caravel/verilog/rtl/caravan_core.v

1400 lines
45 KiB
Verilog

// `default_nettype none
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
/*--------------------------------------------------------------*/
/* caravan, a project harness for the Google/SkyWater sky130 */
/* fabrication process and open source PDK. caravan is an */
/* alternative architecture to caravel that has simple straight */
/* through connections replacing the GPIO pads on the top side */
/* of the padframe. A total of 11 pads are converted from GPIO */
/* to analog, leaving 27 GPIO. */
/* */
/* Copyright 2021 efabless, Inc. */
/* Written by Tim Edwards, December 2019 */
/* and Mohamed Shalan, August 2020 */
/* This file is open source hardware released under the */
/* Apache 2.0 license. See file LICENSE. */
/* */
/*--------------------------------------------------------------*/
/*--------------------------------------------------------------*/
/* Derived types for the array bounds on the two digital and */
/* two analog pad arrays. As defined above, the sections have */
/* the number of pads as follows: */
/* */
/* DIG2 : 13 GPIO pads */
/* ANA2 : 6 analog pads */
/* ANA1 : 5 analog pads */
/* DIG1 : 14 GPIO pads */
/* */
/* This makes a total of 38 pads = `MPRJ_IO_PADS */
/* The pads are still designated as mprj_io[37:0] around the */
/* padframe. The SoC core remains the same, so the programming */
/* of the digital signals remains the same, but the values for */
/* GPIO 14-24 (indexed from 0) are not used. */
/*--------------------------------------------------------------*/
`define DIG2_TOP (`MPRJ_IO_PADS - 1)
`define DIG2_BOT (`MPRJ_IO_PADS_1 + `ANALOG_PADS_2)
`define ANA2_TOP (`MPRJ_IO_PADS_1 + `ANALOG_PADS_2 - 1)
`define ANA2_BOT (`MPRJ_IO_PADS_1)
`define ANA1_TOP (`MPRJ_IO_PADS_1 - 1)
`define ANA1_BOT (`MPRJ_IO_PADS_1 - `ANALOG_PADS_1)
`define DIG1_TOP (`MPRJ_IO_PADS_1 - `ANALOG_PADS_1 - 1)
`define DIG1_BOT (0)
`define MPRJ_DIG_PADS (`MPRJ_IO_PADS - `ANALOG_PADS)
/*--------------------------------------------------------------*/
/*--------------------------------------------------------------*/
module caravan_core (
`ifdef USE_POWER_PINS
inout vddio, // Common 3.3V padframe/ESD power
inout vssio, // Common padframe/ESD ground
inout vccd, // Management/Common 1.8V power
inout vssd, // Common digital ground
inout vdda1, // User area 1 3.3V power
inout vdda2, // User area 2 3.3V power
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V power
inout vccd2, // User area 2 1.8V power
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// SoC Core Interface
output porb_h,
output por_l,
input rstb_h,
input clock_core,
output gpio_out_core,
input gpio_in_core,
output gpio_mode0_core,
output gpio_mode1_core,
output gpio_outenb_core,
output gpio_inenb_core,
// Flash SPI communication
output flash_csb_frame,
output flash_clk_frame,
output flash_csb_oeb,
output flash_clk_oeb,
output flash_io0_oeb,
output flash_io1_oeb,
output flash_io0_ieb,
output flash_io1_ieb,
output flash_io0_do,
output flash_io1_do,
input flash_io0_di,
input flash_io1_di,
// User project IOs
input [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_in,
input [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_in_3v3,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_out,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_oeb,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_inp_dis,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_ib_mode_sel,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_vtrip_sel,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_slow_sel,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_holdover,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_en,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_sel,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_pol,
output [(`MPRJ_IO_PADS-`ANALOG_PADS)*3-1:0] mprj_io_dm,
// Loopbacks to constant value 1 in the 1.8V domain
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_one,
// User project direct access to gpio pad connections for analog
// (all but the lowest-numbered 7 pads)
inout [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] user_gpio_analog,
inout [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] user_gpio_noesd,
inout [`ANALOG_PADS-1:0] user_analog,
inout [2:0] user_clamp_high,
inout [2:0] user_clamp_low
);
//------------------------------------------------------------
// This value is uniquely defined for each user project.
//------------------------------------------------------------
parameter USER_PROJECT_ID = 32'h00000000;
/*
*--------------------------------------------------------------------
*
* These pins are overlaid on mprj_io space. They have the function
* below when the management processor is in reset, or in the default
* configuration. They are assigned to uses in the user space by the
* configuration program running off of the SPI flash. Note that even
* when the user has taken control of these pins, they can be restored
* to the original use by setting the resetb pin low. The SPI pins and
* UART pins can be connected directly to an FTDI chip as long as the
* FTDI chip sets these lines to high impedence (input function) at
* all times except when holding the chip in reset.
*
* JTAG = mprj_io[0] (inout)
* SDO = mprj_io[1] (output)
* SDI = mprj_io[2] (input)
* CSB = mprj_io[3] (input)
* SCK = mprj_io[4] (input)
* ser_rx = mprj_io[5] (input)
* ser_tx = mprj_io[6] (output)
* irq = mprj_io[7] (input)
*
* spi_sck = mprj_io[32] (output)
* spi_csb = mprj_io[33] (output)
* spi_sdi = mprj_io[34] (input)
* spi_sdo = mprj_io[35] (output)
* flash_io2 = mprj_io[36] (inout)
* flash_io3 = mprj_io[37] (inout)
*
* These pins are reserved for any project that wants to incorporate
* its own processor and flash controller. While a user project can
* technically use any available I/O pins for the purpose, these
* four pins connect to a pass-through mode from the SPI slave (pins
* 1-4 above) so that any SPI flash connected to these specific pins
* can be accessed through the SPI slave even when the processor is in
* reset.
