This commit is contained in:
Olivier Sirol 2002-09-24 08:44:44 +00:00
parent 76269320dc
commit 08c8a5ad27
10 changed files with 1847 additions and 2 deletions

View File

@ -1 +1 @@
SUBDIRS = src man1 man3 SUBDIRS = src man1 man3 man5

View File

@ -26,7 +26,7 @@ dnl Almost ten years since I wrote this stuff, I just can't
dnl believe it dnl believe it
dnl Date : 01/02/2002 dnl Date : 01/02/2002
dnl Author : Frederic Petrot <Frederic.Petrot@lip6.fr> dnl Author : Frederic Petrot <Frederic.Petrot@lip6.fr>
dnl $Id: configure.in,v 1.2 2002/04/03 16:21:11 ludo Exp $ dnl $Id: configure.in,v 1.3 2002/09/24 08:44:21 czo Exp $
dnl dnl
dnl dnl
AC_INIT(src/mut.h) AC_INIT(src/mut.h)
@ -48,4 +48,5 @@ Makefile
src/Makefile src/Makefile
man1/Makefile man1/Makefile
man3/Makefile man3/Makefile
man5/Makefile
]) ])

View File

@ -0,0 +1,2 @@
man_MANS = ap.5 catal.5 prol.5 vbe.5 vhdl.5 vst.5
EXTRA_DIST = $(man_MANS)

