SPI Master spi sdi (pin E9), spi csb (pin E8), spi sck (pin F8), and spi sdo (pin F9)

Table 14 reg_spi_config				
0x24000003	0x24000002	0x24000001	0x24000000	address
(undefine	ed, reads zero)	SPI master	value	
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0	bit

Configuration bit defintions

Bit 15	Housekeeping	0 = SPI master connected to external pins 1 = SPI master connected directly to housekeeping SPI
Bit 14	SPI interrupt enable	0 = interrupt disabled
		1 = interrupt enabled
Bit 13	SPI system enable	0 = SPI disabled
		1 = SPI enabled
Bit 12	stream	0 = apply/release CSB separately for each byte
		1 = apply CSB until stream bit is cleared (manually)
Bit 11	mode	0 = read and change data on opposite SCK edges
		1 = read and change data on the same SCK edge
Bit 10	invert SCK	0 = normal SCK
		1= inverted SCK
Bit 9	invert CSB	0 = normal CSB (low is active)
		1 = inverted CSB (high is active)
Bit 8	MLB	0 = msb first
		1 = lsb first
Bits 7–0	prescaler	count (in master clock cycles) of 1/2 SCK cycle (default value 2)

All configuration bits other than the prescaler default to value zero.

Table 15 reg_spi_data					
0x24000007	0x24000006	0x24000005	0x24000004	address	
	(undefined, reads ze	SPI data	value		
31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0	bit	

The byte at 0x24000004 holds the SPI data (either read or write)

Reading to and writing from the SPI master is simply a matter of setting the required values in the configuration register, and writing values to or reading from reg_spi_data. The protocol is similar to the UART. A write operation will stall the CPU if an incomplete SPI transmission is still in progress. Reading from the SPI will also stall the CPU if an incomplete SPI transmission is still in progress. There is no FIFO buffer for data. Therefore SPI reads and writes are relatively expensive operations that tie up the CPU, but will not lose or overwrite data. Note that there is no FIFO associated with the SPI master.