*
* user_flash_csb = mprj_io[8]
* user_flash_sck = mprj_io[9]
* user_flash_io0 = mprj_io[10]
* user_flash_io1 = mprj_io[11]
*
*---------------------------------------------------------------------
*/
// One-bit GPIO dedicated to management SoC (outside of user control)
wire gpio_out_core;
wire gpio_in_core;
wire gpio_mode0_core;
wire gpio_mode1_core;
wire gpio_outenb_core;
wire gpio_inenb_core;
// 27 GPIO pads with full controls
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_inp_dis;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_oeb;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_ib_mode_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_vtrip_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_slow_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_holdover;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_en;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_sel;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_analog_pol;
wire [(`MPRJ_IO_PADS-`ANALOG_PADS)*3-1:0] mprj_io_dm;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_in;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_in_3v3;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_out;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] mprj_io_one;
wire [7:0] mprj_io_zero;
// User Project Control (user-facing)
// 27 GPIO bidirectional with in/out/oeb and a 3.3V copy of the input
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_oeb;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_in;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_out;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] user_io_in_3v3;
// 18 direct connections to GPIO for low-frequency, low-voltage analog
wire [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] user_gpio_analog;
wire [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] user_gpio_noesd;
// 3 power supply ESD clamps for user applications
wire [2:0] user_clamp_high;
wire [2:0] user_clamp_low;
// 11 core connections to the analog pads
wire [`ANALOG_PADS-1:0] user_analog;
/* Padframe control signals */
wire [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1:0] gpio_serial_link_1;
wire [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:0] gpio_serial_link_2;
wire mprj_io_loader_resetn;
wire mprj_io_loader_clock;
wire mprj_io_loader_strobe;
wire mprj_io_loader_data_1; /* user1 side serial loader */
wire mprj_io_loader_data_2; /* user2 side serial loader */
// User Project Control management I/O
// There are two types of GPIO connections:
// (1) Full Bidirectional: Management connects to in, out, and oeb
// Uses: JTAG and SDO
// (2) Selectable bidirectional: Management connects to in and out,
// which are tied together. oeb is grounded (oeb from the
// configuration is used)
// SDI = mprj_io[2] (input)
// CSB = mprj_io[3] (input)
// SCK = mprj_io[4] (input)
// ser_rx = mprj_io[5] (input)
// ser_tx = mprj_io[6] (output)
// irq = mprj_io[7] (input)
wire [`MPRJ_IO_PADS-1:0] mgmt_io_in; /* two- and three-pin data in */
wire [`MPRJ_IO_PADS-1:0] mgmt_io_out; /* two- and three-pin data out */
wire [`MPRJ_IO_PADS-1:0] mgmt_io_oeb; /* output enable, used only by */
/* the three-pin interfaces */
wire [`MPRJ_PWR_PADS-1:0] pwr_ctrl_nc; /* no-connects */
/* Buffers are placed between housekeeping and gpio_control_block */
/* instances to mitigate timing issues on very long (> 1.5mm) wires. */
wire [`MPRJ_IO_PADS-1:0] mgmt_io_in_hk; /* mgmt_io_in at housekeeping */
wire [`MPRJ_IO_PADS-1:0] mgmt_io_out_hk; /* mgmt_io_out at housekeeping */
wire [`MPRJ_IO_PADS-1:0] mgmt_io_oeb_hk; /* mgmt_io_oeb at housekeeping */
// Power-on-reset signal. The reset pad generates the sense-inverted
// reset at 3.3V. The 1.8V signal and the inverted 1.8V signal are
// derived.