348
alliance/src/mbk/man5/ap.5 Normal file
View File

@ -0,0 +1,348 @@
.\" $Id: ap.5,v 1.1 2002/09/24 08:44:43 czo Exp $
.\" @(#)Labo.l 0.0 91/04/02 UPMC; Author: Vincent POUILLEY
.TH AP 5 "October 1, 1997" "ASIM/LIP6" "FILE FORMATS"
.SH NAME
ap \- Alliance physical format
.so man1/alc_origin.1
.SH BNF DESCRIPTION
file ::=
version
header
connectors
segments
instances
transistors
patterns
end_of_file
version ::= 'V ALLIANCE 2.2 SETUP : ' version_number
header ::= 'H ' name ',' file_type ',' abindex ',' nb_desc
',' date ',' index_beg ',' link_mode ','
bounding_box ',' [ abutment_box ]
/* name : name of the figure */
/* file_type : type of the file */
/* abindex : index of the abutment box */
/* nb_desc : number of descriptors */
/* date : saving file date */
/* index_beg : index of the begining of the linkage */
/* link_mode : indication on the linkage */
/* (update or not) */
/* bounding_box : coordinates and size of the */
/* bounding box */
/* abutment_box : coordinates and size, if defined, */
/* of the abutment box */
connectors ::= { connector }
connector ::= 'C ' index ',' x ',' y ',' w ',' orientation
',' layer ',' name ',' connector_type ','
nextindex ',' endnet
/* x, y, w : coordinates and size of the connector */
/* orientation : north, south, east, or west */
/* layer : layer of the connector */
/* name : name of the connector */
/* connector_type : input or output or ... */
/* nextindex : next index in the linkage */
/* endnet : end in the linkage of the net */
segments ::= { segment }
segment ::= 'S ' index ',' x ',' y ',' d ',' w ',' direction
',' layer ',' name ',' nextindex ',' endnet
/* x, y, d, w : coordinates and size of the segment */
/* direction : horizontaly or verticaly */
/* layer : layer of the segment */
/* name : name of the segment */
/* nextindex : next index in the linkage */
/* endnet : end in the linkage of the net */
instances ::= { instance [ connectors ] }
/* In case of updated linkage, an instance is followed */
/* by his connectors */
instance ::= 'I ' index ',' x ',' y ',' instance_name ','
model_name ',' geoop ',' nextindex ',' endnet
/* x, y : coordinates of the instance */
/* instance_name : local name of the instance */
/* model_name : name of the model */
/* geoop : geometric operation */
/* nextindex : next index in the linkage */
/* endnet : end in the linkage of the net */
transistors ::= { transistor }
transistor ::= 'T ' index ',' x ',' y ',' instance_name ','
trans_name ',' geoop ',' nextindex ',' endnet
/* x, y : coordinates of the transistor */
/* instance_name : name of the instance */
/* trans_name : generic name of the transistor */
/* geoop : geometric operation */
/* nextindex : next index in the linkage */
/* endnet : end in the linkage of the net */
patterns ::= { pattern }
pattern ::= 'M ' index ',' x ',' y ',' instance_name ','
pattern_name ',' int_index ',' nextindex ','
endnet
/* x, y : coordinates of the pattern */
/* instance_name : name of the instance of the pattern */
/* pattern_name : name of the pattern */
/* int_index : internal index of the pattern */
/* nextindex : next index in the linkage */
/* endnet : end in the linkage of the net */
end_of_file ::= 'EOF'
version_number ::= number
file_type ::= 'P'
abindex ::= index
nb_desc ::= number
