
|
|
|
|
|
|
|
|
// if ( source->isHTee() or source->isVTee()
|
|
|
|
// or target->isHTee() or target->isVTee() ) return false;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
unsigned int perpandicularDepth = getDepth();
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (isSpinBottom()) {
|
|
|
|
if (perpandicularDepth > 0) --perpandicularDepth;
|
|
|
|
} else if (isSpinTop()) {
|
2016-07-18 07:48:37 -05:00
|
|
|
++perpandicularDepth;
|
|
|
|
if (perpandicularDepth >= Session::getDepth()) return false;
|
|
|
|
} else
|
|
|
|
return false;
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_log(159,0) << " length:" << DbU::getValueString(getLength()) << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
if (getLength() >= (Session::getPitch(perpandicularDepth) * 2)) return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::reduce ()
|
|
|
|
{
|
|
|
|
if (not canReduce()) return false;
|
|
|
|
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
|
|
|
|
_flags |= SegIsReduced;
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
for ( AutoSegment* perpandicular : source->getAutoSegments() ) {
|
|
|
|
if (perpandicular == this) continue;
|
|
|
|
perpandicular->incReduceds();
|
|
|
|
}
|
|
|
|
for ( AutoSegment* perpandicular : target->getAutoSegments() ) {
|
|
|
|
if (perpandicular == this) continue;
|
|
|
|
perpandicular->incReduceds();
|
|
|
|
}
|
|
|
|
|
|
|
|
// if (not source->isTerminal()) source->getPerpandicular( this )->incReduceds();
|
|
|
|
// if (not target->isTerminal()) target->getPerpandicular( this )->incReduceds();
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::mustRaise () const
|
|
|
|
{
|
|
|
|
if (not (_flags & SegIsReduced)) return false;
|
|
|
|
|
|
|
|
unsigned int perpandicularDepth = getDepth();
|
|
|
|
if (isSpinBottom()) --perpandicularDepth;
|
|
|
|
else if (isSpinTop ()) ++perpandicularDepth;
|
|
|
|
else return true;
|
|
|
|
|
|
|
|
return (getLength() >= (Session::getPitch(perpandicularDepth) * 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::raise ()
|
|
|
|
{
|
|
|
|
if (not (_flags & SegIsReduced)) return false;
|
|
|
|
|
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
|
|
|
|
_flags &= ~SegIsReduced;
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
//if (not source->isTerminal()) source->getPerpandicular( this )->decReduceds();
|
|
|
|
//if (not target->isTerminal()) target->getPerpandicular( this )->decReduceds();
|
|
|
|
for ( AutoSegment* perpandicular : source->getAutoSegments() ) {
|
|
|
|
if (perpandicular == this) continue;
|
|
|
|
perpandicular->decReduceds();
|
|
|
|
}
|
|
|
|
for ( AutoSegment* perpandicular : target->getAutoSegments() ) {
|
|
|
|
if (perpandicular == this) continue;
|
|
|
|
perpandicular->decReduceds();
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
void AutoSegment::changeDepth ( unsigned int depth, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
DebugSession::open( getNet(), 145, 150 );
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_log(149,1) << "changeDepth() " << depth << " - " << this << endl;
|
|
|
|
Session::invalidate( getNet() );
|
|
|
|
|
|
|
|
_changeDepth( depth, flags & ~Flags::Propagate );
|
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
cdebug_log(149,0) << "Propagate to aligneds." << endl;
|
|
|
|
for ( AutoSegment* segment : getAligneds(Flags::NoCheckLayer) ) {
|
|
|
|
segment->_changeDepth( depth, flags & ~Flags::Propagate );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(149,-1);
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
|
|
|
|
DebugSession::close();
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
void AutoSegment::_changeDepth ( unsigned int depth, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,1) << "_changeDepth() - " << this << endl;
|
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
invalidate( Flags::Topology|Flags::NoCheckLayer );
|
2016-07-18 07:48:37 -05:00
|
|
|
setFlags( SegInvalidatedLayer|SegInvalidatedSource|SegInvalidatedTarget );
|
|
|
|
|
|
|
|
const Layer* newLayer = Session::getRoutingGauge()->getRoutingLayer(depth);
|
|
|
|
if (getLayer() != newLayer) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_log(149,0) << "Effective layer change to " << depth << "/" << newLayer << endl;
|
In Anabatic, correctly set the wire width according to the routing gauge.
* New: Anabatic::AutoContact::setLayerAndWidth() to set both layer and
VIA width/side according to the RoutingGauge. If the delta in zero,
use the metal gauge, and the VIA gauge otherwise.
* Bug: In Anabatic::AutoContactTerminal, Anabatic::AutoContactTurn,
Anabatic::AutoContactHTee & Anabatic::AutoContactVTee, in the
updateTopology() method, set both the layer and the VIA with when
there is a change of layer. Note that this default size may be
overriden later by updateSeize() in the case of non-default width
segments.
* New: In Anabatic::AutoSegment, new overload setLayer(size_t) to set
both layer and segment with according to the routing gauge.
* Bug: In Anabatic::AutoHorizontal and Anabatic::AutoVertical, in method
_makeDogleg(), make use of the new setLayer() to correctly set up
the wire width.
Idem for Anabatic::AutoSegment::changeDepth() and ::makeDogleg(),
and in Anabatic::LayerAssign.
2019-02-12 05:43:09 -06:00
|
|
|
setLayer( depth );
|
2016-07-18 07:48:37 -05:00
|
|
|
getAutoSource()->invalidate( Flags::Topology|Flags::NoCheckLayer );
|
|
|
|
getAutoTarget()->invalidate( Flags::Topology|Flags::NoCheckLayer );
|
|
|
|
}
|
|
|
|
|
2018-06-08 05:20:37 -05:00
|
|
|
vector<GCell*> gcells;
|
|
|
|
getGCells( gcells );
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; ++i ) {
|
|
|
|
gcells[i]->flags() |= Flags::Invalidated;
|
2018-06-11 09:44:26 -05:00
|
|
|
cdebug_log(149,0) << "changeDepth() " << gcells[i] << this << " " << endl;
|
2018-06-08 05:20:37 -05:00
|
|
|
}
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (not (flags & Flags::WithNeighbors)) {
|
2018-06-11 09:44:26 -05:00
|
|
|
cdebug_tabw(149,-1);
|
2016-07-18 07:48:37 -05:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
for ( AutoSegment* segment : getCachedOnSourceContact(Flags::DirectionMask) ) {
|
|
|
|
if (segment == this) continue;
|
|
|
|
if (segment->isGlobal ()) continue;
|
|
|
|
if (segment->isTerminal()) continue;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
if (not (segment->isHorizontal() xor isHorizontal()))
|
|
|
|
segment->_changeDepth( depth , Flags::NoFlags );
|
2016-07-18 07:48:37 -05:00
|
|
|
else
|
2018-03-27 11:03:51 -05:00
|
|
|
segment->_changeDepth( depth-1, Flags::NoFlags );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
for ( AutoSegment* segment : getCachedOnTargetContact(Flags::DirectionMask) ) {
|
|
|
|
if (segment == this) continue;
|
|
|
|
if (segment->isGlobal ()) continue;
|
|
|
|
if (segment->isTerminal()) continue;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
2018-03-27 11:03:51 -05:00
|
|
|
if (not (segment->isHorizontal() xor isHorizontal()))
|
|
|
|
segment->_changeDepth( depth , Flags::NoFlags );
|
2016-07-18 07:48:37 -05:00
|
|
|
else
|
2018-03-27 11:03:51 -05:00
|
|
|
segment->_changeDepth( depth-1, Flags::NoFlags );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::canSlacken ( Flags flags ) const
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canSlacken()" << endl;
|
|
|
|
|
|
|
|
if (not isGlobal() and not (flags & Flags::Propagate)) return false;
|
|
|
|
|
|
|
|
if (_canSlacken()) return true;
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
|
|
|
forEach ( AutoSegment*, isegment, const_cast<AutoSegment*>(this)->getAligneds() ) {
|
|
|
|
if (isegment->_canSlacken()) return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::slacken ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
bool success = false;
|
|
|
|
|
|
|
|
success = success or _slacken( flags );
|
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
for ( AutoSegment* segment : getAligneds() ) {
|
|
|
|
success = success or segment->_slacken( flags );
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return success;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
float AutoSegment::getMaxUnderDensity ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::getMaxUnderDensity() " << endl;
|
|
|
|
|
|
|
|
size_t depth = Session::getRoutingGauge()->getLayerDepth(getLayer());
|
|
|
|
|
|
|
|
vector<GCell*> gcells;
|
|
|
|
getGCells( gcells );
|
|
|
|
|
|
|
|
float maxDensity = 0.0;
|
|
|
|
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; ++i ) {
|
|
|
|
maxDensity = std::max( maxDensity, gcells[i]->getFeedthroughs(depth) );
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
|
|
|
forEach ( AutoSegment*, isegment, getAligneds() ) {
|
|
|
|
isegment->getGCells( gcells );
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; ++i ) {
|
|
|
|
maxDensity = std::max( maxDensity, gcells[i]->getFeedthroughs(depth) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return maxDensity;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::canPivotUp ( float reserve, Flags flags ) const
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canPivotUp() - " << flags
|
|
|
|
<< " (reserve:" << reserve << ")" << endl;
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if ( isLayerChange() or isFixed() or isUnbreakable() ) return false;
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
if ( isStrongTerminal() and (not (flags & Flags::AllowTerminal)) ) return false;
|
|
|
|
if ( isLocal() and (not (flags & Flags::AllowLocal )) ) return false;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
size_t depth = Session::getRoutingGauge()->getLayerDepth( getLayer() );
|
|
|
|
if (depth+2 >= Session::getRoutingGauge()->getDepth()) return false;
|
|
|
|
|
|
|
|
vector<GCell*> gcells;
|
|
|
|
getGCells( gcells );
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; i++ ) {
|
|
|
|
if (not gcells[i]->hasFreeTrack(depth+2,reserve)) return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( not (flags&Flags::IgnoreContacts) ) {
|
|
|
|
cdebug_log(149,0) << getAutoSource() << endl;
|
|
|
|
cdebug_log(149,0) << getAutoTarget() << endl;
|
|
|
|
cdebug_log(149,0) << "min depths, Segment:" << depth
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
<< " S:" << getAutoSource()->getMinDepth()
|
|
|
|
<< " T:" << getAutoTarget()->getMinDepth() << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if (getAutoSource()->getMinDepth() < depth) return false;
|
|
|
|
if (getAutoTarget()->getMinDepth() < depth) return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
|
|
|
forEach ( AutoSegment*, isegment, const_cast<AutoSegment*>(this)->getAligneds(flags) ) {
|
|
|
|
isegment->getGCells( gcells );
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; i++ ) {
|
|
|
|
if (not gcells[i]->hasFreeTrack(depth+2,reserve)) return false;
|
|
|
|
}
|
|
|
|
if (isegment->getAutoSource()->getMinDepth() < depth) return false;
|
|
|
|
if (isegment->getAutoTarget()->getMinDepth() < depth) return false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canPivotUp() - true [no propagate]" << endl;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canPivotUp() - true [propagate]" << endl;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::canPivotDown ( float reserve, Flags flags ) const
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canPivotDown()"
|
|
|
|
<< " (reserve:" << reserve << ")" << endl;
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if ( isLayerChange() or isFixed() or isUnbreakable() ) return false;
|
2016-07-18 07:48:37 -05:00
|
|
|
if ( isStrongTerminal() or isLocal() ) return false;
|
|
|
|
|
|
|
|
size_t depth = Session::getRoutingGauge()->getLayerDepth( getLayer() );
|
|
|
|
if (depth < 3) return false;
|
|
|
|
|
|
|
|
vector<GCell*> gcells;
|
|
|
|
getGCells( gcells );
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; i++ ) {
|
|
|
|
if (not gcells[i]->hasFreeTrack(depth-2,reserve)) return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_log(149,0) << getAutoSource() << endl;
|
|
|
|
cdebug_log(149,0) << getAutoTarget() << endl;
|
|
|
|
cdebug_log(149,0) << "max depths, Segment:" << depth
|
|
|
|
<< " S:" << getAutoSource()->getMaxDepth()
|
|
|
|
<< " T:" << getAutoTarget()->getMaxDepth() << endl;
|
|
|
|
|
|
|
|
if (getAutoSource()->getMaxDepth() > depth) return false;
|
|
|
|
if (getAutoTarget()->getMaxDepth() > depth) return false;
|
|
|
|
if (not (flags & Flags::Propagate)) {
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canPivotDown() - true [no propagate]" << endl;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
|
|
|
forEach ( AutoSegment*, isegment, const_cast<AutoSegment*>(this)->getAligneds() ) {
|
|
|
|
isegment->getGCells( gcells );
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; i++ ) {
|
|
|
|
if (not gcells[i]->hasFreeTrack(depth-2,reserve)) return false;
|
|
|
|
}
|
|
|
|
if (isegment->getAutoSource()->getMaxDepth() < depth) return false;
|
|
|
|
if (isegment->getAutoTarget()->getMaxDepth() < depth) return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canPivotDown() - true [propagate]" << endl;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::canMoveUp ( float reserve, Flags flags ) const
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "AutoSegment::canMoveUp() " << flags
|
|
|
|
<< " (reserve:" << reserve << ") " << this << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
bool nLowDensity = true;
|
|
|
|
bool nLowUpDensity = true;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if ( isLayerChange() or isFixed() or isUnbreakable() ) return false;
|
2016-07-18 07:48:37 -05:00
|
|
|
if ( isStrongTerminal() and (not (flags & Flags::AllowTerminal)) ) return false;
|
|
|
|
if ( isLocal() and (not (flags & Flags::AllowLocal )) ) return false;
|
|
|
|
|
|
|
|
size_t depth = Session::getRoutingGauge()->getLayerDepth(getLayer()) + 2;
|
|
|
|
if (depth > Session::getConfiguration()->getAllowedDepth()) return false;
|
|
|
|
|
|
|
|
vector<GCell*> gcells;
|
|
|
|
getGCells( gcells );
|
|
|
|
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; i++ ) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
if ( nLowDensity and (gcells[i]->getWDensity(depth-2) > 0.5) ) nLowDensity = false;
|
|
|
|
if ( nLowUpDensity and (gcells[i]->getWDensity(depth) > 0.2) ) nLowUpDensity = false;
|
2016-07-18 07:48:37 -05:00
|
|
|
if (not gcells[i]->hasFreeTrack(depth,reserve)) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "Not enough free track in " << gcells[i] << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "Enough free track under canonical segment." << endl;
|
|
|
|
|
|
|
|
if (not (flags & Flags::IgnoreContacts)) {
|
|
|
|
if (getAutoSource()->getMinDepth() < depth-2) return false;
|
|
|
|
if (getAutoTarget()->getMinDepth() < depth-2) return false;
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if ( isLocal() and not (flags & Flags::Propagate) ) {
|
|
|
|
if (not getAutoSource()->canMoveUp(this)) return false;
|
|
|
|
if (not getAutoTarget()->canMoveUp(this)) return false;
|
|
|
|
return true;
|
|
|
|
}
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "Both source & target Contacts can move up." << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
//bool hasGlobalSegment = false;
|
|
|
|
if ((flags & Flags::Propagate) and not isNotAligned()) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
for ( AutoSegment* segment : const_cast<AutoSegment*>(this)->getAligneds(flags) ) {
|
|
|
|
if (segment->isFixed ()) return false;
|
|
|
|
//if (segment->isGlobal()) hasGlobalSegment = true;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
if (not (flags & Flags::IgnoreContacts)) {
|
|
|
|
if (segment->getAutoSource()->getMinDepth() < depth-2) return false;
|
|
|
|
if (segment->getAutoTarget()->getMinDepth() < depth-2) return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
segment->getGCells( gcells );
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
for ( size_t i=0 ; i<gcells.size() ; i++ ) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
if ( nLowDensity and (gcells[i]->getWDensity(depth-2) > 0.6) ) nLowDensity = false;
|
|
|
|
if ( nLowUpDensity and (gcells[i]->getWDensity(depth) > 0.2) ) {
|
|
|
|
cdebug_log(159,0) << "lowUpDensity false in " << gcells[i]
|
|
|
|
<< "d:" << gcells[i]->getWDensity(depth) << endl;
|
|
|
|
nLowUpDensity = false;
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
if (not gcells[i]->hasFreeTrack(depth,reserve)) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "Not enough free track in " << gcells[i] << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
if ( nLowDensity and (flags & Flags::CheckLowDensity )) return false;
|
|
|
|
if (not nLowUpDensity and (flags & Flags::CheckLowUpDensity)) return false;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if ( (depth >= 4) and (flags & Flags::WithPerpands) ) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
float fragmentation = (*gcells.begin())->getFragmentation( depth-1 );
|
|
|
|
cdebug_log(159,0) << "Check begin GCell perpandicular fragmentation: " << fragmentation << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if (fragmentation < 0.5) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "Not enough free track for perpandicular in begin GCell "
|
|
|
|
<< "(frag:" << fragmentation << ")."