wire rstb_l;
// Flash SPI communication (managment SoC to housekeeping)
wire flash_clk_core, flash_csb_core;
wire flash_io0_oeb_core, flash_io1_oeb_core;
wire flash_io2_oeb_core, flash_io3_oeb_core;
wire flash_io0_ieb_core, flash_io1_ieb_core;
wire flash_io2_ieb_core, flash_io3_ieb_core;
wire flash_io0_do_core, flash_io1_do_core;
wire flash_io2_do_core, flash_io3_do_core;
wire flash_io0_di_core, flash_io1_di_core;
wire flash_io2_di_core, flash_io3_di_core;
// SoC core
wire caravel_clk;
wire caravel_clk2;
wire caravel_rstn;
assign mgmt_io_in_hk[13:0] = mgmt_io_in[13:0];
assign mgmt_io_in_hk[24:14] = {mprj_io_zero[5],mprj_io_zero[4], mprj_io_zero[4],mprj_io_zero[3], mprj_io_zero[3],mprj_io_zero[2], mprj_io_zero[2],mprj_io_zero[1], mprj_io_zero[1],mprj_io_zero[0], mprj_io_zero[0]};
assign mgmt_io_in_hk[37:25] = mgmt_io_in[37:25];
assign mgmt_io_out = mgmt_io_out_hk;
assign mgmt_io_oeb = mgmt_io_oeb_hk;
// Logic analyzer signals
wire [127:0] la_data_in_user; // From CPU to MPRJ
wire [127:0] la_data_in_mprj; // From MPRJ to CPU
wire [127:0] la_data_out_mprj; // From CPU to MPRJ
wire [127:0] la_data_out_user; // From MPRJ to CPU
wire [127:0] la_oenb_user; // From CPU to MPRJ
wire [127:0] la_oenb_mprj; // From CPU to MPRJ
wire [127:0] la_iena_mprj; // From CPU only
wire [2:0] user_irq; // From MPRJ to CPU
wire [2:0] user_irq_core;
wire [2:0] user_irq_ena;
wire [2:0] irq_spi; // From SPI and external pins
// Exported Wishbone Bus (processor facing)
wire mprj_iena_wb;
wire mprj_cyc_o_core;
wire mprj_stb_o_core;
wire mprj_we_o_core;
wire [3:0] mprj_sel_o_core;
wire [31:0] mprj_adr_o_core;
wire [31:0] mprj_dat_o_core;
wire mprj_ack_i_core;
wire [31:0] mprj_dat_i_core;
wire [31:0] hk_dat_i;
wire hk_ack_i;
wire hk_stb_o;
wire hk_cyc_o;
// Exported Wishbone Bus (user area facing)
wire mprj_cyc_o_user;
wire mprj_stb_o_user;
wire mprj_we_o_user;
wire [3:0] mprj_sel_o_user;
wire [31:0] mprj_adr_o_user;
wire [31:0] mprj_dat_o_user;
wire [31:0] mprj_dat_i_user;
wire mprj_ack_i_user;
// Mask revision
wire [31:0] mask_rev;
wire mprj_clock;
wire mprj_clock2;
wire mprj_reset;
// Power monitoring
wire mprj_vcc_pwrgood;
wire mprj2_vcc_pwrgood;
wire mprj_vdd_pwrgood;
wire mprj2_vdd_pwrgood;
`ifdef USE_SRAM_RO_INTERFACE
// SRAM read-only access from housekeeping
wire hkspi_sram_clk;
wire hkspi_sram_csb;
wire [7:0] hkspi_sram_addr;
wire [31:0] hkspi_sram_data;
`endif
// Management processor (wrapper). Any management core
// implementation must match this pinout.
mgmt_core_wrapper soc (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
// Clock and reset
.core_clk(caravel_clk),
.core_rstn(caravel_rstn),
// GPIO (1 pin)
.gpio_out_pad(gpio_out_core),
.gpio_in_pad(gpio_in_core),
.gpio_mode0_pad(gpio_mode0_core),
.gpio_mode1_pad(gpio_mode1_core),
.gpio_outenb_pad(gpio_outenb_core),
.gpio_inenb_pad(gpio_inenb_core),
// Primary SPI flash controller
.flash_csb(flash_csb_core),
.flash_clk(flash_clk_core),
.flash_io0_oeb(flash_io0_oeb_core),
.flash_io0_di(flash_io0_di_core),
.flash_io0_do(flash_io0_do_core),
.flash_io1_oeb(flash_io1_oeb_core),
.flash_io1_di(flash_io1_di_core),
.flash_io1_do(flash_io1_do_core),
.flash_io2_oeb(flash_io2_oeb_core),
.flash_io2_di(flash_io2_di_core),
.flash_io2_do(flash_io2_do_core),
.flash_io3_oeb(flash_io3_oeb_core),
.flash_io3_di(flash_io3_di_core),
.flash_io3_do(flash_io3_do_core),
// Exported Wishbone Bus
.mprj_wb_iena(mprj_iena_wb),
.mprj_cyc_o(mprj_cyc_o_core),
.mprj_stb_o(mprj_stb_o_core),
.mprj_we_o(mprj_we_o_core),
.mprj_sel_o(mprj_sel_o_core),
.mprj_adr_o(mprj_adr_o_core),
.mprj_dat_o(mprj_dat_o_core),
.mprj_ack_i(mprj_ack_i_core),
.mprj_dat_i(mprj_dat_i_core),
.hk_stb_o(hk_stb_o),
.hk_cyc_o(hk_cyc_o),
.hk_dat_i(hk_dat_i),
.hk_ack_i(hk_ack_i),
// IRQ
.irq({irq_spi, user_irq}),
.user_irq_ena(user_irq_ena),
// Module status (these may or may not be implemented)
.qspi_enabled(qspi_enabled),
.uart_enabled(uart_enabled),
.spi_enabled(spi_enabled),
.debug_mode(debug_mode),