date ::= day '/' month '/' year
index_beg ::= index
index ::= number
link_mode ::= 'A JOUR' | 'PAS A JOUR'
/* updated, not updated */
bounding_box ::= x ',' y ',' dx ',' dy
abutment_box ::= x ',' y ',' dx ',' dy
x ::= number
y ::= number
d ::= number
/* lenght */
w ::= number
/* width */
dx ::= number
dy ::= number
direction ::= 'H' | 'V'
/* horizontaly or verticaly */
orientation ::= 'NORD' | 'SUD' | 'EST' | 'OUEST'
/* North, south, east, west */
layer ::= 'POLY' | 'ALU1' | 'ALU2' | 'DIFN' | 'DIFP' |
'T_ALU1' | 'T_ALU2' | 'CAISSON_N' | 'CAISSON_P'
/* poly : polysilicium */
/* alu1 : first metal */
/* alu2 : second metal */
/* difn : N diffusion */
/* difp : P diffusion */
/* t_alu1 : first metal through route */
/* t_alu2 : second metal through route */
/* caisson_n : N bulk */
/* caisson_p : P bulk */
connector_type ::= 'IN' | 'OUT' | 'INOUT'
nextindex ::= index
endnet ::= 'NON' | 'FIN'
/* non : not the end of the net */
/* fin : end of the net */
model_name ::= name
instance_name ::= name
geoop ::= 'NOSYM' | 'ROT_P' | 'ROT_M' | 'SYM_X' | 'SYM_Y' |
'SYMXY' | 'SY_RP' | 'SY_RM'
/* nosym : no operation */
/* rot_p : rotates 90 degrees counter clockwise */
/* rot_m : rotates 90 degrees clockwise */
/* sym_y : y becomes -y */
/* sym_x : x becomes -x */
/* symxy : x becomes -x and y becomes -y */
/* sy_rp : x becomes -x then rotates 90 degrees */
/* counter clockwyse */
/* sy_rm : x becomes -x then rotates 90 degrees */
/* clockwyse */
trans_name ::= 'T' transistor_type '_' d '_' w
pattern_name ::= 'CONT_POLY' | 'CONT_DIF_N' | 'CONT_DIF_P' |
'CONT_VIA' | 'C_X_N' | 'C_X_P' | 'REF_CON'
| 'REF_REF'
/* cont_poly : poly alu1 contact */
/* cont_dif_n : alu1 difn contact */
/* cont_dif_p : alu1 difp contact */
/* cont_via : alu2 alu1 contact */
/* c_x_n : L shaped N transistor corner filling */
/* c_x_p : L shaped P transistor corner filling */
/* ref_con : kind of reference, for multi-acces */
/* connectors */
/* ref_ref : kind of reference, for all other uses */
int_index ::= index
transistor_type ::= 'P' | 'N'
number ::= { '0' | '1'| '2' | '3' | '4' | '5' |
'6' | '7'| '8' | '9' }
name ::= word
.SH EXAMPLES
.LP
.SS Example 1
This example is the physical design of a nand with two input. See
example 1 in the description of alc logical format for more
details.
.LP
.nf
V ALLIANCE 2.2 SETUP : 2
H na2_y,P,10,66,25/10/91,-1,PAS A JOUR,0,0,28,53,5,3,18,42
C 0,20,45,2,NORD,ALU2,i0,INOUT,-1,FIN
C 1,14,45,2,NORD,ALU2,f,INOUT,-1,FIN
C 2,8,45,2,NORD,ALU2,i1,INOUT,-1,FIN
C 3,20,3,2,SUD,ALU2,i0,INOUT,-1,FIN
C 4,14,3,2,SUD,ALU2,f,INOUT,-1,FIN
C 5,8,3,2,SUD,ALU2,i1,INOUT,-1,FIN
C 6,23,43,8,EST,ALU1,vdd,INOUT,-1,FIN
C 7,5,43,8,OUEST,ALU1,vdd,INOUT,-1,FIN
C 8,5,5,8,OUEST,ALU1,vss,INOUT,-1,FIN
C 9,23,5,8,EST,ALU1,vss,INOUT,-1,FIN
S 11,5,5,18,8,H,ALU1,vss,-1,FIN
S 12,8,2,12,2,H,DIFP,*,-1,FIN
S 13,8,27,11,3,V,DIFP,*,-1,FIN
S 14,20,27,11,3,V,DIFP,*,-1,FIN
S 15,20,22,6,2,V,ALU1,*,-1,FIN
S 16,19,22,1,2,H,ALU1,*,-1,FIN
S 17,5,43,18,8,H,ALU1,vdd,-1,FIN
S 18,8,33,10,2,V,ALU1,vdd,-1,FIN
S 19,8,22,6,2,V,ALU1,*,-1,FIN
S 20,8,22,1,2,H,ALU1,*,-1,FIN
S 21,14,30,5,2,V,ALU1,*,-1,FIN
S 22,14,13,17,1,V,ALU1,*,-1,FIN
S 23,14,13,6,1,H,ALU1,*,-1,FIN
S 24,17,22,2,2,H,POLY,*,-1,FIN
S 25,17,20,5,1,V,POLY,*,-1,FIN
S 26,9,22,2,2,H,POLY,*,-1,FIN
S 27,11,20,5,1,V,POLY,*,-1,FIN
