caravel/verilog/rtl/__user_analog_project_wrapp...

155 lines
5.2 KiB
Coq
Raw Permalink Normal View History

// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_analog_project_wrapper
*
* This wrapper enumerates all of the pins available to the
* user for the user analog project.
*
*-------------------------------------------------------------
*/
/// sta-blackbox
module user_analog_project_wrapper (
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
/* GPIOs. There are 27 GPIOs, on either side of the analog.
* These have the following mapping to the GPIO padframe pins
* and memory-mapped registers, since the numbering remains the
* same as caravel but skips over the analog I/O:
*
* io_in/out/oeb/in_3v3 [26:14] <---> mprj_io[37:25]
* io_in/out/oeb/in_3v3 [13:0] <---> mprj_io[13:0]
*
* When the GPIOs are configured by the Management SoC for
* user use, they have three basic bidirectional controls:
* in, out, and oeb (output enable, sense inverted). For
* analog projects, a 3.3V copy of the signal input is
* available. out and oeb must be 1.8V signals.
*/
input [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_in,
input [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_in_3v3,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-`ANALOG_PADS-1:0] io_oeb,
/* Analog (direct connection to GPIO pad---not for high voltage or
* high frequency use). The management SoC must turn off both
* input and output buffers on these GPIOs to allow analog access.
* These signals may drive a voltage up to the value of VDDIO
* (3.3V typical, 5.5V maximum).
*
* Note that analog I/O is not available on the 7 lowest-numbered
* GPIO pads, and so the analog_io indexing is offset from the
* GPIO indexing by 7, as follows:
*
* gpio_analog/noesd [17:7] <---> mprj_io[35:25]
* gpio_analog/noesd [6:0] <---> mprj_io[13:7]
*
*/
inout [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] gpio_analog,
inout [`MPRJ_IO_PADS-`ANALOG_PADS-10:0] gpio_noesd,
/* Analog signals, direct through to pad. These have no ESD at all,
* so ESD protection is the responsibility of the designer.
*
* user_analog[10:0] <---> mprj_io[24:14]
*
*/
inout [`ANALOG_PADS-1:0] io_analog,
/* Additional power supply ESD clamps, one per analog pad. The
* high side should be connected to a 3.3-5.5V power supply.
* The low side should be connected to ground.
*
* clamp_high[2:0] <---> mprj_io[20:18]
* clamp_low[2:0] <---> mprj_io[20:18]
*
*/
inout [2:0] io_clamp_high,
inout [2:0] io_clamp_low,
// Independent clock (on independent integer divider)
input user_clock2,
// User maskable interrupt signals
output [2:0] user_irq
);
// Dummy assignment so that we can take it through the openlane flow
assign io_out = io_in;
// splitting the address space to user address space and debug address space
// debug address space are the last 2 registers of user_project_wrapper address space
wire wbs_cyc_i_user;
wire wbs_ack_o_user;
wire [31:0] wbs_dat_o_user;
wire wbs_cyc_i_debug;
wire wbs_ack_o_debug;
wire [31:0] wbs_dat_o_debug;
assign wbs_cyc_i_user = (wbs_adr_i[31:3] != 29'h601FFFF) ? wbs_cyc_i : 0;
assign wbs_cyc_i_debug = (wbs_adr_i[31:3] == 29'h601FFFF) ? wbs_cyc_i : 0;
assign wbs_ack_o = (wbs_adr_i[31:3] == 28'h601FFFF) ? wbs_ack_o_debug : wbs_ack_o_user;
assign wbs_dat_o = (wbs_adr_i[31:3] == 28'h601FFFF) ? wbs_dat_o_debug : wbs_dat_o_user;
assign wbs_ack_o_user = 0;
debug_regs debug(
.wb_clk_i(wb_clk_i),
.wb_rst_i(wb_rst_i),
.wbs_cyc_i(wbs_cyc_i_debug),
.wbs_stb_i(wbs_stb_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_adr_i(wbs_adr_i),
.wbs_dat_i(wbs_dat_i),
.wbs_ack_o(wbs_ack_o_debug),
.wbs_dat_o(wbs_dat_o_debug)
);
endmodule // user_analog_project_wrapper