// Module I/O (these may or may not be implemented)
// UART
.ser_tx(ser_tx),
.ser_rx(ser_rx),
// SPI master
.spi_sdi(spi_sdi),
.spi_csb(spi_csb),
.spi_sck(spi_sck),
.spi_sdo(spi_sdo),
.spi_sdoenb(spi_sdoenb),
// Debug
.debug_in(debug_in),
.debug_out(debug_out),
.debug_oeb(debug_oeb),
// Logic analyzer
.la_input(la_data_in_mprj),
.la_output(la_data_out_mprj),
.la_oenb(la_oenb_mprj),
.la_iena(la_iena_mprj),
`ifdef USE_SRAM_RO_INTERFACE
// SRAM Read-only access from housekeeping
.sram_ro_clk(hkspi_sram_clk),
.sram_ro_csb(hkspi_sram_csb),
.sram_ro_addr(hkspi_sram_addr),
.sram_ro_data(hkspi_sram_data),
`endif
// Trap status
.trap(trap)
);
/* Clock and reset to user space are passed through a tristate */
/* buffer like the above, but since they are intended to be */
/* always active, connect the enable to the logic-1 output from */
/* the vccd1 domain. */
mgmt_protect mgmt_buffers (
`ifdef USE_POWER_PINS
.vccd(vccd),
.vssd(vssd),
.vccd1(vccd1),
.vssd1(vssd1),
.vccd2(vccd2),
.vssd2(vssd2),
.vdda1(vdda1),
.vssa1(vssa1),
.vdda2(vdda2),
.vssa2(vssa2),
`endif
.caravel_clk(caravel_clk),
.caravel_clk2(caravel_clk2),
.caravel_rstn(caravel_rstn),
.mprj_iena_wb(mprj_iena_wb),
.mprj_cyc_o_core(mprj_cyc_o_core),
.mprj_stb_o_core(mprj_stb_o_core),
.mprj_we_o_core(mprj_we_o_core),
.mprj_sel_o_core(mprj_sel_o_core),
.mprj_adr_o_core(mprj_adr_o_core),
.mprj_dat_o_core(mprj_dat_o_core),
.mprj_ack_i_core(mprj_ack_i_core),
.mprj_dat_i_core(mprj_dat_i_core),
.user_irq_core(user_irq_core),
.user_irq_ena(user_irq_ena),
.la_data_out_core(la_data_out_user),
.la_data_out_mprj(la_data_out_mprj),
.la_data_in_core(la_data_in_user),
.la_data_in_mprj(la_data_in_mprj),
.la_oenb_mprj(la_oenb_mprj),
.la_oenb_core(la_oenb_user),
.la_iena_mprj(la_iena_mprj),
.user_clock(mprj_clock),
.user_clock2(mprj_clock2),
.user_reset(mprj_reset),
.mprj_cyc_o_user(mprj_cyc_o_user),
.mprj_stb_o_user(mprj_stb_o_user),
.mprj_we_o_user(mprj_we_o_user),
.mprj_sel_o_user(mprj_sel_o_user),
.mprj_adr_o_user(mprj_adr_o_user),
.mprj_dat_o_user(mprj_dat_o_user),
.mprj_dat_i_user(mprj_dat_i_user),
.mprj_ack_i_user(mprj_ack_i_user),
.user_irq(user_irq),
.user1_vcc_powergood(mprj_vcc_pwrgood),
.user2_vcc_powergood(mprj2_vcc_pwrgood),
.user1_vdd_powergood(mprj_vdd_pwrgood),
.user2_vdd_powergood(mprj2_vdd_pwrgood)
);
/*--------------------------------------------------*/
/* Wrapper module around the user project */
/*--------------------------------------------------*/
assign user_io_in_3v3 = mprj_io_in_3v3;
user_analog_project_wrapper mprj (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_clk_i(mprj_clock),
.wb_rst_i(mprj_reset),
// Management SoC Wishbone bus (exported)
.wbs_cyc_i(mprj_cyc_o_user),
.wbs_stb_i(mprj_stb_o_user),
.wbs_we_i(mprj_we_o_user),
.wbs_sel_i(mprj_sel_o_user),
.wbs_adr_i(mprj_adr_o_user),
.wbs_dat_i(mprj_dat_o_user),
.wbs_ack_o(mprj_ack_i_user),
.wbs_dat_o(mprj_dat_i_user),
// GPIO pad 3-pin interface (plus analog)
.io_in (user_io_in),
.io_in_3v3 (user_io_in_3v3),
.io_out(user_io_out),
.io_oeb(user_io_oeb),
`ifndef TOP_ROUTING
.io_analog(user_analog),
.io_clamp_high(user_clamp_high),
.io_clamp_low(user_clamp_low),
`endif
.gpio_analog(user_gpio_analog),
.gpio_noesd(user_gpio_noesd),
// Logic analyzer
.la_data_in(la_data_in_user),
.la_data_out(la_data_out_user),
.la_oenb(la_oenb_user),
// User-accessible power supply clamps
// Independent clock
.user_clock2(mprj_clock2),
// IRQ
.user_irq(user_irq_core)
);
/*--------------------------------------*/
/* End user project instantiation */
/*--------------------------------------*/
wire [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1:0] gpio_serial_link_1_shifted;
wire [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:0] gpio_serial_link_2_shifted;
assign gpio_serial_link_1_shifted = {gpio_serial_link_1[`MPRJ_IO_PADS_1
-`ANALOG_PADS_1-2:0],
mprj_io_loader_data_1};
// Note that serial_link_2 is backwards compared to serial_link_1, so it
// shifts in the other direction.