|
|
|
|
<< endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
fragmentation = (*gcells.rbegin())->getFragmentation( depth-1 );
|
|
|
|
cdebug_log(159,0) << "Check end GCell perpandicular fragmentation: " << fragmentation << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if (fragmentation < 0.5) {
|
Forgot to perform Track re-order after removing zero-length segments.
* Change: In Anabatic::Autocontact, replace getMinDepth() and
getMaxDepth() by getDepthSpan().
* New: In Anabatic::AutoSegment::canMoveUp(), add an optional check of
low up density (Flags::CheckLowUpDensity). Allows to move up a
segment if the up density is (very) low, and in this case it's more
efficient than breaking it to fit in the lower layer.
canMoveUp() is now able to perform the same work as canPivotUp()
if *not* supplied the flag Flags::IgnoreContacts.
* New: In Katana, in GlobalRouting::DigitalDistance() now take into
account the cost of a VIA (currently set to 2.5). Need to known the
Net currently routed in the DigitalDistance object itself.
* Change: In Katana::Track::Element::canPivotUp(), now also takes a flag
parameter.
* Change: In Katana::Manipulator, new flag IgnoreContacts to mirror the
one of Anabatic.
* Change: In Katana::SegmentFsm, allocate once a Manipulator object instead
of many times on the fly.
In SegmentFsm::_slackenGlobal(), in the slacken state, if the up
density is (very) low, bypass to move up instead of slackening.
This solve better the routing of the control part of the register file.
The register file having a pathological case of terminal placement:
many punctual terminals aligneds in METAL2 *and* a grid of METAL2 and
METAL3 blockages near below...
* Bug: In Katana::Session::_revalidate(), after removing the zero-length
segments, forgot to re-order the track, leading to many stranges effects
as the indexes where no longer coherent in the Track.
2016-09-20 04:30:45 -05:00
|
|
|
cdebug_log(159,0) << "Not enough free track for perpandicular in end GCell "
|
|
|
|
<< "(frag:" << fragmentation << ")."
|
|
|
|
<< endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::moveUp ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
//if ( not canMoveUp(0.0,flags) ) return false;
|
|
|
|
changeDepth( Session::getRoutingGauge()->getLayerDepth(getLayer()) + 2, flags&Flags::Propagate );
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::moveDown ( Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
//if ( not canPivotDown(0.0,flags) ) return false;
|
|
|
|
changeDepth( Session::getRoutingGauge()->getLayerDepth(getLayer()) - 2, flags&Flags::Propagate );
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::reduceDoglegLayer ()
|
|
|
|
{
|
|
|
|
if (not isReduced()) return true;
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
DebugSession::open( getNet(), 149, 160 );
|
|
|
|
cdebug_log(159,1) << "AutoSegment::reduceDoglegLayer(): " << this << endl;
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
AutoContact* source = getAutoSource();
|
|
|
|
AutoContact* target = getAutoTarget();
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
unsigned int minSourceDepth = Session::getAllowedDepth();
|
|
|
|
unsigned int maxSourceDepth = 0;
|
|
|
|
unsigned int minTargetDepth = Session::getAllowedDepth();
|
|
|
|
unsigned int maxTargetDepth = 0;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (source->isTerminal()) {
|
|
|
|
unsigned int anchorDepth = Session::getLayerDepth( source->base()->getAnchor()->getLayer() );
|
|
|
|
minSourceDepth = std::min( minSourceDepth, anchorDepth );
|
|
|
|
maxSourceDepth = std::max( maxSourceDepth, anchorDepth );
|
|
|
|
} else {
|
|
|
|
for ( AutoSegment* perpandicular : source->getAutoSegments() ) {
|
|
|
|
if (perpandicular == this) continue;
|
|
|
|
minSourceDepth = std::min( minSourceDepth, perpandicular->getDepth() );
|
|
|
|
maxSourceDepth = std::max( maxSourceDepth, perpandicular->getDepth() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (target->isTerminal()) {
|
|
|
|
unsigned int anchorDepth = Session::getLayerDepth( target->base()->getAnchor()->getLayer() );
|
|
|
|
minTargetDepth = std::min( minTargetDepth, anchorDepth );
|
|
|
|
maxTargetDepth = std::max( maxTargetDepth, anchorDepth );
|
|
|
|
} else {
|
|
|
|
for ( AutoSegment* perpandicular : target->getAutoSegments() ) {
|
|
|
|
if (perpandicular == this) continue;
|
|
|
|
minTargetDepth = std::min( minTargetDepth, perpandicular->getDepth() );
|
|
|
|
maxTargetDepth = std::max( maxTargetDepth, perpandicular->getDepth() );
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_log(159,0) << "Source span: [" << minSourceDepth << " " << maxSourceDepth << "]" << endl;
|
|
|
|
cdebug_log(159,0) << "Target span: [" << minTargetDepth << " " << maxTargetDepth << "]" << endl;
|
|
|
|
|
|
|
|
if ( (minSourceDepth == maxSourceDepth)
|
|
|
|
and (minTargetDepth == maxTargetDepth)
|
2019-08-18 06:20:50 -05:00
|
|
|
and (minSourceDepth == minTargetDepth) ) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
const Layer* layer = Session::getRoutingLayer(minSourceDepth);
|
|
|
|
DbU::Unit side = Session::getWireWidth (minSourceDepth);
|
|
|
|
|
|
|
|
cdebug_log(159,0) << "Reducing to " << minSourceDepth << " " << layer << endl;
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
source->setLayer( layer );
|
|
|
|
target->setLayer( layer );
|
|
|
|
setLayer( layer );
|
|
|
|
source->setSizes( side, side );
|
|
|
|
target->setSizes( side, side );
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_tabw(159,-1);
|
|
|
|
DebugSession::close();
|
2016-07-18 07:48:37 -05:00
|
|
|
return true;
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
|
|
|
|
// if (not source->isTurn() or not target->isTurn()) return true;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
// unsigned int perpandicularDepth = getDepth();
|
|
|
|
// if (isSpinBottom()) --perpandicularDepth;
|
|
|
|
// if (isSpinTop ()) ++perpandicularDepth;
|
|
|
|
|
|
|
|
// if (perpandicularDepth == getDepth()) {
|
|
|
|
// cerr << Bug( "AutoSegment::reduceDoglegLayer(): Reduced segment spin is neither top (TT) nor bottom (BB).\n"
|
|
|
|
// " %s"
|
|
|
|
// , getString(this).c_str() ) << endl;
|
|
|
|
// return false;
|
|
|
|
// }
|
|
|
|
|
|
|
|
// const Layer* layer = Session::getRoutingLayer(perpandicularDepth);
|
|
|
|
// DbU::Unit side = Session::getWireWidth (perpandicularDepth);
|
|
|
|
|
|
|
|
// source->setLayer( layer );
|
|
|
|
// target->setLayer( layer );
|
|
|
|
// setLayer( layer );
|
|
|
|
// source->setSizes( side, side );
|
|
|
|
// target->setSizes( side, side );
|
|
|
|
|
|
|
|
// return true;
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
#if THIS_IS_DISABLED
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
bool AutoSegment::shearUp ( GCell* upGCell, AutoSegment*& movedUp, float reserve, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::shearUp() " << this << endl;
|
|
|
|
|
|
|
|
movedUp = NULL;
|
|
|
|
|
|
|
|
if ( isLayerChange() or isFixed() /*or isTerminal()*/ or isLocal() ) return false;
|
|
|
|
|
|
|
|
size_t upDepth = Session::getRoutingGauge()->getLayerDepth(getLayer()) + 2;
|
|
|
|
if ( upDepth > Session::getConfiguration()->getAllowedDepth() ) return false;
|
|
|
|
|
|
|
|
vector<GCell*> gcells;
|
|
|
|
getGCells ( gcells );
|
|
|
|
|
|
|
|
size_t iupGCell = 0;
|
|
|
|
for ( ; iupGCell<gcells.size() ; ++iupGCell ) {
|
|
|
|
if ( gcells[iupGCell] == upGCell ) break;
|
|
|
|
}
|
|
|
|
if ( iupGCell == gcells.size() ) {
|
|
|
|
cerr << Warning("Shear start %s not under %s."
