// SPDX-FileCopyrightText: 2020 Efabless Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // SPDX-License-Identifier: Apache-2.0 `default_nettype none /* *------------------------------------------------------------- * * user_analog_project_wrapper * * This wrapper enumerates all of the pins available to the * user for the user analog project. * *------------------------------------------------------------- */ /// sta-blackbox module user_analog_project_wrapper ( `ifdef USE_POWER_PINS inout vdda1, // User area 1 3.3V supply inout vdda2, // User area 2 3.3V supply inout vssa1, // User area 1 analog ground inout vssa2, // User area 2 analog ground inout vccd1, // User area 1 1.8V supply inout vccd2, // User area 2 1.8v supply inout vssd1, // User area 1 digital ground inout vssd2, // User area 2 digital ground `endif // Wishbone Slave ports (WB MI A) input wb_clk_i, input wb_rst_i, input wbs_stb_i, input wbs_cyc_i, input wbs_we_i, input [3:0] wbs_sel_i, input [31:0] wbs_dat_i, input [31:0] wbs_adr_i, output wbs_ack_o, output [31:0] wbs_dat_o, // Logic Analyzer Signals input [127:0] la_data_in, output [127:0] la_data_out, input [127:0] la_oenb, /* GPIOs. There are 27 GPIOs, on either side of the analog. * These have the following mapping to the GPIO padframe pins * and memory-mapped registers, since the numbering remains the * same as caravel but skips over the analog I/O: * * io_in/out/oeb/in_3v3 [26:14] <---> mprj_io[37:25] * io_in/out/oeb/in_3v3 [13:0] <---> mprj_io[13:0] * * When the GPIOs are configured by the Management SoC for * user use, they have three basic bidirectional controls: * in, out, and oeb (output enable, sense inverted). For * analog projects, a 3.3V copy of the signal input is * available. out and oeb must be 1.8V signals. */ input [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_in, input [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_in_3v3, output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_out, output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_oeb, /* Analog (direct connection to GPIO pad---not for high voltage or * high frequency use). The management SoC must turn off both * input and output buffers on these GPIOs to allow analog access. * These signals may drive a voltage up to the value of VDDIO * (3.3V typical, 5.5V maximum). * * Note that analog I/O is not available on the 7 lowest-numbered * GPIO pads, and so the analog_io indexing is offset from the * GPIO indexing by 7, as follows: * * gpio_analog/noesd [17:7] <---> mprj_io[35:25] * gpio_analog/noesd [6:0] <---> mprj_io[13:7] * */ inout [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] gpio_analog, inout [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] gpio_noesd, /* Analog signals, direct through to pad. These have no ESD at all, * so ESD protection is the responsibility of the designer. * * user_analog[10:0] <---> mprj_io[24:14] * */ inout [`ANALOG_PADS-1:0] io_analog, /* Additional power supply ESD clamps, one per analog pad. The * high side should be connected to a 3.3-5.5V power supply. * The low side should be connected to ground. * * clamp_high[2:0] <---> mprj_io[20:18] * clamp_low[2:0] <---> mprj_io[20:18] * */ inout [2:0] io_clamp_high, inout [2:0] io_clamp_low, // Independent clock (on independent integer divider) input user_clock2, // User maskable interrupt signals output [2:0] user_irq ); // Dummy assignment so that we can take it through the openlane flow assign io_out = io_in; // splitting the address space to user address space and debug address space // debug address space are the last 2 registers of user_project_wrapper address space wire wbs_cyc_i_user; wire wbs_ack_o_user; wire [31:0] wbs_dat_o_user; wire wbs_cyc_i_debug; wire wbs_ack_o_debug; wire [31:0] wbs_dat_o_debug; assign wbs_cyc_i_user = (wbs_adr_i[31:3] != 29'h601FFFF) ? wbs_cyc_i : 0; assign wbs_cyc_i_debug = (wbs_adr_i[31:3] == 29'h601FFFF) ? wbs_cyc_i : 0; assign wbs_ack_o = (wbs_adr_i[31:3] == 28'h601FFFF) ? wbs_ack_o_debug : wbs_ack_o_user; assign wbs_dat_o = (wbs_adr_i[31:3] == 28'h601FFFF) ? wbs_dat_o_debug : wbs_dat_o_user; assign wbs_ack_o_user = 0; debug_regs debug( .wb_clk_i(wb_clk_i), .wb_rst_i(wb_rst_i), .wbs_cyc_i(wbs_cyc_i_debug), .wbs_stb_i(wbs_stb_i), .wbs_we_i(wbs_we_i), .wbs_sel_i(wbs_sel_i), .wbs_adr_i(wbs_adr_i), .wbs_dat_i(wbs_dat_i), .wbs_ack_o(wbs_ack_o_debug), .wbs_dat_o(wbs_dat_o_debug) ); endmodule // user_analog_project_wrapper