assign gpio_serial_link_2_shifted = {mprj_io_loader_data_2,
gpio_serial_link_2[`MPRJ_IO_PADS_2
-`ANALOG_PADS_2-1:1]};
// Propagating clock and reset to mitigate timing and fanout issues
wire [`MPRJ_IO_PADS_1-1:0] gpio_clock_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_clock_2;
wire [`MPRJ_IO_PADS_1-1:0] gpio_resetn_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_resetn_2;
wire [`MPRJ_IO_PADS_1-1:0] gpio_load_1;
wire [`MPRJ_IO_PADS_2-1:0] gpio_load_2;
wire [`MPRJ_IO_PADS_1-6:0] gpio_clock_1_shifted;
wire [`MPRJ_IO_PADS_2-7:0] gpio_clock_2_shifted;
wire [`MPRJ_IO_PADS_1-6:0] gpio_resetn_1_shifted;
wire [`MPRJ_IO_PADS_2-7:0] gpio_resetn_2_shifted;
wire [`MPRJ_IO_PADS_1-6:0] gpio_load_1_shifted;
wire [`MPRJ_IO_PADS_2-7:0] gpio_load_2_shifted;
assign gpio_clock_1_shifted = {gpio_clock_1[`MPRJ_IO_PADS_1-`ANALOG_PADS_1-2:0],
mprj_io_loader_clock};
assign gpio_clock_2_shifted = {mprj_io_loader_clock,
gpio_clock_2[`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:1]};
assign gpio_resetn_1_shifted = {gpio_resetn_1[`MPRJ_IO_PADS_1-`ANALOG_PADS_1-2:0],
mprj_io_loader_resetn};
assign gpio_resetn_2_shifted = {mprj_io_loader_resetn,
gpio_resetn_2[`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:1]};
assign gpio_load_1_shifted = {gpio_load_1[`MPRJ_IO_PADS_1-`ANALOG_PADS_1-2:0],
mprj_io_loader_strobe};
assign gpio_load_2_shifted = {mprj_io_loader_strobe,
gpio_load_2[`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1:1]};
wire [2:0] spi_pll_sel;
wire [2:0] spi_pll90_sel;
wire [4:0] spi_pll_div;
wire [25:0] spi_pll_trim;
// Clocking control
caravel_clocking clock_ctrl (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.porb(porb_l),
.ext_clk_sel(ext_clk_sel),
.ext_clk(clock_core),
.pll_clk(pll_clk),
.pll_clk90(pll_clk90),
.resetb(rstb_l),
.sel(spi_pll_sel),
.sel2(spi_pll90_sel),
.ext_reset(ext_reset), // From housekeeping SPI
.core_clk(caravel_clk),
.user_clk(caravel_clk2),
.resetb_sync(caravel_rstn)
);
// DCO/Digital Locked Loop
digital_pll pll (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.resetb(rstb_l),
.enable(spi_pll_ena),
.osc(clock_core),
.clockp({pll_clk, pll_clk90}),
.div(spi_pll_div),
.dco(spi_pll_dco_ena),
.ext_trim(spi_pll_trim)
);
// Housekeeping interface
housekeeping_alt housekeeping_alt (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.wb_clk_i(caravel_clk),
.wb_rstn_i(caravel_rstn),
.wb_adr_i(mprj_adr_o_core),
.wb_dat_i(mprj_dat_o_core),
.wb_sel_i(mprj_sel_o_core),
.wb_we_i(mprj_we_o_core),
.wb_cyc_i(hk_cyc_o),
.wb_stb_i(hk_stb_o),
.wb_ack_o(hk_ack_i),
.wb_dat_o(hk_dat_i),
.porb(porb_l),
.pll_ena(spi_pll_ena),
.pll_dco_ena(spi_pll_dco_ena),
.pll_div(spi_pll_div),
.pll_sel(spi_pll_sel),
.pll90_sel(spi_pll90_sel),
.pll_trim(spi_pll_trim),
.pll_bypass(ext_clk_sel),
.qspi_enabled(qspi_enabled),
.uart_enabled(uart_enabled),
.spi_enabled(spi_enabled),
.debug_mode(debug_mode),
.ser_tx(ser_tx),
.ser_rx(ser_rx),
.spi_sdi(spi_sdi),
.spi_csb(spi_csb),
.spi_sck(spi_sck),
.spi_sdo(spi_sdo),
.spi_sdoenb(spi_sdoenb),
.debug_in(debug_in),
.debug_out(debug_out),
.debug_oeb(debug_oeb),
.irq(irq_spi),
.reset(ext_reset),
.serial_clock(mprj_io_loader_clock),
.serial_load(mprj_io_loader_strobe),
.serial_resetn(mprj_io_loader_resetn),
.serial_data_1(mprj_io_loader_data_1),
.serial_data_2(mprj_io_loader_data_2),
.mgmt_gpio_in(mgmt_io_in_hk),
.mgmt_gpio_out(mgmt_io_out_hk),
.mgmt_gpio_oeb(mgmt_io_oeb_hk),
.pwr_ctrl_out(pwr_ctrl_nc), /* Not used in this version */
.trap(trap),
.user_clock(caravel_clk2),
.mask_rev_in(mask_rev),
.spimemio_flash_csb(flash_csb_core),
.spimemio_flash_clk(flash_clk_core),
.spimemio_flash_io0_oeb(flash_io0_oeb_core),
.spimemio_flash_io1_oeb(flash_io1_oeb_core),
.spimemio_flash_io2_oeb(flash_io2_oeb_core),
.spimemio_flash_io3_oeb(flash_io3_oeb_core),
.spimemio_flash_io0_do(flash_io0_do_core),
.spimemio_flash_io1_do(flash_io1_do_core),
.spimemio_flash_io2_do(flash_io2_do_core),
.spimemio_flash_io3_do(flash_io3_do_core),
.spimemio_flash_io0_di(flash_io0_di_core),
.spimemio_flash_io1_di(flash_io1_di_core),
.spimemio_flash_io2_di(flash_io2_di_core),
.spimemio_flash_io3_di(flash_io3_di_core),
.pad_flash_csb(flash_csb_frame),
.pad_flash_csb_oeb(flash_csb_oeb),
.pad_flash_clk(flash_clk_frame),
.pad_flash_clk_oeb(flash_clk_oeb),
.pad_flash_io0_oeb(flash_io0_oeb),
.pad_flash_io1_oeb(flash_io1_oeb),
.pad_flash_io0_ieb(flash_io0_ieb),
.pad_flash_io1_ieb(flash_io1_ieb),
.pad_flash_io0_do(flash_io0_do),
.pad_flash_io1_do(flash_io1_do),
.pad_flash_io0_di(flash_io0_di),
.pad_flash_io1_di(flash_io1_di),
`ifdef USE_SRAM_RO_INTERFACE
.sram_ro_clk(hkspi_sram_clk),
.sram_ro_csb(hkspi_sram_csb),
.sram_ro_addr(hkspi_sram_addr),
.sram_ro_data(hkspi_sram_data),
`endif
.usr1_vcc_pwrgood(mprj_vcc_pwrgood),
.usr2_vcc_pwrgood(mprj2_vcc_pwrgood),
.usr1_vdd_pwrgood(mprj_vdd_pwrgood),
.usr2_vdd_pwrgood(mprj2_vdd_pwrgood)
);
/* GPIO defaults (via programmed) */
wire [(`MPRJ_IO_PADS - `ANALOG_PADS)*13-1:0] gpio_defaults;
/* Fixed defaults for the first 5 GPIO pins */