|
|
|
|
,getString(upGCell).c_str()
|
|
|
|
,getString(this).c_str()
|
|
|
|
) << endl;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
GCell* rightShear = NULL;
|
|
|
|
for ( size_t i=iupGCell ; i<gcells.size() ; i++ ) {
|
|
|
|
if ( not gcells[i]->hasFreeTrack(upDepth,reserve) ) {
|
|
|
|
cdebug_log(149,0) << "Right shearing @ " << gcells[i] << endl;
|
|
|
|
rightShear = gcells[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
GCell* leftShear = NULL;
|
|
|
|
if ( iupGCell > 0 ) {
|
|
|
|
size_t i = iupGCell;
|
|
|
|
do {
|
|
|
|
--i;
|
|
|
|
if ( not gcells[i]->hasFreeTrack(upDepth,reserve) ) {
|
|
|
|
cdebug_log(149,0) << "Left shearing @ " << gcells[i] << endl;
|
|
|
|
leftShear = gcells[i];
|
|
|
|
}
|
|
|
|
} while (i > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
AutoSegment* before = this;
|
|
|
|
const vector<AutoSegment*>& doglegs = Session::getDoglegs();
|
|
|
|
|
|
|
|
if ( leftShear ) {
|
|
|
|
makeDogleg ( leftShear, true );
|
|
|
|
movedUp = doglegs[2];
|
|
|
|
} else {
|
|
|
|
before = NULL;
|
|
|
|
movedUp = this;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( rightShear ) makeDogleg(rightShear,true);
|
|
|
|
|
|
|
|
if ( movedUp->moveUp(flags) ) {
|
|
|
|
if ( rightShear or leftShear )
|
|
|
|
cinfo << "Shearing Up " << this << "." << endl;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
movedUp = NULL;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags AutoSegment::canDogleg ( Interval interval )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,0) << "AutoSegment::canDogleg(Interval) " << interval << endl;
|
|
|
|
|
|
|
|
size_t leftDogleg = 0;
|
|
|
|
size_t rightDogleg = 0;
|
|
|
|
if (getSpanU().contains(interval.getVMin())) leftDogleg++;
|
|
|
|
if (getSpanU().contains(interval.getVMax())) rightDogleg++;
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
for ( AutoSegment* segment : getAligneds() ) {
|
|
|
|
if (segment->getSpanU().contains(interval.getVMin())) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (segment->isFixed()) return Flags::NoFlags;
|
2016-07-18 07:48:37 -05:00
|
|
|
leftDogleg++;
|
|
|
|
}
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
if (segment->getSpanU().contains(interval.getVMax())) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (segment->isFixed()) return Flags::NoFlags;
|
2016-07-18 07:48:37 -05:00
|
|
|
rightDogleg++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( (leftDogleg == 1) and (rightDogleg <= 1) ) return Flags::DoglegOnLeft;
|
|
|
|
if ( (leftDogleg <= 1) and (rightDogleg == 1) ) return Flags::DoglegOnRight;
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "leftCount:" << leftDogleg << " rightCount:" << rightDogleg << endl;
|
|
|
|
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
return Flags::NoFlags;
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AutoSegment* AutoSegment::makeDogleg ( AutoContact* from )
|
|
|
|
{
|
|
|
|
cdebug_log(149,1) << "AutoSegment::makeDogleg(AutoContact*) " << from << endl;
|
|
|
|
cdebug_log(149,0) << this << endl;
|
|
|
|
|
|
|
|
RoutingGauge* rg = Session::getRoutingGauge();
|
|
|
|
size_t segmentDepth = rg->getLayerDepth( getLayer() );
|
|
|
|
const vector<AutoSegment*>& doglegs = Session::getDoglegs();
|
|
|
|
size_t index = doglegs.size();
|
|
|
|
bool isSource = (getAutoSource() == from);
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "isSource:" << isSource << endl;
|
|
|
|
|
|
|
|
makeDogleg( from->getGCell(), Flags::NoCheckLayer );
|
|
|
|
if (doglegs.size() == index) {
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
doglegs[ index+1 ]->setAxis( isHorizontal() ? from->getX() : from->getY() );
|
|
|
|
|
|
|
|
if (not from->getLayer()->contains(getLayer())) {
|
|
|
|
cdebug_log(149,0) << "Contact layer do not contains Segment layer, adjust layers" << endl;
|
|
|
|
|
|
|
|
if (getLayer()->above(from->getLayer())) {
|
|
|
|
cdebug_log(149,0) << "Go Down from depth " << segmentDepth << endl;
|
|
|
|
|
In Anabatic, correctly set the wire width according to the routing gauge.
* New: Anabatic::AutoContact::setLayerAndWidth() to set both layer and
VIA width/side according to the RoutingGauge. If the delta in zero,
use the metal gauge, and the VIA gauge otherwise.
* Bug: In Anabatic::AutoContactTerminal, Anabatic::AutoContactTurn,
Anabatic::AutoContactHTee & Anabatic::AutoContactVTee, in the
updateTopology() method, set both the layer and the VIA with when
there is a change of layer. Note that this default size may be
overriden later by updateSeize() in the case of non-default width
segments.
* New: In Anabatic::AutoSegment, new overload setLayer(size_t) to set
both layer and segment with according to the routing gauge.
* Bug: In Anabatic::AutoHorizontal and Anabatic::AutoVertical, in method
_makeDogleg(), make use of the new setLayer() to correctly set up
the wire width.
Idem for Anabatic::AutoSegment::changeDepth() and ::makeDogleg(),
and in Anabatic::LayerAssign.
2019-02-12 05:43:09 -06:00
|
|
|
doglegs[ index + 1 ]->setLayer( segmentDepth-1 );
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1] << endl;
|
|
|
|
|
|
|
|
if (isSource) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
doglegs[ index + 0 ]->setLayer( std::max((size_t)1,segmentDepth-2) );
|
2016-07-18 07:48:37 -05:00
|
|
|
doglegs[ index + 1 ]->getAutoSource()->setLayer( rg->getContactLayer(segmentDepth-2) );
|
|
|
|
doglegs[ index + 1 ]->getAutoTarget()->setLayer( rg->getContactLayer(segmentDepth-1) );
|
|
|
|
cdebug_log(149,0) << "doglegs[i+0]: " << doglegs[index+0] << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoSource() << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoTarget() << endl;
|
|
|
|
} else {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
doglegs[ index + 2 ]->setLayer( std::max((size_t)1,segmentDepth-2) );
|
2016-07-18 07:48:37 -05:00
|
|
|
doglegs[ index + 1 ]->getAutoTarget()->setLayer( rg->getContactLayer(segmentDepth-2) );
|
|
|
|
doglegs[ index + 1 ]->getAutoSource()->setLayer( rg->getContactLayer(segmentDepth-1) );
|
|
|
|
cdebug_log(149,0) << "doglegs[i+2]: " << doglegs[index+2] << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoTarget() << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoSource() << endl;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
cdebug_log(149,0) << "Go Up from depth " << segmentDepth << endl;
|
|
|
|
|
In Anabatic, correctly set the wire width according to the routing gauge.
* New: Anabatic::AutoContact::setLayerAndWidth() to set both layer and
VIA width/side according to the RoutingGauge. If the delta in zero,
use the metal gauge, and the VIA gauge otherwise.
* Bug: In Anabatic::AutoContactTerminal, Anabatic::AutoContactTurn,
Anabatic::AutoContactHTee & Anabatic::AutoContactVTee, in the
updateTopology() method, set both the layer and the VIA with when
there is a change of layer. Note that this default size may be
overriden later by updateSeize() in the case of non-default width
segments.
* New: In Anabatic::AutoSegment, new overload setLayer(size_t) to set
both layer and segment with according to the routing gauge.
* Bug: In Anabatic::AutoHorizontal and Anabatic::AutoVertical, in method
_makeDogleg(), make use of the new setLayer() to correctly set up
the wire width.
Idem for Anabatic::AutoSegment::changeDepth() and ::makeDogleg(),
and in Anabatic::LayerAssign.
2019-02-12 05:43:09 -06:00
|
|
|
doglegs[ index + 1 ]->setLayer( segmentDepth+1 );
|
2016-07-18 07:48:37 -05:00
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1] << endl;
|
|
|
|
|
|
|
|
if (isSource) {
|
In Anabatic, correctly set the wire width according to the routing gauge.
* New: Anabatic::AutoContact::setLayerAndWidth() to set both layer and
VIA width/side according to the RoutingGauge. If the delta in zero,
use the metal gauge, and the VIA gauge otherwise.
* Bug: In Anabatic::AutoContactTerminal, Anabatic::AutoContactTurn,
Anabatic::AutoContactHTee & Anabatic::AutoContactVTee, in the
updateTopology() method, set both the layer and the VIA with when
there is a change of layer. Note that this default size may be
overriden later by updateSeize() in the case of non-default width
segments.
* New: In Anabatic::AutoSegment, new overload setLayer(size_t) to set
both layer and segment with according to the routing gauge.
* Bug: In Anabatic::AutoHorizontal and Anabatic::AutoVertical, in method
_makeDogleg(), make use of the new setLayer() to correctly set up
the wire width.
Idem for Anabatic::AutoSegment::changeDepth() and ::makeDogleg(),
and in Anabatic::LayerAssign.
2019-02-12 05:43:09 -06:00
|
|
|
doglegs[ index + 0 ]->setLayer( segmentDepth+2 );
|
2016-07-18 07:48:37 -05:00
|
|
|
doglegs[ index + 1 ]->getAutoSource()->setLayer( rg->getContactLayer(segmentDepth+1) );
|
|
|
|
doglegs[ index + 1 ]->getAutoTarget()->setLayer( rg->getContactLayer(segmentDepth ) );
|
|
|
|
cdebug_log(149,0) << "doglegs[i+0]: " << doglegs[index+0] << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoSource() << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoTarget() << endl;
|
|
|
|
} else {
|
In Anabatic, correctly set the wire width according to the routing gauge.
* New: Anabatic::AutoContact::setLayerAndWidth() to set both layer and
VIA width/side according to the RoutingGauge. If the delta in zero,
use the metal gauge, and the VIA gauge otherwise.
* Bug: In Anabatic::AutoContactTerminal, Anabatic::AutoContactTurn,
Anabatic::AutoContactHTee & Anabatic::AutoContactVTee, in the
updateTopology() method, set both the layer and the VIA with when
there is a change of layer. Note that this default size may be
overriden later by updateSeize() in the case of non-default width
segments.
* New: In Anabatic::AutoSegment, new overload setLayer(size_t) to set
both layer and segment with according to the routing gauge.
* Bug: In Anabatic::AutoHorizontal and Anabatic::AutoVertical, in method
_makeDogleg(), make use of the new setLayer() to correctly set up
the wire width.
Idem for Anabatic::AutoSegment::changeDepth() and ::makeDogleg(),
and in Anabatic::LayerAssign.
2019-02-12 05:43:09 -06:00
|
|
|
doglegs[ index + 2 ]->setLayer( segmentDepth+2 );
|
2016-07-18 07:48:37 -05:00
|
|
|
doglegs[ index + 1 ]->getAutoTarget()->setLayer( rg->getContactLayer(segmentDepth+1) );
|
|
|
|
doglegs[ index + 1 ]->getAutoSource()->setLayer( rg->getContactLayer(segmentDepth ) );
|
|
|
|
cdebug_log(149,0) << "doglegs[i+2]: " << doglegs[index+2] << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoTarget() << endl;
|
|
|
|
cdebug_log(149,0) << "doglegs[i+1]: " << doglegs[index+1]->getAutoSource() << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return doglegs[ index + (isSource?0:2) ];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags AutoSegment::makeDogleg ( Interval interval, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(149,1) << "AutoSegment::makeDogleg(Interval) - " << interval << endl;
|
|
|
|
|
|
|
|
bool leftDogleg = true;
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags rflags = Flags::NoFlags;
|
2016-07-18 07:48:37 -05:00
|
|
|
size_t leftDoglegCount = 0;
|
|
|
|
size_t rightDoglegCount = 0;
|
|
|
|
AutoSegment* leftCandidate = NULL;
|
|
|
|
AutoSegment* rightCandidate = NULL;
|
|
|
|
|
|
|
|
if (getSpanU().contains(interval.getVMin())) { leftCandidate = this; leftDoglegCount++; }
|
|
|
|
if (getSpanU().contains(interval.getVMax())) { rightCandidate = this; rightDoglegCount++; }
|
|
|
|
|
|
|
|
if (not isNotAligned()) {
|
|
|
|
forEach ( AutoSegment*, isegment, getAligneds(flags) ) {
|
|
|
|
if (isegment->getSpanU().contains(interval.getVMin())) { leftCandidate = *isegment; leftDoglegCount++; }
|
|
|
|
if (isegment->getSpanU().contains(interval.getVMax())) { rightCandidate = *isegment; rightDoglegCount++; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ( (leftDoglegCount != 1) and (rightDoglegCount != 1) ) { cdebug_tabw(149,-1); return 0; }
|
|
|
|
if (not leftDoglegCount) {
|
|
|
|
leftDogleg = false;
|
|
|
|
leftCandidate = rightCandidate;
|
|
|
|
rightCandidate = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (leftCandidate and rightCandidate) {
|
|
|
|
cdebug_log(149,0) << "Left Constraint: " << leftCandidate->getSourceConstraints(Flags::NativeConstraints) << endl;
|
|
|
|
cdebug_log(149,0) << "Right Constraint: " << rightCandidate->getTargetConstraints(Flags::NativeConstraints) << endl;
|
|
|
|
|
|
|
|
if ( leftCandidate ->getTargetConstraints(Flags::NativeConstraints).getSize()
|
|
|
|
< rightCandidate->getSourceConstraints(Flags::NativeConstraints).getSize() ) {
|
|
|
|
leftCandidate = rightCandidate;
|
|
|
|
leftDogleg = false;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (not leftCandidate) {
|
|
|
|
leftCandidate = rightCandidate;
|
|
|
|
leftDogleg = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (leftCandidate) {
|
|
|
|
DbU::Unit axis;
|
|
|
|
// Ugly: Hard-wired track spacing.