gpio_defaults_block #(
.GPIO_CONFIG_INIT(13'h1803)
) gpio_defaults_block_0 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[12:0])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(13'h1803)
) gpio_defaults_block_1 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[25:13])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(13'h0403)
) gpio_defaults_block_2 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[38:26])
);
// CSB pin is set as an internal pull-up
gpio_defaults_block #(
.GPIO_CONFIG_INIT(13'h0801)
) gpio_defaults_block_3 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[51:39])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(13'h0403)
) gpio_defaults_block_4 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[64:52])
);
/* Via-programmable defaults for the rest of the GPIO pins */
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_5_INIT)
) gpio_defaults_block_5 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[77:65])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_6_INIT)
) gpio_defaults_block_6 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[90:78])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_7_INIT)
) gpio_defaults_block_7 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[103:91])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_8_INIT)
) gpio_defaults_block_8 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[116:104])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_9_INIT)
) gpio_defaults_block_9 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[129:117])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_10_INIT)
) gpio_defaults_block_10 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[142:130])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_11_INIT)
) gpio_defaults_block_11 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[155:143])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_12_INIT)
) gpio_defaults_block_12 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[168:156])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_13_INIT)
) gpio_defaults_block_13 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[181:169])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_25_INIT)
) gpio_defaults_block_25 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[194:182])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_26_INIT)
) gpio_defaults_block_26 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[207:195])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_27_INIT)
) gpio_defaults_block_27 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[220:208])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_28_INIT)
) gpio_defaults_block_28 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[233:221])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_29_INIT)
) gpio_defaults_block_29 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[246:234])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_30_INIT)
) gpio_defaults_block_30 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[259:247])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_31_INIT)
) gpio_defaults_block_31 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[272:260])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_32_INIT)
) gpio_defaults_block_32 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[285:273])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_33_INIT)
) gpio_defaults_block_33 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[298:286])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_34_INIT)
) gpio_defaults_block_34 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[311:299])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_35_INIT)
) gpio_defaults_block_35 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[324:312])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_36_INIT)
) gpio_defaults_block_36 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[337:325])
);
gpio_defaults_block #(
.GPIO_CONFIG_INIT(`USER_CONFIG_GPIO_37_INIT)
) gpio_defaults_block_37 (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.gpio_defaults(gpio_defaults[350:338])
);
// Each control block sits next to an I/O pad in the user area.
// It gets input through a serial chain from the previous control
// block and passes it to the next control block. Due to the nature
// of the shift register, bits are presented in reverse, as the first
// bit in ends up as the last bit of the last I/O pad control block.
// There are two types of block; the first two and the last two
// are configured to be full bidirectional under control of the
// management Soc (JTAG and SDO for the first two; flash_io2 and
// flash_io3 for the last two). The rest are configured to be default
// (input). Note that the first two and last two are the ones closest
// to the management SoC on either side, which minimizes the wire length
// of the extra signals those pads need.
/* First two GPIOs (JTAG and SDO) */
gpio_control_block gpio_control_bidir_1 [1:0] (
`ifdef USE_POWER_PINS
.vccd(vccd),
.vssd(vssd),
.vccd1(vccd1),
.vssd1(vssd1),
`endif
.gpio_defaults(gpio_defaults[25:0]),
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[1:0]),
.serial_clock(gpio_clock_1_shifted[1:0]),
.serial_load(gpio_load_1_shifted[1:0]),
.resetn_out(gpio_resetn_1[1:0]),
.serial_clock_out(gpio_clock_1[1:0]),
.serial_load_out(gpio_load_1[1:0]),
.mgmt_gpio_in(mgmt_io_in[1:0]),
.mgmt_gpio_out(mgmt_io_out[1:0]),
.mgmt_gpio_oeb(mgmt_io_oeb[1:0]),
.one(mprj_io_one[1:0]),
.zero(mprj_io_zero[1:0]),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[1:0]),
.serial_data_out(gpio_serial_link_1[1:0]),
// User-facing signals
.user_gpio_out(user_io_out[1:0]),
.user_gpio_oeb(user_io_oeb[1:0]),
.user_gpio_in(user_io_in[1:0]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[1:0]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[1:0]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[1:0]),
.pad_gpio_slow_sel(mprj_io_slow_sel[1:0]),
.pad_gpio_holdover(mprj_io_holdover[1:0]),
.pad_gpio_ana_en(mprj_io_analog_en[1:0]),
.pad_gpio_ana_sel(mprj_io_analog_sel[1:0]),
.pad_gpio_ana_pol(mprj_io_analog_pol[1:0]),
.pad_gpio_dm(mprj_io_dm[5:0]),
.pad_gpio_outenb(mprj_io_oeb[1:0]),
.pad_gpio_out(mprj_io_out[1:0]),
.pad_gpio_in(mprj_io_in[1:0])
);
/* Section 1 GPIOs (GPIO 0 to 18) */
/* Section 1 GPIOs (GPIO 2 to 7) that start up under management control */
gpio_control_block gpio_control_in_1a [5:0] (
`ifdef USE_POWER_PINS
.vccd(vccd),
.vssd(vssd),
.vccd1(vccd1),
.vssd1(vssd1),
`endif
.gpio_defaults(gpio_defaults[103:26]),
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[7:2]),
.serial_clock(gpio_clock_1_shifted[7:2]),
.serial_load(gpio_load_1_shifted[7:2]),
.resetn_out(gpio_resetn_1[7:2]),
.serial_clock_out(gpio_clock_1[7:2]),
.serial_load_out(gpio_load_1[7:2]),
.mgmt_gpio_in(mgmt_io_in[7:2]),
.mgmt_gpio_out(mgmt_io_out[7:2]),
.mgmt_gpio_oeb(mprj_io_one[7:2]),
.one(mprj_io_one[7:2]),
.zero(mprj_io_zero[7:2]),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[7:2]),
.serial_data_out(gpio_serial_link_1[7:2]),
// User-facing signals
.user_gpio_out(user_io_out[7:2]),
.user_gpio_oeb(user_io_oeb[7:2]),
.user_gpio_in(user_io_in[7:2]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[7:2]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[7:2]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[7:2]),
.pad_gpio_slow_sel(mprj_io_slow_sel[7:2]),
.pad_gpio_holdover(mprj_io_holdover[7:2]),
.pad_gpio_ana_en(mprj_io_analog_en[7:2]),
.pad_gpio_ana_sel(mprj_io_analog_sel[7:2]),
.pad_gpio_ana_pol(mprj_io_analog_pol[7:2]),
.pad_gpio_dm(mprj_io_dm[23:6]),
.pad_gpio_outenb(mprj_io_oeb[7:2]),
.pad_gpio_out(mprj_io_out[7:2]),
.pad_gpio_in(mprj_io_in[7:2])
);
/* Section 1 GPIOs (GPIO 8 to 18) */
gpio_control_block gpio_control_in_1 [`MPRJ_IO_PADS_1-`ANALOG_PADS_1-9:0] (
`ifdef USE_POWER_PINS
.vccd(vccd),
.vssd(vssd),
.vccd1(vccd1),
.vssd1(vssd1),
`endif
.gpio_defaults(gpio_defaults[((`MPRJ_IO_PADS_1-`ANALOG_PADS_1)*13-1):104]),
// Management Soc-facing signals
.resetn(gpio_resetn_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.serial_clock(gpio_clock_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.serial_load(gpio_load_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.resetn_out(gpio_resetn_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.serial_clock_out(gpio_clock_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.serial_load_out(gpio_load_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.mgmt_gpio_in(mgmt_io_in[`DIG1_TOP:8]),
.mgmt_gpio_out(mgmt_io_out[`DIG1_TOP:8]),
.mgmt_gpio_oeb(mprj_io_one[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.one(mprj_io_one[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_1_shifted[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.serial_data_out(gpio_serial_link_1[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.user_gpio_in(user_io_in[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)*3-1:24]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_out(mprj_io_out[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8]),
.pad_gpio_in(mprj_io_in[(`MPRJ_IO_PADS_1-`ANALOG_PADS_1-1):8])
);
/* Last three GPIOs (spi_sdo, flash_io2, and flash_io3) */
gpio_control_block gpio_control_bidir_2 [2:0] (
`ifdef USE_POWER_PINS
.vccd(vccd),
.vssd(vssd),
.vccd1(vccd1),
.vssd1(vssd1),
`endif
.gpio_defaults(gpio_defaults[((`MPRJ_IO_PADS-`ANALOG_PADS)*13-1):((`MPRJ_IO_PADS-`ANALOG_PADS)*13-39)]),
// Management Soc-facing signals
.resetn(gpio_resetn_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.serial_clock(gpio_clock_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.serial_load(gpio_load_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.resetn_out(gpio_resetn_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.serial_clock_out(gpio_clock_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.serial_load_out(gpio_load_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.mgmt_gpio_in(mgmt_io_in[(`DIG2_TOP):(`DIG2_TOP-2)]),