|
|
|
|
if (leftDogleg) axis = interval.getVMin() - getPitch();
|
|
|
|
else axis = interval.getVMax() + getPitch();
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "Break @" << DbU::getValueString(axis) << " " << leftCandidate << endl;
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags direction = getDirection();
|
|
|
|
GCell* gcell = leftCandidate->getAutoSource()->getGCell();
|
|
|
|
GCell* end = leftCandidate->getAutoTarget()->getGCell();
|
2016-07-18 07:48:37 -05:00
|
|
|
while ( gcell != end ) {
|
|
|
|
if (gcell->getSide(direction).contains(axis)) break;
|
|
|
|
gcell = (direction == Flags::Horizontal) ? gcell->getEast (getNativeMin())
|
|
|
|
: gcell->getNorth(getNativeMin());
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "In " << gcell << endl;
|
|
|
|
rflags = leftCandidate->_makeDogleg( gcell, flags );
|
|
|
|
|
|
|
|
const vector<AutoSegment*>& doglegs = Session::getDoglegs();
|
|
|
|
if (doglegs.size() >= 2) {
|
|
|
|
cdebug_log(149,0) << "AutoSegment::makeDogleg(): @" << DbU::getValueString(axis) << endl;
|
|
|
|
doglegs[1]->setAxis( axis );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return rflags | (leftDogleg ? Flags::DoglegOnLeft : Flags::DoglegOnRight);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags AutoSegment::makeDogleg ( GCell* doglegGCell, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(9000,0) << "Deter| AutoSegment::makeDogleg(GCell*) " << doglegGCell << endl;
|
|
|
|
cdebug_log(9000,0) << "Deter| in " << this << endl;
|
|
|
|
cdebug_tabw(149,1);
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags rflags = Flags::NoFlags;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
if ( doglegGCell->isIoPad()
|
|
|
|
and (Session::getAnabatic()->getState() != EngineGlobalLoaded) ) {
|
|
|
|
cerr << Bug( "Attempt to make a dogleg in a GCell under a Pad\n"
|
|
|
|
" %s\n"
|
|
|
|
" %s"
|
|
|
|
, getString(this).c_str()
|
|
|
|
, getString(doglegGCell).c_str() ) << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (isFixed()) {
|
|
|
|
cerr << Error( "AutoSegment::makeDogleg(): Cannot make a dog leg on a fixed segment.\n"
|
|
|
|
" (on: %s)", _getString().c_str() ) << endl;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (doglegGCell->getSide(getDirection()).intersect(getSpanU())) {
|
2016-08-30 09:05:15 -05:00
|
|
|
cdebug_log(149,0) << "Dogleg in " << this << " spanU:" << getSpanU() << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
rflags = _makeDogleg( doglegGCell, flags );
|
|
|
|
} else {
|
|
|
|
cdebug_log(149,0) << "Looking in aligneds." << endl;
|
|
|
|
if (not isNotAligned()) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
for ( AutoSegment* aligned : getAligneds(flags) ) {
|
|
|
|
cdebug_log(149,0) << "| Try in " << aligned << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
if (doglegGCell->getSide(getDirection()).intersect(aligned->getSpanU())) {
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
cdebug_log(149,0) << "Dogleg in " << aligned << endl;
|
2016-07-18 07:48:37 -05:00
|
|
|
rflags = aligned->_makeDogleg( doglegGCell, flags );
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cerr << Bug("Cannot make a dogleg in %s at %s"
|
|
|
|
,_getString().c_str(), getString(doglegGCell).c_str()) << endl;
|
|
|
|
}
|
|
|
|
cdebug_tabw(149,-1);
|
|
|
|
|
|
|
|
return rflags;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::_check () const
|
|
|
|
{
|
|
|
|
bool coherency = true;
|
|
|
|
|
|
|
|
coherency = checkNotInvalidated() and coherency;
|
|
|
|
coherency = checkPositions() and coherency;
|
|
|
|
coherency = checkConstraints() and coherency;
|
|
|
|
coherency = checkDepthSpin() and coherency;
|
|
|
|
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
if (isDrag() xor (getAutoSource()->canDrag() or getAutoTarget()->canDrag())) {
|
|
|
|
cerr << Error( "%s\n"
|
|
|
|
" Discrepency between segment \"drag\" state and it's contacts.\n"
|
|
|
|
" source:%s\n"
|
|
|
|
" target:%s"
|
|
|
|
, getString(this).c_str()
|
|
|
|
, getString(getAutoSource()).c_str()
|
|
|
|
, getString(getAutoTarget()).c_str()
|
|
|
|
) << endl;
|
|
|
|
coherency = false;
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
return coherency;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
string AutoSegment::_getStringFlags () const
|
|
|
|
{
|
|
|
|
string state;
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
state += isFixed () ?" F":" -";
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
state += isFixedAxis () ? "X": "-";
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
state += isUnsetAxis () ? "u": "-";
|
|
|
|
state += isStrap () ? "S": "-";
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
state += isUnbreakable () ? "U": "-";
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
state += isCanonical () ? "C": "-";
|
|
|
|
state += isGlobal () ? "G": "-";
|
|
|
|
state += isWeakGlobal () ? "g": "-";
|
|
|
|
state += isLongLocal () ? "L": "-";
|
|
|
|
state += isStrongTerminal () ? "T": "-";
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
state += isDrag () ? "D": "-";
|
In Anabatic/Katana, add support for VH gauges (real technos).
* Change: In Anabatic::AutoContactTerminal::getNativeConstraintBox(),
when the anchor is a RoutingPad (which must be always the case),
perform the true computation of it's position based on the
segment occurrence. It is a important change, previously the
area was in fact the "center line" of the connector while now
it is really an area (mandatory for "half-offgrid" terminals of
real technologies).
The change is not complete yet, the area should be shrinked
by the half size of a VIA, because the area applies to the center
coordinate of the VIA (to be done quickly).
* Bug: In Anabatic::AutoContactTurn::updateTopology(), when a dogleg
is created (restore connexity after a layer change) the layer of
the VIA, based on the segments it connects to must be re-computed
*after* the dogleg has been made.
* Change: In all files of Anabatic, when comparing two layers, no longer
use the Layer pointer itself, but the layer mask. This allow a
transparent management of both real and symbolic layers (which
do share the same mask). Real metal layers (not VIAs) will be
BasicLayer and symbolic metal layers will be RegularLayer.
* New: Anabatic::Configuration::selectRpComponent(), select the best
RoutingPad component for metal1 terminals. Look for the metal1
component with the biggest accessibility on-grid.
RoutingPad using other metals are left untoucheds.
* New: New function Anabatic::Vertex::getNeighbor(Edge*) to get the
neighbor Vertex through an Edge*. This method allows to write
clearer code as we no longer need to access the neighbor through
the underlying GCell.
Also add proxies for GCell methods in Vertex.
* Bug: In Anabatic::Dijkstra::_toSources(), in the ripup stage, when
a component with multiples vertexes is reached *and* two of it's
vertexes are reached *at the same time* (one from which we backtrack
and one still in the queue) extraneous edges may be created by
_materialize(). Case occurs on snx/c35b4, "abc_5360_n903_1".
To solve this, Dijkstra::_toSource() is modificated, the "from"
edges of the newly reacheds vertexes are reset to NULL, *except*
for the one we will be backtracking from. That is, the one given
in the source argument.
* Change: In Anabatic::NetBuilder class, put the various Hooks and
RoutingPad sorting functions as class ones.
* Bug: In AutoSegment::setLayer(), raise the SegInvalidatedFayer flag.
This unset flag was causing AutoContactTurn::updateTopology()
to not work as expected and making gaps, this was the cause of
the last remaining warnings about layer connexity.
2018-01-06 09:55:53 -06:00
|
|
|
state += isWeakTerminal1 () ? "W": "-";
|
|
|
|
state += isWeakTerminal2 () ? "w": "-";
|
|
|
|
state += isNotAligned () ? "A": "-";
|
|
|
|
state += isSlackened () ? "S": "-";
|
|
|
|
state += isReduced () ? "r": "-";
|
|
|
|
state += isInvalidated () ? "i": "-";
|
|
|
|
state += isInvalidatedLayer() ? "l": "-";
|
2016-07-18 07:48:37 -05:00
|
|
|
|
2016-10-05 16:43:07 -05:00
|
|
|
if (_flags & SegSourceTop) state += 't';
|
|
|
|
else if (_flags & SegSourceBottom) state += 'b';
|
2016-07-18 07:48:37 -05:00
|
|
|
else state += '-';
|
2016-10-05 16:43:07 -05:00
|
|
|
if (_flags & SegTargetTop) state += 't';
|
|
|
|
else if (_flags & SegTargetBottom) state += 'b';
|
2016-07-18 07:48:37 -05:00
|
|
|
else state += '-';
|
|
|
|
|
Improved handling of short nets (fully included in one GCell).
The short net mode degrade the routing in some cases. This will be
fixed in a next batch of commits.
* New: In Hurricane::NetRoutingProperty, added "ShortNet" flag for Nets
that are completly inside *one* GCell.
* Bug: In CRL::BlifParser::Model::staticInit(), when looking for the
output of zero and one cell, also skip the blockage net (as well as
automatic and supplies).
* New: In Anabatic::AutoSegment, added "ShortNet" flag to know if the
segment is part of a short net (fully included in *one* GCell).
Also add accessor/mutators for the _analogMode flag (was it ever
used before?).
* New: In Anabatic::NetBuilder::singleGCell(), if a RoutingPad is
vertically small, add a vertical segment to give it some slack.
* New: In Anabatic::Dijkstra::_materialize(), detect "short net" as
they have only one GCell in their source list...
* Bug: In AnabaticEngine::_loadGrbyNet(), reset the AutoSegment
"short net" and "analog mode" creation flags between two different
nets.
* New: In Katana::Configuration, added dedicated ripup for short net
segmnts.
* New: In Katana: partially implemented support for "short dogleg", that
is dogleg that are always kept in same metal because they connect
neighboring perpandicular tracks. Not finished neither activated
yet.
* New: In Katana::TreckElement and derived, export the the *short net*
support from AutoSegment.
* Bug: In Katana::RoutingEvent::_processRepair(), when a segment is
successfully inserted, re-process any perpandicular that is in
repair state, as it may have a new chance to be placed.
* New: In Katana::SegmentFsm::slackenTopology(), always reject short nets.
* Bug: In Katana::Track::check(), correctly handle wide segments instead
of issuing false check messages.
2018-07-16 04:16:51 -05:00
|
|
|
state += isShortNet () ? "s": "-";
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
return state;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
string AutoSegment::_getString () const
|
|
|
|
{
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
string sdistance = " rpD:" + getString(_rpDistance);
|
|
|
|
string s = base()->_getString();
|
|
|
|
s.insert ( s.size()-1, sdistance );
|
2016-07-18 07:48:37 -05:00
|
|
|
s.insert ( s.size()-1, _getStringFlags() );
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Record* AutoSegment::_getRecord () const
|
|
|
|
{
|
|
|
|
Record* record = base()->_getRecord ();
|
Basic support for FreePDK 45 completed.
* New: In Commons, inspector support for std::pair<T,U>.
* New: In Hurricane::Layer, ContactLayer & ViaLayer, support for non
square VIAs. The hole (cut) remains square, but the various metal
extensions can now be different in X and Y. The ::getEnclosure()
method now takes a flag EnclosureH / EnclosureV.
* New: In Hurricane::DbU, inspector support for:
std::pair<DbU::Unit,DbU::Unit>
std::array<DbU::Unit,3>
Must be defined here as DbU do not exists yet in Commons.h
* Bug: In Hurricane::Interval::getSize(), when the interval is "full span",
do not return the difference between min and max, but directly DbU::Max.
(the previous result was -1 !)
* New: In CRL Core Python/Technology.py, support for non square VIAs in
the configuration files. Applied to FreePDK 45.
* New: In CRL::RoutingGauge, added a "symbolic" flag to tell if a gauge
is for symbolic layout or not. Exported to Python.
* New: In Anabatic::AutoHorizontal::updatePosition(), differentiated
computation for soure or target taking account of the VIA extension
in the right segment metal (due to non-square VIAs).
* Change: In Anabatic::AutoHorizontal::_makeDogleg(), the dogleg is
UP for HV gauges and DOWN for VH.
* New: In Anabatic::AutoSegment::_initialize(), create a cache of the
various extension length for each layer (viaToTop, viaToBottom,
viaToSame).
New implementation of getExtensionCap() using the previous cached
extension table. See updatePositions().
New static functions to access the extension cache in the header:
getViaTotopCap() ...
* Change: In Anabatic::AutoSegment, in various update methods, updateOrient()
must always be called *before* updatePositions() as extensions are
dependant on source/target.
* New: In Anabatic::AutoSegment::getEndAxes() compute the position of the
first source and last target position (center/axes) on an *aligned*
set of segments.
* New: In Anabatic::AutoSegment, add a new state flag SegAxisFixed to
signal segments that can be put on only one track. Specific case
to VH gauge for a M1 vertical terminal with a M2 vertical segment.
The M2 is effectively bound to the M1 axis position.
* Bug: In Anabatic::NetBuilderVH::_do_xG_xM1_xM3(), in case of E/W global
and only one RoutingPad the connexion to the RoutingPad was duplicated.
It was valid, but totally stupid.
* Bug: In Anabatic::Session::_canonize(), for an aligned segment set,
intersect the user constraints from all segments instead of only
considering the canonical one.
Issue a warning about too tight constraints only for symbolic
gauges. It may be correct for the real ones.
* New: In Katata::DataNegociate::update(), more accurate computation
of the perpandicular free interval. Use segment extension cap
calculation. Create a special case for fixed axis segments allowing
them to find alternative free interval, try under source and under
target as they are likely to be draggable segments.
* Change: In Katana::Manipulator::relax(), use the extension cap value
to compute the axis of the perpandicular segemnts.
* Change: In Katana::Manipulator::moveUp(), now move up the whole set
of aligned segments instead of just the canonical one.
* Change: In Katana::NegociateWindow::loadRoutingPads(), more accurate
TrackMarkers insertions for fixed terminals.
* New: In Katana::RoutingEvent::Key::Compare::operator(), segments with
fixed axis are processed prior to any others.
* New: In Katana::RoutingEventLoop, store segment pointers instead of
ids to generate more accurate error messages.
* Change: In Katana::RoutingPlane::create(), perform local track
assignment only for HV gauges.
* Change: In Katana::SegmentFsm::_slackenLocal(), add a "dragMinimize"
step in the automaton. Mutliple states transitions can occurs in
a row if an action fails.
* New: In Katana::Session::_toIntervalAxis(), normalize interval
bounds so they are on track positions (by shrinking the interval).
* Bug: In Katana::TrackMarker CTOR, the weigh computation was wrong.