.mgmt_gpio_out(mgmt_io_out[(`DIG2_TOP):(`DIG2_TOP-2)]),
.mgmt_gpio_oeb(mgmt_io_oeb[(`DIG2_TOP):(`DIG2_TOP-2)]),
.one(mprj_io_one[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
.serial_data_out(gpio_serial_link_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-1):(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-3)]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.user_gpio_in(user_io_in[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_dm(mprj_io_dm[(`MPRJ_DIG_PADS*3-1):(`MPRJ_DIG_PADS*3-9)]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_out(mprj_io_out[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)]),
.pad_gpio_in(mprj_io_in[(`MPRJ_DIG_PADS-1):(`MPRJ_DIG_PADS-3)])
);
/* Section 2 GPIOs (GPIO 19 to 37) */
gpio_control_block gpio_control_in_2 [`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4:0] (
`ifdef USE_POWER_PINS
.vccd(vccd),
.vssd(vssd),
.vccd1(vccd1),
.vssd1(vssd1),
`endif
.gpio_defaults(gpio_defaults[((`MPRJ_IO_PADS-`ANALOG_PADS-3)*13-1):((`MPRJ_IO_PADS_1-`ANALOG_PADS_1)*13)]),
// Management Soc-facing signals
.resetn(gpio_resetn_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.serial_clock(gpio_clock_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.serial_load(gpio_load_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.resetn_out(gpio_resetn_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.serial_clock_out(gpio_clock_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.serial_load_out(gpio_load_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.mgmt_gpio_in(mgmt_io_in[(`DIG2_TOP-3):`DIG2_BOT]),
.mgmt_gpio_out(mgmt_io_out[(`DIG2_TOP-3):`DIG2_BOT]),
.mgmt_gpio_oeb(mprj_io_one[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.one(mprj_io_one[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.zero(),
// Serial data chain for pad configuration
.serial_data_in(gpio_serial_link_2_shifted[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
.serial_data_out(gpio_serial_link_2[(`MPRJ_IO_PADS_2-`ANALOG_PADS_2-4):0]),
// User-facing signals
.user_gpio_out(user_io_out[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.user_gpio_oeb(user_io_oeb[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.user_gpio_in(user_io_in[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
// Pad-facing signals (Pad GPIOv2)
.pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_holdover(mprj_io_holdover[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_dm(mprj_io_dm[((`MPRJ_DIG_PADS)*3-10):((`MPRJ_IO_PADS_1-`ANALOG_PADS_1)*3)]),
.pad_gpio_outenb(mprj_io_oeb[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_out(mprj_io_out[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)]),
.pad_gpio_in(mprj_io_in[(`MPRJ_DIG_PADS-4):(`MPRJ_IO_PADS_1-`ANALOG_PADS_1)])
);
user_id_programming #(
.USER_PROJECT_ID(USER_PROJECT_ID)
) user_id_value (
`ifdef USE_POWER_PINS
.VPWR(vccd),
.VGND(vssd),
`endif
.mask_rev(mask_rev)
);
// Power-on-reset circuit
simple_por por (
`ifdef USE_POWER_PINS
.vdd3v3(vddio),
.vdd1v8(vccd),
.vss3v3(vssio),
.vss1v8(vssd),
`endif
.porb_h(porb_h),
.porb_l(porb_l),
.por_l(por_l)
);
// XRES (chip input pin reset) reset level converter
xres_buf rstb_level (
`ifdef USE_POWER_PINS
.VPWR(vddio),
.LVPWR(vccd),
.LVGND(vssd),
.VGND(vssio),
`endif
.A(rstb_h),
.X(rstb_l)
);
/* Spare logic for metal mask fixes */
// `define NUM_SPARE_BLOCKS (`MPRJ_DIG_PADS+4)
`define NUM_SPARE_BLOCKS 4
wire [(27*`NUM_SPARE_BLOCKS)-1:0] spare_xz_nc;
wire [(4*`NUM_SPARE_BLOCKS)-1:0] spare_xi_nc;
wire [(1*`NUM_SPARE_BLOCKS)-1:0] spare_xib_nc;
wire [(2*`NUM_SPARE_BLOCKS)-1:0] spare_xna_nc;
wire [(2*`NUM_SPARE_BLOCKS)-1:0] spare_xno_nc;
wire [(2*`NUM_SPARE_BLOCKS)-1:0] spare_xmx_nc;
wire [(2*`NUM_SPARE_BLOCKS)-1:0] spare_xfq_nc;
wire [(2*`NUM_SPARE_BLOCKS)-1:0] spare_xfqn_nc;
// Four spare logic blocks above the processor and one per GPIO
// control block.
(* keep *) spare_logic_block spare_logic [`NUM_SPARE_BLOCKS-1:0] (
`ifdef USE_POWER_PINS
.vccd(vccd_core),
.vssd(vssd_core),
`endif
.spare_xz(spare_xz_nc),
.spare_xi(spare_xi_nc),
.spare_xib(spare_xib_nc),
.spare_xna(spare_xna_nc),
.spare_xno(spare_xno_nc),
.spare_xmx(spare_xmx_nc),
.spare_xfq(spare_xfq_nc),
.spare_xfqn(spare_xfqn_nc)
);
`ifdef PnR
(* keep *) empty_macro empty_macro_0 ();
(* keep *) caravan_signal_routing caravan_signal_routing();
(* keep *) empty_macro_1 empty_macro_1 ();
(* keep *) empty_macro_1 empty_macro_2 ();
(* keep *) empty_macro_1 empty_macro_3 ();
(* keep *) empty_macro_1 empty_macro_4 ();
(* keep *) empty_macro_1 empty_macro_5 ();
(* keep *) empty_macro_1 empty_macro_6 ();
(* keep *) empty_macro_1 empty_macro_7 ();
(* keep *) empty_macro_1 empty_macro_8 ();
(* keep *) empty_macro_1 empty_macro_9 ();
(* keep *) empty_macro_1 empty_macro_10 ();
(* keep *) empty_macro_1 empty_macro_11 ();
`endif
endmodule
// `default_nettype wire