2018-02-17 13:27:38 -06:00
|
|
|
record->add ( getSlot ( "_extensionCaps" , &_extensionCaps ) );
|
2016-07-18 07:48:37 -05:00
|
|
|
record->add ( getSlot ( "_gcell" , _gcell ) );
|
|
|
|
record->add ( getSlot ( "_id" , &_id ) );
|
|
|
|
record->add ( getSlot ( "_flags" , &_flags ) );
|
|
|
|
record->add ( getSlot ( "_userContraints", &_userConstraints ) );
|
|
|
|
record->add ( getSlot ( "_sourcePosition", &_sourcePosition ) );
|
|
|
|
record->add ( getSlot ( "_targetPosition", &_targetPosition ) );
|
|
|
|
record->add ( getSlot ( "_parent" , _parent ) );
|
|
|
|
return record;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AutoSegment* AutoSegment::create ( AutoContact* source
|
|
|
|
, AutoContact* target
|
|
|
|
, Segment* hurricaneSegment
|
|
|
|
)
|
|
|
|
{
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
const Layer* horizontalLayer = Session::getDHorizontalLayer();
|
|
|
|
DbU::Unit horizontalWidth = Session::getDHorizontalWidth();
|
|
|
|
const Layer* verticalLayer = Session::getDVerticalLayer();
|
|
|
|
DbU::Unit verticalWidth = Session::getDVerticalWidth();
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
|
|
|
|
uint32_t wPitch = NetRoutingExtension::getWPitch( source->getNet() );
|
|
|
|
if (wPitch > 1) {
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
horizontalWidth += (wPitch-1) * Session::getDHorizontalPitch();
|
|
|
|
verticalWidth += (wPitch-1) * Session::getDVerticalPitch ();
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
}
|
|
|
|
cdebug_log(149,0) << "wPitch:" << wPitch << " hW:" << DbU::getValueString(horizontalWidth) << endl;
|
|
|
|
|
|
|
|
if (wPitch > 2) {
|
|
|
|
throw Error( "wPitch %d for \"%s\"", wPitch, getString(source->getNet()->getName()).c_str() );
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
bool reattachSource = false;
|
|
|
|
bool reattachTarget = false;
|
|
|
|
AutoSegment* segment;
|
|
|
|
Horizontal* horizontal = dynamic_cast<Horizontal*>( hurricaneSegment );
|
|
|
|
Vertical* vertical = dynamic_cast<Vertical* >( hurricaneSegment );
|
Validating channel routing mode (two metals) on SNX.
* New: In Hurricane::Entity, add an id counter limit and a memory size
limit. The two limits are checked only when a new Entity object is
created. This should help avoiding massive memory links.
* New: In CRL Core, add a "crlcore.groundName" and a "crlcore.powerName"
parameter to specify the name of the ground/power signals to be
created if they are missing in a Cell. For Alliance libraries it
would be "vss" & "vdd" (default values), but for real technologies,
it is often "gnd!" & "vdd!".
The Blif parser is modificated to make use of it.
* Bug: In AnabaticEngine::unify(), set the resulting unified segment in
the center of the GCells common side. Gcells under a segment are
found by using the edge that cover the segment axis. When we have
a "bend" GCell stack and the axis is wrong, they could be ommited.
This was causing deleted segments to be not removed from some
Edges, then core dump.
* Change: In Anabatic::AutoSegment::create(), smarter choosing of the
reference contact, select the fixed or terminal one instead of
always the source one.
* New: In Anabatic::Edge::isEnding(), new function to check if a
segment going through an Edge is starting/ending in either source
or target GCell of the edge (active only when running in channel
mode).
* New: In Anabatic::Edge::add(), a segment takes part in the occupancy
only if it is not ending in either source or target (channel mode
only). The occupancy due to terminal is pre-computed in Katana.
* New: In Anabatic::Edge::ripup(), in channel mode, never ripup a
segment which is ending in either source or target (we *have* to
access this edge to connect to the terminal).
* Bug: In Anabatic::GCell::hcut() and vcut(), force the update of
the Edge which is on the side that will get splitted by the cut.
It's capacity will be reduced to it must be updated.
* Change: In Anabatic::GCell::updateGContacts() add a flag to conditionnally
update horizontals or verticals only. We may require only a partial
update when resizing the GCell in only one direction.
This, again, related to the fact that we compute the GCells under
a segment thanks to it's axis position, so we need to be very careful
when modificating axis.
* Change: In Katana::Block::resizeChannels(), only update GContact vertical
position. Do not disturb X positions of segments.
* Bug: In Katana::GlobalRoute::DigitalDistance, in channel mode, some
Edges can have a zero capacity, but still be reachable if the net has
a terminal in either source or target. Look for this case and return
a distance of zero instead of "unreachable". This was causing the
global routing not to complete in channel mode.
For computing the edge distance, makes the vertical edges much more
long (10 times) than the horizontal ones as the vertical capacity is
very limited. Hard coded for now, should make it a parameter in the
future.
* Change: In KatanaEngine::annotateGlobalGraph(), decrease the capacity
of edges with reserveCapacity for each terminal inside a GCell.
Both north and south edges are decreased as we a terminal will
block both north and south edges.
As a counterpart, the Edge capacity is not decreased when the
global router connect to a terminal.
* Change: In Katana::RoutingEvent::revalidate(), when in repair stage,
do not expand the slack for horizontal segments in channel mode.
So they may not overlap the standard cell row.
* Bug: In Stratus documentation, do not use the french option in babel,
the documentation is in english!
* New: In Documentation, added Hurricane/Python tutorial, part for drawing
layout.
2018-03-16 10:20:04 -05:00
|
|
|
AutoContact* reference = NULL;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
cdebug_log(149,0) << "Source:" << source << endl;
|
|
|
|
cdebug_log(149,0) << "Target:" << target << endl;
|
|
|
|
|
Validating channel routing mode (two metals) on SNX.
* New: In Hurricane::Entity, add an id counter limit and a memory size
limit. The two limits are checked only when a new Entity object is
created. This should help avoiding massive memory links.
* New: In CRL Core, add a "crlcore.groundName" and a "crlcore.powerName"
parameter to specify the name of the ground/power signals to be
created if they are missing in a Cell. For Alliance libraries it
would be "vss" & "vdd" (default values), but for real technologies,
it is often "gnd!" & "vdd!".
The Blif parser is modificated to make use of it.
* Bug: In AnabaticEngine::unify(), set the resulting unified segment in
the center of the GCells common side. Gcells under a segment are
found by using the edge that cover the segment axis. When we have
a "bend" GCell stack and the axis is wrong, they could be ommited.
This was causing deleted segments to be not removed from some
Edges, then core dump.
* Change: In Anabatic::AutoSegment::create(), smarter choosing of the
reference contact, select the fixed or terminal one instead of
always the source one.
* New: In Anabatic::Edge::isEnding(), new function to check if a
segment going through an Edge is starting/ending in either source
or target GCell of the edge (active only when running in channel
mode).
* New: In Anabatic::Edge::add(), a segment takes part in the occupancy
only if it is not ending in either source or target (channel mode
only). The occupancy due to terminal is pre-computed in Katana.
* New: In Anabatic::Edge::ripup(), in channel mode, never ripup a
segment which is ending in either source or target (we *have* to
access this edge to connect to the terminal).
* Bug: In Anabatic::GCell::hcut() and vcut(), force the update of
the Edge which is on the side that will get splitted by the cut.
It's capacity will be reduced to it must be updated.
* Change: In Anabatic::GCell::updateGContacts() add a flag to conditionnally
update horizontals or verticals only. We may require only a partial
update when resizing the GCell in only one direction.
This, again, related to the fact that we compute the GCells under
a segment thanks to it's axis position, so we need to be very careful
when modificating axis.
* Change: In Katana::Block::resizeChannels(), only update GContact vertical
position. Do not disturb X positions of segments.
* Bug: In Katana::GlobalRoute::DigitalDistance, in channel mode, some
Edges can have a zero capacity, but still be reachable if the net has
a terminal in either source or target. Look for this case and return
a distance of zero instead of "unreachable". This was causing the
global routing not to complete in channel mode.
For computing the edge distance, makes the vertical edges much more
long (10 times) than the horizontal ones as the vertical capacity is
very limited. Hard coded for now, should make it a parameter in the
future.
* Change: In KatanaEngine::annotateGlobalGraph(), decrease the capacity
of edges with reserveCapacity for each terminal inside a GCell.
Both north and south edges are decreased as we a terminal will
block both north and south edges.
As a counterpart, the Edge capacity is not decreased when the
global router connect to a terminal.
* Change: In Katana::RoutingEvent::revalidate(), when in repair stage,
do not expand the slack for horizontal segments in channel mode.
So they may not overlap the standard cell row.
* Bug: In Stratus documentation, do not use the french option in babel,
the documentation is in english!
* New: In Documentation, added Hurricane/Python tutorial, part for drawing
layout.
2018-03-16 10:20:04 -05:00
|
|
|
if (source->isFixed() and target->isFixed()) {
|
|
|
|
if ( (horizontal) and (source->getY() != target->getY()))
|
|
|
|
cerr << Warning( "Straight AutoHorizontal connecting misaligned contacts:\n"
|
|
|
|
" %s\n"
|
|
|
|
" %s"
|
|
|
|
, getString(source).c_str()
|
|
|
|
, getString(target).c_str()
|
|
|
|
) << endl;
|
|
|
|
if ( (vertical) and (source->getX() != target->getX()))
|
|
|
|
cerr << Warning( "Straight AutoVertical connecting misaligned contacts:\n"
|
|
|
|
" %s\n"
|
|
|
|
" %s"
|
|
|
|
, getString(source).c_str()
|
|
|
|
, getString(target).c_str()
|
|
|
|
) << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (target->isFixed() or target->isTerminal()) reference = target;
|
|
|
|
if (source->isFixed() or source->isTerminal()) reference = source;
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
Contact* contact = dynamic_cast<Contact*>( hurricaneSegment->getSource() );
|
|
|
|
AutoContact* autoContact = Session::lookup( contact );
|
|
|
|
if (contact == NULL) {
|
|
|
|
throw Error( badSegmentSource, getString(hurricaneSegment).c_str() );
|
|
|
|
if ( autoContact and (autoContact != source) )
|
|
|
|
throw Error( mismatchSegmentSource
|
|
|
|
, getString(hurricaneSegment).c_str()
|
|
|
|
, getString(contact).c_str() );
|
|
|
|
} else {
|
|
|
|
if (autoContact != source) reattachSource = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
contact = dynamic_cast<Contact*>( hurricaneSegment->getTarget() );
|
|
|
|
autoContact = Session::lookup( contact );
|
|
|
|
if (contact == NULL) {
|
|
|
|
throw Error( badSegmentTarget, getString(hurricaneSegment).c_str() );
|
|
|
|
if ( autoContact and (autoContact != target) )
|
|
|
|
throw Error ( mismatchSegmentTarget
|
|
|
|
, getString(hurricaneSegment).c_str()
|
|
|
|
, getString(contact).c_str() );
|
|
|
|
} else {
|
|
|
|
if (autoContact != source) reattachTarget = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (reattachSource) {
|
|
|
|
Hook* hook = hurricaneSegment->getSourceHook();
|
|
|
|
hook->detach ();
|
|
|
|
hook->attach ( source->getBodyHook() );
|
|
|
|
}
|
|
|
|
|
|
|
|
if (reattachTarget) {
|
|
|
|
Hook* hook = hurricaneSegment->getTargetHook();
|
|
|
|
hook->detach ();
|
|
|
|
hook->attach ( target->getBodyHook() );
|
|
|
|
}
|
|
|
|
|
|
|
|
if (horizontal) {
|
|
|
|
if (horizontal->getLayer() != horizontalLayer) {
|
|
|
|
if (Session::getAnabatic()->getConfiguration()->isGMetal(horizontal->getLayer())) {
|
|
|
|
horizontal->setLayer( horizontalLayer );
|
|
|
|
horizontal->setWidth( horizontalWidth );
|
|
|
|
} else {
|
|
|
|
if (horizontal->getWidth() != horizontalWidth) {
|
|
|
|
cerr << Warning("Segment %s has non-default width %s."
|
|
|
|
,getString(horizontal).c_str()
|
|
|
|
,DbU::getValueString(horizontal->getWidth()).c_str()) << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Validating channel routing mode (two metals) on SNX.
* New: In Hurricane::Entity, add an id counter limit and a memory size
limit. The two limits are checked only when a new Entity object is
created. This should help avoiding massive memory links.
* New: In CRL Core, add a "crlcore.groundName" and a "crlcore.powerName"
parameter to specify the name of the ground/power signals to be
created if they are missing in a Cell. For Alliance libraries it
would be "vss" & "vdd" (default values), but for real technologies,
it is often "gnd!" & "vdd!".
The Blif parser is modificated to make use of it.
* Bug: In AnabaticEngine::unify(), set the resulting unified segment in
the center of the GCells common side. Gcells under a segment are
found by using the edge that cover the segment axis. When we have
a "bend" GCell stack and the axis is wrong, they could be ommited.
This was causing deleted segments to be not removed from some
Edges, then core dump.
* Change: In Anabatic::AutoSegment::create(), smarter choosing of the
reference contact, select the fixed or terminal one instead of
always the source one.
* New: In Anabatic::Edge::isEnding(), new function to check if a
segment going through an Edge is starting/ending in either source
or target GCell of the edge (active only when running in channel
mode).
* New: In Anabatic::Edge::add(), a segment takes part in the occupancy
only if it is not ending in either source or target (channel mode
only). The occupancy due to terminal is pre-computed in Katana.
* New: In Anabatic::Edge::ripup(), in channel mode, never ripup a
segment which is ending in either source or target (we *have* to
access this edge to connect to the terminal).
* Bug: In Anabatic::GCell::hcut() and vcut(), force the update of
the Edge which is on the side that will get splitted by the cut.
It's capacity will be reduced to it must be updated.
* Change: In Anabatic::GCell::updateGContacts() add a flag to conditionnally
update horizontals or verticals only. We may require only a partial
update when resizing the GCell in only one direction.
This, again, related to the fact that we compute the GCells under
a segment thanks to it's axis position, so we need to be very careful
when modificating axis.
* Change: In Katana::Block::resizeChannels(), only update GContact vertical
position. Do not disturb X positions of segments.
* Bug: In Katana::GlobalRoute::DigitalDistance, in channel mode, some
Edges can have a zero capacity, but still be reachable if the net has
a terminal in either source or target. Look for this case and return
a distance of zero instead of "unreachable". This was causing the
global routing not to complete in channel mode.
For computing the edge distance, makes the vertical edges much more
long (10 times) than the horizontal ones as the vertical capacity is
very limited. Hard coded for now, should make it a parameter in the
future.
* Change: In KatanaEngine::annotateGlobalGraph(), decrease the capacity
of edges with reserveCapacity for each terminal inside a GCell.
Both north and south edges are decreased as we a terminal will
block both north and south edges.
As a counterpart, the Edge capacity is not decreased when the
global router connect to a terminal.
* Change: In Katana::RoutingEvent::revalidate(), when in repair stage,
do not expand the slack for horizontal segments in channel mode.
So they may not overlap the standard cell row.
* Bug: In Stratus documentation, do not use the french option in babel,
the documentation is in english!
* New: In Documentation, added Hurricane/Python tutorial, part for drawing
layout.
2018-03-16 10:20:04 -05:00
|
|
|
if (reference) horizontal->setY( reference->getY() );
|
2016-07-18 07:48:37 -05:00
|
|
|
segment = new AutoHorizontal ( horizontal );
|
|
|
|
segment->_postCreate();
|
|
|
|
} else if (vertical) {
|
|
|
|
if (vertical->getLayer() != verticalLayer) {
|
|
|
|
if (Session::getAnabatic()->getConfiguration()->isGMetal(vertical->getLayer()) )
|
|
|
|
vertical->setLayer( verticalLayer );
|
|
|
|
vertical->setWidth( verticalWidth );
|
|
|
|
} else {
|
|
|
|
if (vertical->getWidth() != verticalWidth) {
|
|
|
|
cerr << Warning("Segment %s has non-default width %s."
|
|
|
|
,getString(vertical).c_str()
|
|
|
|
,DbU::getValueString(vertical->getWidth()).c_str()) << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Validating channel routing mode (two metals) on SNX.
* New: In Hurricane::Entity, add an id counter limit and a memory size
limit. The two limits are checked only when a new Entity object is
created. This should help avoiding massive memory links.
* New: In CRL Core, add a "crlcore.groundName" and a "crlcore.powerName"
parameter to specify the name of the ground/power signals to be
created if they are missing in a Cell. For Alliance libraries it
would be "vss" & "vdd" (default values), but for real technologies,
it is often "gnd!" & "vdd!".
The Blif parser is modificated to make use of it.
* Bug: In AnabaticEngine::unify(), set the resulting unified segment in
the center of the GCells common side. Gcells under a segment are
found by using the edge that cover the segment axis. When we have
a "bend" GCell stack and the axis is wrong, they could be ommited.
This was causing deleted segments to be not removed from some
Edges, then core dump.
* Change: In Anabatic::AutoSegment::create(), smarter choosing of the
reference contact, select the fixed or terminal one instead of
always the source one.
* New: In Anabatic::Edge::isEnding(), new function to check if a
segment going through an Edge is starting/ending in either source
or target GCell of the edge (active only when running in channel
mode).
* New: In Anabatic::Edge::add(), a segment takes part in the occupancy
only if it is not ending in either source or target (channel mode
only). The occupancy due to terminal is pre-computed in Katana.
* New: In Anabatic::Edge::ripup(), in channel mode, never ripup a
segment which is ending in either source or target (we *have* to
access this edge to connect to the terminal).
* Bug: In Anabatic::GCell::hcut() and vcut(), force the update of
the Edge which is on the side that will get splitted by the cut.
It's capacity will be reduced to it must be updated.
* Change: In Anabatic::GCell::updateGContacts() add a flag to conditionnally
update horizontals or verticals only. We may require only a partial
update when resizing the GCell in only one direction.
This, again, related to the fact that we compute the GCells under
a segment thanks to it's axis position, so we need to be very careful
when modificating axis.
* Change: In Katana::Block::resizeChannels(), only update GContact vertical
position. Do not disturb X positions of segments.
* Bug: In Katana::GlobalRoute::DigitalDistance, in channel mode, some
Edges can have a zero capacity, but still be reachable if the net has
a terminal in either source or target. Look for this case and return
a distance of zero instead of "unreachable". This was causing the
global routing not to complete in channel mode.
For computing the edge distance, makes the vertical edges much more
long (10 times) than the horizontal ones as the vertical capacity is
very limited. Hard coded for now, should make it a parameter in the
future.
* Change: In KatanaEngine::annotateGlobalGraph(), decrease the capacity
of edges with reserveCapacity for each terminal inside a GCell.
Both north and south edges are decreased as we a terminal will
block both north and south edges.
As a counterpart, the Edge capacity is not decreased when the
global router connect to a terminal.
* Change: In Katana::RoutingEvent::revalidate(), when in repair stage,
do not expand the slack for horizontal segments in channel mode.
So they may not overlap the standard cell row.
* Bug: In Stratus documentation, do not use the french option in babel,
the documentation is in english!
* New: In Documentation, added Hurricane/Python tutorial, part for drawing
layout.
2018-03-16 10:20:04 -05:00
|
|
|
if (reference) vertical->setX( reference->getX() );
|
2016-07-18 07:48:37 -05:00
|
|
|
segment = new AutoVertical ( vertical );
|
|
|
|
segment->_postCreate();
|
|
|
|
} else {
|
|
|
|
throw Error( badSegment, getString(source).c_str(), getString(target).c_str() );
|
|
|
|
}
|
|
|
|
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
if (wPitch > 1) segment->setFlags( SegWide );
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
if (source->canDrag() or target->canDrag()) segment->setFlags( SegDrag );
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
return segment;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegment* AutoSegment::create ( AutoContact* source
|
|
|
|
, AutoContact* target
|
|
|
|
, Flags dir
|
|
|
|
, size_t depth
|
2016-07-18 07:48:37 -05:00
|
|
|
)
|
|
|
|
{
|
|
|
|
// Hardcoded: make the assumption that,
|
|
|
|
// depth=0 is terminal reserved | METAL1
|
|
|
|
// depth=1 is horizontal | METAL2
|
|
|
|
// depth=2 is vertical | METAL3
|
|
|
|
// Should be based on gauge informations.
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
const Layer* hLayer = Session::getDHorizontalLayer();
|
|
|
|
DbU::Unit hWidth = Session::getDHorizontalWidth();
|
|
|
|
const Layer* vLayer = Session::getDVerticalLayer();
|
|
|
|
DbU::Unit vWidth = Session::getDVerticalWidth();
|
2016-07-18 07:48:37 -05:00
|
|
|
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (dir & Flags::UseNonPref) {
|
|
|
|
if (dir & Flags::Vertical) {
|
|
|
|
cdebug_log(149,0) << "Make vertical in non-preferred direction." << endl;
|
|
|
|
vLayer = hLayer;
|
|
|
|
vWidth = hWidth;
|
|
|
|
}
|
|
|
|
if (dir & Flags::Horizontal) {
|
|
|
|
cdebug_log(149,0) << "Make horizontal in non-preferred direction." << endl;
|
|
|
|
hLayer = vLayer;
|
|
|
|
hWidth = vWidth;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
const Layer* horizontalLayer = hLayer;
|
|
|
|
DbU::Unit horizontalWidth = hWidth;
|
|
|
|
const Layer* verticalLayer = vLayer;
|
|
|
|
DbU::Unit verticalWidth = vWidth;
|
|
|
|
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
uint32_t wPitch = NetRoutingExtension::getWPitch( source->getNet() );
|
|
|
|
if (wPitch > 1) {
|
Added support for 2-Metal block routing in Anabatic & Katana.
* New: In AnabaticEngine::invalidateRoutingPads() this method is a temporary
workaround for a Hurricane problems. When an instance is moved, the
RoutingPads that use it must be moved accordingly, but they are not
invalidated so they stay in the wrong QuadTree.
New method ::_resizeMatrix() to be called when the associated Cell
is resized.
* Bug: In AutoHorizontal::getConstraints() and AutoVertical::getConstraints(),
the *target* constraints where never merged.
* Change: In AutoHorizontal::getCells() and AutoVertical::getGCells(),
now return a boolean to tell if it was ok (must not encounter a NULL
GCell while progessing from source to target).
* New: In Anabatic::Configuration and Anabatic:Session, create new methods:
- getDHorizontalLayer()
- getDhorizontalDepth()
- getDHorizontalWidth()
- getDHorizontalPitch()
And so on for Vertical and Contact.
They supply depth-independant informations about the H/V layers to
build the initial detailed routing.
The AutoSegment::create() methods have been modificated accordingly.
* New: In Anabatic::GCell, add two new types "StdCellRow" and "ChannelRow"
for implementing 2-Metal blocks.
Rename the GCell::setXY() method in GCell::setSouthWestCorner(),
move the contents of GCell::updateContactsPosition() into it and
suppress it.
WARNING: In case of a GCell shrink this may cause problems. But for
now we only expand...
New method GCell::getNetCount() to count the number of Net going
though the GCell.
* Change: In Anabatic::Edge, add specific support for capacity of 2-Metal
routing channels.
* Change: In Anabatic::Dijsktra various methods, replace the "gcell->isMatrix()"
calls by "not gcell->isAnalog()". Add more check so that the methods
pertaining to the analog routing (GRData) are not called in digital
mode.
* New: In Anabatic::Dijkstra::materialize(), add support for 2-Metal specific
cases. That is, always break in case of vertical pass-through or
U-turn. The global routing must always be broken in H-Channel.
* New: In Anabatic::GCell & Anabatic::Edge, make use of the Session mechanism
to ensure the revalidation. The "::revalidate()" method is then moved
as "::materialize()" (overload of Go) and "::_invalidate()" becomes
"::invalidate()"
* Change: In LoadGlobalRouting, cosmetic rename of SortHkByX in SortHookByX.
* New: In GCellTopology, added support for building 2-Metal topologies.
* ForkStack is now an object attribute as many methods do need it.
* To push segments/hook on the stack, a new method "push()" is
available. Perform NULL and fromHook checking. Can also setup
_southWestContact or _northEastContact if it is the "from" edge.
* N/S/E/W edges are now vector as in digital channel mode there
can be more than one.
* Added build topological build methods:
- doRp_2m_Access() RoutingPad stem access.
- _do_2m_1G_1M1() North or south access.
- _do_2m_2G_1M1() North AND south access.
- _do_2m_xG() H-Channel routing.
* New: In Anabatic::Matrix, new ::resize() function, as Cell can be resizeds.
* New: In Anabatic::Vertex, new static method ::getValueString() for a
friendly text rendering.
* New: In Katana::DigitalDistance, support for channel routing.
* Change: In KatanaEngine::digitalSetup() and KatanaEngine::runGlobalrouter(),
for channel routing, calls to setupPowerRails() and
protectRoutingPads() must be called after the core block has
been fully dimensionned.
::runGlobalrouter() contains the code tasked with the grid creation
and channel sizing.
* New: In KatanaEngine: Added support for core block, for 2-Metal routing.
May be expanded for over-the-cell routing in the future.
Added methods :
- isDigitalMode()
- isAnalogMode()
- isMixedMode()
- isChannelMode()
- getBlock() / addBlock()
- setupChannelMode()
- createChannel()
* New: In Katana, new class Block to manage core blocks and perform
channel routing.
* New: In Katana::Session, new convenience method "isOpen()".
2017-08-18 16:56:23 -05:00
|
|
|
horizontalWidth = (wPitch-1) * Session::getDHorizontalPitch() + hWidth;
|
|
|
|
verticalWidth = (wPitch-1) * Session::getDVerticalPitch () + vWidth;
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
}
|
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
if (depth != RoutingGauge::nlayerdepth) {
|
|
|
|
horizontalLayer = verticalLayer = Session::getRoutingLayer( depth );
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
|
|
|
|
if (wPitch > 1) {
|
|
|
|
horizontalWidth = verticalWidth = (wPitch-1) * Session::getPitch (depth)
|
|
|
|
+ Session::getWireWidth(depth);
|
|
|
|
} else {
|
|
|
|
horizontalWidth = verticalWidth = Session::getWireWidth( depth );
|
|
|
|
}
|
2016-07-18 07:48:37 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
AutoSegment* segment;
|
|
|
|
AutoContact* reference = source;
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "Source:" << source << endl;
|
|
|
|
cdebug_log(149,0) << "Target:" << target << endl;
|
|
|
|
|
|
|
|
if (target->isFixed()) {
|
|
|
|
if (source->isFixed()) {
|
|
|
|
if ( (dir == Flags::Horizontal) and (source->getY() != target->getY()))
|
|
|
|
cerr << Warning( "Straight AutoHorizontal connecting misaligned contacts:\n"
|
|
|
|
" %s\n"
|
|
|
|
" %s"
|
|
|
|
, getString(source).c_str()
|
|
|
|
, getString(target).c_str()
|
|
|
|
) << endl;
|
|
|
|
if ( (dir == Flags::Vertical) and (source->getX() != target->getX()))
|
|
|
|
cerr << Warning( "Straight AutoVertical connecting misaligned contacts:\n"
|
|
|
|
" %s\n"
|
|
|
|
" %s"
|
|
|
|
, getString(source).c_str()
|
|
|
|
, getString(target).c_str()
|
|
|
|
) << endl;
|
|
|
|
} else
|
|
|
|
reference = target;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dir & Flags::Horizontal) {
|
|
|
|
segment = create( source
|
|
|
|
, target
|
|
|
|
, Horizontal::create( source->base()
|
|
|
|
, target->base()
|
|
|
|
, horizontalLayer
|
|
|
|
, reference->getY()
|
|
|
|
, horizontalWidth ) );
|
|
|
|
} else if (dir & Flags::Vertical) {
|
|
|
|
segment = create( source
|
|
|
|
, target
|
|
|
|
, Vertical::create( source->base()
|
|
|
|
, target->base()
|
|
|
|
, verticalLayer
|
|
|
|
, reference->getX()
|
|
|
|
, verticalWidth
|
|
|
|
) );
|
|
|
|
} else
|
|
|
|
throw Error( badSegment, getString(source).c_str(), getString(target).c_str() );
|
|
|
|
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
if (wPitch > 1) segment->setFlags( SegWide );
|
Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
routing configuration that was not efficiently handled did appear.
While the preferred routing direction for metal1 is officially
horizontal, due to the way the standard cell must be designed,
their metal1 terminals are still verticals (or punctuals).
Thus, when connecting to them, we face the case where the metal1
terminal (RoutingPad) is vertical *and* the metal2 wire is also
vertical. With that setup, the position of the AutoContactTerminal
via12 cannot be deduced, it may range all the way over the
metal1 RoutingPad. What may define it's position is the metal3 the
metal2 finally connects to. That, is, when we have one horizontal
(the metal3) and one vertical (the metal1 RoutingPad).
The intermediate wire of metal2 can be kept to a minimum size
by "dragging" the via12 close to the via23 when the metal3 wire is
moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
RoutingPads in metal1 is managed first in PreProcess by restricting
the span of the connecteds metal3 and in _makeDogleg also by restricting
the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
Automatically check if the connecting segment is in the same
direction as the RoutingPad, if so, sets the "SegDrag" flag.
The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
The drag state can be known with the "::isDrag()" predicate.
In "::_makeDogleg()", when making a dogleg on a dragable segment
pass the drag state correctly and restrict the perpandicular span
of the perpandicular to the RoutingPad (though segment user constraints).
If we make a dogleg on the metal2 is it likely than we cannot go
straigth out vertically from the RoutingPad, so the new perpandicular
*is* restricted to the RoutingPad span.
Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
hole where to minimize a draggable segment. We finally did not use it,
but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
function to check for vertically aligned metal1 RoutingPads, in that
case setup user constraints on the metal3 segments so they cannot
completly cover the other RoutingPad with metal2.
We also keep a "metal2protect()" function that create a fixed segment
to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
This allows us to request the creation of a locking (fixed segment)
over a draggable segment. Not used for now.
Lock events are processeds before all others as they create new
TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
method to find the nearest free interval in a Track after/before a
position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
constraints *only* if it's not an empty interval (as we use min/max
functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
must be inverted. Seems it never worked, but we never used it until
now...
2018-01-25 04:58:04 -06:00
|
|
|
if (source->canDrag() or target->canDrag()) segment->setFlags( SegDrag );
|
Upgrade of Katana detailed router to support Arlet 6502.
* Change: In Hurricane::SharedName, replace the incremental Id by a hash key.
This is to ensure better deterministic properties. Between use cases,
additional strings may have to be allocated, shitfing the ids. Even if
hash can be duplicated, we should be able to ensure that the absolute
order in map table should be preserved. Supplemental strings are inserted
in a way that keep the previous order.
* Change: In CRL/etc/symbolic/cmos/kite.conf, add "katabatic.routingGauge"
default parameter value ("sxlib").
* Change: In CRL/etc/common/technology.conf, define minimal spacing for
symbolic layers too (added for METAL4 only for now).
* Change: In CRL::Histogram, extend support to dynamically sized histograms.
Add a text pretty print with table and pseudo-curve.
* Change: In Cumulus/plugins/ClockTreePlugin, create blockage under the
block corona corners so the global router do not draw wire under them.
This was creating deadlock for the detailed router.
When the abutment has to be computed, directly use Etesian to do it
instead of duplicating the computation in the Python plugin.
* New: In Etesian, as Coloquinte seems reluctant to evenly spread the
standard cells, we trick it by making them bigger during the placement
stage. Furthermore, we do not not uniformely increase the size of the
cells but create a "bloating profile" based on cell size, cell name
or it's density of terminals. Currently only two profiles are defined,
"disabled" which does nothing and "nsxlib" targeted on 4 metal layer
technologies (aka AMS 350nm, c35b4).
* Bug: In Knik::MatrixVertex, load the default routing gauge using the
configuration parameter "katabatic.routingGauge" as the default one
may not be the first registered one.
* New: In AnabaticEngine::setupNetDatas(), build a dynamic historgram of
the nets terminal numbers.
* Bug: In Anabatic::AutoContact::Invalidate(), always invalidate the
contact cache when topology is invalidated. In case of multiple
invalidations, if the first did not invalidate the cache, later one
that may need it where not allowed to do so. The end result was correct
nonetheless, but it did generate annoying error messages.
* Bug: In Anabatic::AutoContactTurn::updateTopology(), bad computation
of the contact's depth when delta == 2.
* Bug: In Anabatic::Gcell::getCapacity(), was always returning the west
edge capacity, even for the westermost GCell, should be the east
edge in that case.
* New: In Anabatic::AutoSegment, introduce a new measure "distance to
terminal". This is the minimal number of segments separating the
current one from the nearest RoutingPad. This replace the previous
"strong terminal" and "weak terminal" flags.
This distance is used by Katana to sort the events, we route the
segments *from* the RoutingPads *outward*. The idea being that if we
cannot event connect to the RoutingPad, there is no points continuing
as thoses segments are the more constraineds. This gives an order close
to the simple ascending metals but with better results.
* New: In Anabatic::AutoSegment, introduce a new flag "Unbreakable", disable
dogleg making on those segments. mainly intended for local segments
directly connecteds to RoutingPads (distance == 0).
* New: In Anabatic::AutoSegment, more aggressive reducing of segments.
Now the only case where a segment cannot be reduced is when it is
one horizontal branch in a HTee or a vertical on a VTee. Check if,
when not accounted the source & target VIAs are still connex, if so,
allow reducing.
* New: In Anabatic::AutoContact, new state flags CntVDogleg & CntHDogleg
mainly to prevent making doglegs twice on a turn contact. This is to
limit over-fragmentation. If one dogleg doesn't solve the problem,
making a second one will make things worse only...
* Bug: In Anabatic::Configuration::selectRpcomponent(), we were choosing
the component with the *smallest* span instead of the *bigger* one.
* New: In Anabatic::GCell, introduce a new flag "GoStraight" to tell that
no turn go be made inside those GCells. Mainly used underneath a block
corona.
* New: In AnabaticEngine::layerAssign(), new GCellRps & RpsInRow to manage
GCells with too many terminals. Slacken at least one RoutingPad access
when there is more than 8 RoutingPad in the GCell (slacken or change
a vertical METAL2 (non-preferred) into a METAL3).
* Change: In Anabatic::NetBuilderHV, allow the use of terminal connection
in non-preferred direction. That is, vertical METAL2 directly connected
to the RoutingPad (then a horizontal METAL2). This alllows for short
dogleg without clutering the METAL3 layer (critical for AMS c35b4).
Done in NetBuilderHV::doRp_Access(), with a new UseNonPref flag.
Perform some other tweaking on METAL1 access topologies, to also
minimize METAL3 use.
* New: In AnabaticEngine::computeNetConstraints(), also compute the
distance to RoutingPad for segments. Set the Unbreakable flag, based
on the distance and segment length (local, short global or long global).
New local function "propagateDistanceFromRp()".
* Change: In AnabaticEngine.h, the sorting class for NetData, SparsityOrder,
is modificated so net with a degree superior to 10 are sorted first,
whatever their sparsity. This is to work in tandem with GlobalRouting.
* New: In Katana::TrackSegmentNonPref, introduce a class to manage segment
in non-preferred routing direction. Mostly intended for small METAL2
vertical directly connected to RoutingPad. Modifications to manage
this new variant all through Katana.
* Change: In Katana::GlobalRoute, DigitalDistance honor the GoStraight flag
of the GCell. Do not make bend inside thoses GCells.
* Change: In KatanaEngine::runGlobalRouter(), high degree nets (>= 10) are
routed first and whitout the global routing estimation. There should be
few of them so they wont create saturations and we want them as straight
as possible. Detour are for long be-points.
Set the saerch halo to one GCell in the initial routing stage (before
ripup).
* Bug: In KatanaEngine & NegociateWindow, call _computeCagedconstraints()
inside NegociateWindow::run(), as segments are inserted into tracks
only at that point so we cannot make the computation earlier.
* Change: In Katana::Manipulator::repackPerpandiculars(), add a flag to
select whether to replace the perpandiculars *after* or *before* the
current segment.
* Change: In Katana::NegociateWindow::NegociateOverlapCost(), when the
segment is fully enclosed inside a global, the longest overlap cost
is set to the shortest global hoverhang (before or after).
When the cost is for a global, set an infinite cost if the overlapping
segment has a RP distance less or equal to 1 (this is an access segment).
* Bug: In Katana::PowerRailsPlane::Rail::doLayout(), correct computation of
the segments extension cap.
* New: In Katana::QueryPowerRails::addToPowerRail(), add support for Pad.
* Change: In Katana/PreProcess::protectCagedTerminals(), apply the contraints
to any turn connected to the first segment of the RoutingPad so the
perpandicular constraints got propagated to the perpandicular segment...
* Change: In RoutingEvent, cache the "distance to RP" value.
* Change: In RoutingEvent::Key::compare(), sort *first* on distance to
RoutingPad, then layer depth. If both distance to RoutingPad is null,
then sort on segment length.
* Change: In RoutingEvent::_processRepair(), try a repack perpandicular with
perpandiculars first (then with perpandicular last, then give up).
* Change: In SegmentFsm::bindToTrack() and moveToTrack(), set an axis hint
when creating the insertion event.
* Change: In SegmentFsm::_slackenStrap(), add a step through slacken between
minimize and maximum slack (wihch directly end up in unimplemented).
* Change: In Session::_addInsertEvent(), add an axis parameter needed when
the axis of the segment is not the one of the track (case of wide
segments or non-preferred direction).
* Bug: In Track::_preDestroy(), bad management of the TrackElement reference
count. Destroy the segment only when reaching zero...
* Bug: In Track::expandFreeIneterval(), forgotten to manage case when there
is a set of overlaping segments at the "end" of the track, the
EndIsTrackMax was not set.
* Change: In TrackCost::Compare, increase the cost when an overlaping
segment is at it's ripup limit. We should try *not* to rip it up if
we can. Add a dedicated flag "AtRipupLimit".
* Change: In TrackElement, add proxies for isUnbreakable(), new function
updateTrackSpan().
* New: In TrackFixedSegment CTOR, when a supply wire of METAL2 or above is
found, make the underlying GCells "GoStraight".
* New: In TrackElement::canDogleg(GCell*), check for already done perpandicular
dogleg on source/target (reject if so).
2019-07-28 16:20:00 -05:00
|
|
|
if (dir & Flags::UseNonPref) segment->setFlags( SegNonPref );
|
Katana manage wide wires, and they can also be symmetric.
* New: In Anabatic::AutoContact and the derived classes, manages wide
wires. The contact self dimension itself according to the segments
it is connected to. Special case for the AutoContactTerminal which
also read the size of the component it is anchored upon.
New refresh method "updateSize()" and flag CntInvalidatedWidth.
to compute the size.
In AutoContactTerminal, compute the constraint box according to
the width of the segment.
* New: In Anabatic::AutoSegment, flags are now implemented as "static const"
attributes of the class. The flags are stored into a uint64_t as
they are more than 32.
Added new flag "SegWide" and associated predicates.
* Change: In GCellTopology::_doHChannel() and GCellTopology::_doVChannel(),
uses the simpler overload of AutoSegment::create() in order to detect
the wire width automatically.
* New: In Katana::Manipulator, split insertToTrack() and forceToTrack()
into a one-track method and a segment level method that iterate over
the track span of the segment.
* New: In Katana::SegmentFsm, for each cost in the table, now allow access
to a specific track. So the base functions have now two parameters:
"icost" and "itrack" (has a cost can have multiple tracks in the case
of wide segments).
* Change: In Katana::TrackElement, remove the index of the element inside
it's track, as for a wide segment it will not be meaningful for the
non-base track. This means that we have to use the Track::find()
method each time instead.
Remove the wide flag, as it is a duplicate of the one in AutoSegment.
Added a getTrackCount() method to tell the number of track the
segment is inserted into. Needed in the Track destroy step to delete
a segment only when the last track that refers it is destroyed.
Added getSymmetricAxis() to correct the computation of the symmetric
base track in case of wide segment as the base track is not centered
but the the leftmost one.
* Change: In Track::insert() insert wide segments in their whole track span.
* Change: In TrackCost, create an array of costs according to the segment
track span.
* Change: In TrackSegment::create(), now activate the factory and create
wide segments.
* Bug: In Katana::AutoSegments_Perpandicular, correct the debug indentation
problem (ever shifting to the right).
2017-07-28 08:30:22 -05:00
|
|
|
|
2016-07-18 07:48:37 -05:00
|
|
|
return segment;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::destroy ()
|
|
|
|
{
|
|
|
|
_preDestroy ();
|
|
|
|
delete this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
AutoSegment* AutoSegment::getGlobalThroughDogleg ( AutoSegment* dogleg, AutoContact* from )
|
|
|
|
{
|
|
|
|
AutoContact* source = dogleg->getAutoSource();
|
|
|
|
AutoContact* target = dogleg->getAutoTarget();
|
|
|
|
if (not source->isTurn() or not target->isTurn()) return NULL;
|
|
|
|
|
|
|
|
AutoSegment* fromSegment = (source == from) ? source->getPerpandicular(dogleg) : target->getPerpandicular(dogleg);
|
|
|
|
AutoSegment* toSegment = (source != from) ? source->getPerpandicular(dogleg) : target->getPerpandicular(dogleg);
|
|
|
|
|
|
|
|
if (not toSegment->isGlobal() or (toSegment->getLayer() != fromSegment->getLayer())) return NULL;
|
|
|
|
|
|
|
|
Interval fromConstraints;
|
|
|
|
Interval toConstraints;
|
|
|
|
fromSegment->getConstraints( fromConstraints );
|
|
|
|
toSegment ->getConstraints( toConstraints );
|
|
|
|
if (not fromConstraints.intersect(toConstraints)) return NULL;
|
|
|
|
|
|
|
|
return toSegment;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool AutoSegment::isTopologicalBound ( AutoSegment* seed, Flags flags )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
|
|
|
cdebug_log(145,1) << "isTopologicalBound() - " << seed << endl;
|
|
|
|
|
|
|
|
set<AutoContact*> exploreds;
|
|
|
|
vector<AutoContact*> stack;
|
|
|
|
DbU::Unit axis;
|
|
|
|
|
|
|
|
if (flags & Flags::Superior) axis = seed->getTargetU();
|
|
|
|
else axis = seed->getSourceU();
|
|
|
|
|
|
|
|
cdebug_log(145,0) << "check for bound " << DbU::getValueString(axis) << endl;
|
|
|
|
|
|
|
|
exploreds.insert( seed->getAutoSource() );
|
|
|
|
exploreds.insert( seed->getAutoTarget() );
|
|
|
|
|
|
|
|
if (seed->getLength()) {
|
|
|
|
if (flags & Flags::Superior) stack.push_back( seed->getAutoTarget() );
|
|
|
|
else stack.push_back( seed->getAutoSource() );
|
|
|
|
} else {
|
|
|
|
stack.push_back( seed->getAutoTarget() );
|
|
|
|
stack.push_back( seed->getAutoSource() );
|
|
|
|
}
|
|
|
|
|
|
|
|
while ( not stack.empty() ) {
|
|
|
|
AutoContact* currentContact = stack.back();
|
|
|
|
stack.pop_back();
|
|
|
|
|
|
|
|
cdebug_log(145,0) << "Exploring: " << (void*)currentContact << " " << currentContact << endl;
|
|
|
|
|
|
|
|
exploreds.insert( currentContact );
|
|
|
|
|
|
|
|
if (currentContact->getAnchor()) { cdebug_tabw(145,-1); return true; }
|
|
|
|
|
|
|
|
forEach ( Component*, component, currentContact->getSlaveComponents() ) {
|
|
|
|
Segment* segment = dynamic_cast<Segment*>( *component );
|
|
|
|
if (not segment) continue;
|
|
|
|
|
|
|
|
AutoSegment* autoSegment = Session::lookup( segment );
|
|
|
|
if (not autoSegment) continue;
|
|
|
|
|
|
|
|
if (not autoSegment->getLength()) {
|
|
|
|
AutoContact* contact = autoSegment->getAutoSource();
|
|
|
|
if (contact and (contact != currentContact)) {
|
|
|
|
if (exploreds.find(contact) == exploreds.end())
|
|
|
|
stack.push_back( contact );
|
|
|
|
}
|
|
|
|
|
|
|
|
contact = autoSegment->getAutoTarget();
|
|
|
|
if (contact and (contact != currentContact)) {
|
|
|
|
if (exploreds.find(contact) == exploreds.end())
|
|
|
|
stack.push_back( contact );
|
|
|
|
}
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
Added analog type on segment NetRoutingProperty.
* New: In Anabatic_AutoSegments collection, added a Flag to the constructors
to allow different behavior between digital and analog modes.
For "Aligneds" and "Perpandiculars" collections, now manage a new
Flag WithDoglegs to follow aligned globals through local doglegs
(for analog nets).
Adjust the log level of collections to 144 (formerly 145).
* New: In Anabatic::AutoSegment, new flag SegAnalog for segments that are
part of an analog net.
Note that with this flag, we reach the 32 bits limit...
* Change: In Anabatic::Constants, Flags are now declared as BaseFlags
objects and *not* uint64_t. This avoids overload resolution problems with
arithmetical overload of the operators.
The BaseFlags/Flags types are now completly "isolated" from the
uint64_t, it has the advantage of showing where unwanted previous implicit
conversions where occuring.
* Change: In Katana::Constants, Flags values are now of BaseFlags type instead
of uint64_t.
* Change: In Anabatic::Dijkstra, lots of log cleanup.
* Change: In Anabatic::GCell::getSide(), make the "shrink" parameter visible
to allow to substract the topmost and rightmost track for axis span
computation in AutoSegment::computeOptimal(). Used for analog mode.
* Change: In NetRoutingState, added a flag for analog mode. Use uint32_t
for the flags type.
* New: In Isobar, export the NetRoutingState and NetRoutingExtension objects.
2017-05-20 05:33:12 -05:00
|
|
|
if (autoSegment->isHorizontal() xor (bool)(flags & Flags::Horizontal)) continue;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
cdebug_log(145,0) << "| " << autoSegment << endl;
|
|
|
|
|
|
|
|
if (flags & Flags::Superior) {
|
|
|
|
if (autoSegment->getTargetU() > axis) { cdebug_tabw(145,-1); return true; }
|
|
|
|
} else {
|
|
|
|
if (autoSegment->getSourceU() < axis) { cdebug_tabw(145,-1); return true; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if THIS_IS_DISABLED
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags AutoSegment::getPerpandicularState ( AutoContact* contact
|
|
|
|
, AutoSegment* source
|
|
|
|
, AutoSegment* current
|
|
|
|
, bool isHorizontalMaster
|
|
|
|
, const Layer* masterLayer )
|
2016-07-18 07:48:37 -05:00
|
|
|
{
|
Replace "unsigned int" by "Flags" in all AutoSegments collections.
* Change: In Anabatic::AutoSegments collections, change the type of all
the flags that where in "unsigned int" (32 bits) to Flags (uint64_t)
as there is now more than 32 flags for functions.
* New: In Ababatic::Constants, added new flag Flags::WithPerpands, which
makes the number of flags tip over 32 bits, thus making mandatory
to uses Flags and not unsigned int.
* New: In Anabatic::AutoSegments_Perpandiculars, manage a new flag
Flags::WithDoglegs to allow to propagate through global segments that
are connecteds via doglegs on local segments. Meaning that there is
a good chance that they could be aligned.
Slighly change the way we propagate on aligned segments: no longer
check for VTee or HTee, but only for same direction and layer as
master.
* New: In Anabatic & Katana, replace all the "int", "long" and their
variants by the less implementation ambiguous "int32_t", "int64_t"
(and variant). This should help to better detect bit trucation in
flags.
Use the type to give a hint about the flags kind:
- Type "Flags", for flags shared among Anabatic & Katana
functions/methods (may also appear in some objects states).
- Type "uint32_t" for flags belonging to an object internal
state of from Hurricane functions flags (those should be
grouped in a Flag subclass in a perfect world).
2017-05-16 07:53:33 -05:00
|
|
|
Flags state = Flags::NoFlags;
|
2016-07-18 07:48:37 -05:00
|
|
|
|
|
|
|
bool sourcePerpandicular = arePerpandiculars ( isHorizontalMaster, source );
|
|
|
|
bool currentPerpandicular = arePerpandiculars ( isHorizontalMaster, current );
|
|
|
|
bool contactAlignate
|
|
|
|
= (contact->isHAlignate() and current->isHorizontal() and isHorizontalMaster)
|
|
|
|
or (contact->isVAlignate() and !current->isHorizontal() and !isHorizontalMaster);
|
|
|
|
|
|
|
|
if ( not currentPerpandicular and masterLayer and (masterLayer != current->getLayer()) )
|
|
|
|
state |= ParallelAndLayerChange;
|
|
|
|
|
|
|
|
if ( currentPerpandicular and !current->isCollapsed() )
|
|
|
|
state |= PerpandicularAny;
|
|
|
|
|
|
|
|
if ( sourcePerpandicular ) {
|
|
|
|
// Source segment is perpandicular to master.
|
|
|
|
if ( currentPerpandicular and !current->isCollapsed() )
|
|
|
|
state |= PerpandicularIndirect;
|
|
|
|
} else {
|
|
|
|
// Source segment is parallel to master.
|
|
|
|
if ( not (currentPerpandicular and current->isCollapsed()) and not contactAlignate ) {
|
|
|
|
// Current segment is parallel OR expanded.
|
|
|
|
state |= ParallelOrExpanded;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return state;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
void AutoSegment::getTopologicalInfos ( AutoSegment* seed
|
|
|
|
, vector<AutoSegment*>& aligneds
|
|
|
|
, vector<AutoSegment*>& perpandiculars
|
|
|
|
, DbU::Unit& leftBound
|
|
|
|
, DbU::Unit& rightBound
|
|
|
|
)
|
|
|
|
{
|
|
|
|
cdebug_log(145,1) << "getTopologicalInfos() - " << seed << endl;
|
|
|
|
|
|
|
|
leftBound = DbU::Max;
|
|
|
|
rightBound = DbU::Min;
|
|
|
|
|
|
|
|
AutoSegmentStack stack;
|
|
|
|
|
|
|
|
stack.push( seed->getAutoSource(), seed );
|
|
|
|
stack.push( seed->getAutoTarget(), seed );
|
|
|
|
|
|
|
|
while ( not stack.isEmpty() ) {
|
|
|
|
AutoContact* sourceContact = stack.getAutoContact();
|
|
|
|
AutoSegment* sourceSegment = stack.getAutoSegment();
|
|
|
|
|
|
|
|
stack.pop();
|
|
|
|
|
|
|
|
DbU::Unit constraint;
|
|
|
|
|
|
|
|
if (seed->isHorizontal()) constraint = sourceContact->getCBXMax();
|
|
|
|
else constraint = sourceContact->getCBYMax();
|
|
|
|
if (constraint < leftBound) leftBound = constraint;
|
|
|
|
|
|
|
|
if (seed->isHorizontal()) constraint = sourceContact->getCBXMin();
|
|
|
|
else constraint = sourceContact->getCBYMin();
|
|
|
|
if (constraint > rightBound) rightBound = constraint;
|
|
|
|
|
|
|
|
cdebug_log(149,0) << "Segments of: " << sourceContact << endl;
|
|
|
|
LocatorHelper helper (sourceContact, Flags::Horizontal|Flags::WithPerpands);
|
|
|
|
for ( ; helper.isValid() ; helper.progress() ) {
|
|
|
|
AutoSegment* currentSegment = helper.getSegment();
|
|
|
|
cdebug_log(149,0) << "Looking for: " << currentSegment << endl;
|
|
|
|
if (currentSegment == sourceSegment) continue;
|
|
|
|
|
|
|
|
if (AutoSegment::areAlignedsAndDiffLayer(currentSegment,seed)) {
|
|
|
|
cerr << Error("Aligned segments not in same layer\n"
|
|
|
|
" %s\n"
|
|
|
|
" %s."
|
|
|
|
,getString(seed).c_str()
|
|
|
|
,getString(currentSegment).c_str()) << endl;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (AutoSegment::areAligneds(currentSegment,seed)) {
|
|
|
|
aligneds.push_back( currentSegment );
|
|
|
|
|
|
|
|
AutoContact* targetContact = currentSegment->getOppositeAnchor( sourceContact );
|
|
|
|
cdebug_log(149,0) << "Target: " << targetContact << endl;
|
|
|
|
if (targetContact) {
|
|
|
|
if ( (seed->isHorizontal() and sourceContact->isHTee())
|
|
|
|
or (seed->isVertical () and sourceContact->isVTee()) ) {
|
|
|
|
cdebug_log(149,0) << "Stacking target. " << endl;
|
|
|
|
stack.push( targetContact, currentSegment );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
cdebug_log(149,0) << "| perpandicular " << currentSegment << endl;
|
|
|
|
perpandiculars.push_back( currentSegment );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cdebug_tabw(145,-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int AutoSegment::getTerminalCount ( AutoSegment* seed, vector<AutoSegment*>& collapseds )
|
|
|
|
{
|
|
|
|
cdebug_log(145,0) << "getTerminalCount() - " << seed << " (+collapseds)" << endl;
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
for ( size_t i=0 ; i < collapseds.size() ; i++ ) {
|
|
|
|
if (collapseds[i]->isStrongTerminal())
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
if (seed->getAutoSource()->isTerminal()) count++;
|
|
|
|
if (seed->getAutoTarget()->isTerminal()) count++;
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // End of Anabatic namespace.
|