S 28,8,45,12,2,H,DIFN,*,-1,FIN
S 29,5,39,18,26,H,CAISSON_N,*,-1,FIN
S 30,8,7,11,3,V,DIFN,*,-1,FIN
S 31,8,3,42,2,V,ALU2,i1,-1,FIN
S 32,14,3,42,2,V,ALU2,f,-1,FIN
S 33,14,27,11,3,V,DIFP,*,-1,FIN
S 34,20,7,11,3,V,DIFN,*,-1,FIN
S 35,14,7,11,3,V,DIFN,*,-1,FIN
S 36,20,3,42,2,V,ALU2,i0,-1,FIN
T 37,17,5,*,TN_15_1,NOSYM,-1,FIN
T 38,11,5,*,TN_15_1,NOSYM,-1,FIN
T 39,17,25,*,TP_15_1,NOSYM,-1,FIN
T 40,11,25,*,TP_15_1,NOSYM,-1,FIN
S 41,20,43,2,1,V,ALU1,vdd,-1,FIN
S 42,8,45,12,1,H,ALU1,vdd,-1,FIN
S 43,20,33,10,2,V,ALU1,vdd,-1,FIN
S 44,8,2,11,2,V,ALU1,vss,-1,FIN
S 45,8,2,12,2,H,ALU1,vss,-1,FIN
M 46,20,37,*,CONT_DIF_P,2,-1,FIN
M 47,8,37,*,CONT_DIF_P,2,-1,FIN
M 48,14,45,*,CONT_DIF_N,1,-1,FIN
M 49,14,2,*,CONT_DIF_P,2,-1,FIN
M 50,8,13,*,CONT_DIF_N,1,-1,FIN
M 51,20,13,*,CONT_DIF_N,1,-1,FIN
M 52,8,33,*,CONT_DIF_P,2,-1,FIN
M 53,20,33,*,CONT_DIF_P,2,-1,FIN
M 54,9,22,*,CONT_POLY,0,-1,FIN
M 55,19,22,*,CONT_POLY,0,-1,FIN
M 56,8,28,*,CONT_VIA,3,-1,FIN
M 57,20,28,*,CONT_VIA,3,-1,FIN
M 58,14,22,*,CONT_VIA,3,-1,FIN
M 59,8,8,*,CONT_DIF_N,1,-1,FIN
M 60,20,2,*,CONT_DIF_P,2,-1,FIN
M 61,8,2,*,CONT_DIF_P,2,-1,FIN
M 62,20,45,*,CONT_DIF_N,1,-1,FIN
M 63,8,45,*,CONT_DIF_N,1,-1,FIN
M 64,14,29,*,CONT_DIF_P,2,-1,FIN
M 65,14,35,*,CONT_DIF_P,2,-1,FIN
EOF
.fi
.SS Example 2
This example is the physical design of a small circuit including
three nand.
.LP
.nf
V ALLIANCE 2.2 SETUP : 2
H test_nand,P,-1,57,12/ 4/92,10,A JOUR,3,1,61,60,
C 0,12,2,2,SUD,ALU2,a,IN,8,FIN
C 1,24,2,2,SUD,ALU2,b,IN,21,FIN
C 2,30,2,2,SUD,ALU2,c,IN,19,FIN
C 3,42,2,2,SUD,ALU2,d,IN,31,FIN
C 4,54,2,2,SUD,ALU2,s,OUT,36,FIN
C 5,4,47,1,EST,ALU1,vdd,IN,39,FIN
C 6,4,8,1,EST,ALU1,vss,IN,7,FIN
I 7,9,7,I1,na2_y,NOSYM,33,FIN
C 8,24,49,2,NORD,ALU2,i0,INOUT,11,NON
C 9,18,49,2,NORD,ALU2,f,INOUT,18,FIN
C 10,12,49,2,NORD,ALU2,i1,INOUT,13,NON
C 11,24,7,2,SUD,ALU2,i0,INOUT,41,NON
C 12,18,7,2,SUD,ALU2,f,INOUT,9,NON
C 13,12,7,2,SUD,ALU2,i1,INOUT,40,NON
C 14,27,47,8,EST,ALU1,vdd,INOUT,15,NON
C 15,9,47,8,OUEST,ALU1,vdd,INOUT,46,NON
C 16,9,9,8,OUEST,ALU1,vss,INOUT,45,NON
C 17,27,9,8,EST,ALU1,vss,INOUT,16,NON
I 18,27,7,I2,na2_y,NOSYM,35,FIN
C 19,42,49,2,NORD,ALU2,i0,INOUT,22,NON
C 20,36,49,2,NORD,ALU2,f,INOUT,29,FIN
C 21,30,49,2,NORD,ALU2,i1,INOUT,24,NON
C 22,42,7,2,SUD,ALU2,i0,INOUT,43,NON
C 23,36,7,2,SUD,ALU2,f,INOUT,20,NON
C 24,30,7,2,SUD,ALU2,i1,INOUT,42,NON
C 25,45,47,8,EST,ALU1,vdd,INOUT,26,NON
C 26,27,47,8,OUEST,ALU1,vdd,INOUT,14,NON
C 27,27,9,8,OUEST,ALU1,vss,INOUT,17,NON
C 28,45,9,8,EST,ALU1,vss,INOUT,27,NON
I 29,45,7,I3,na2_y,NOSYM,-1,FIN
C 30,60,49,2,NORD,ALU2,i0,INOUT,52,NON
C 31,54,49,2,NORD,ALU2,f,INOUT,34,NON
C 32,48,49,2,NORD,ALU2,i1,INOUT,51,NON
C 33,60,7,2,SUD,ALU2,i0,INOUT,30,NON
C 34,54,7,2,SUD,ALU2,f,INOUT,44,NON
C 35,48,7,2,SUD,ALU2,i1,INOUT,32,NON
C 36,63,47,8,EST,ALU1,vdd,INOUT,37,NON
C 37,45,47,8,OUEST,ALU1,vdd,INOUT,25,NON
C 38,45,9,8,OUEST,ALU1,vss,INOUT,28,NON
C 39,63,9,8,EST,ALU1,vss,INOUT,38,NON
S 40,12,2,5,2,V,ALU2,*,0,NON
S 41,24,2,5,2,V,ALU2,*,1,NON
S 42,30,2,5,2,V,ALU2,*,2,NON
S 43,42,2,5,2,V,ALU2,*,3,NON
S 44,54,2,5,2,V,ALU2,*,4,NON
S 45,4,8,5,1,H,ALU1,*,6,NON
S 46,4,47,5,1,H,ALU1,*,5,NON
S 47,18,55,42,1,H,ALU1,x,53,NON
S 48,36,60,12,1,H,ALU1,y,54,NON
S 49,18,49,6,2,V,ALU2,*,12,NON
S 50,36,49,11,2,V,ALU2,*,23,NON
S 51,48,49,11,2,V,ALU2,*,55,NON
S 52,60,49,6,2,V,ALU2,*,56,NON
M 53,18,55,*,CONT_VIA,3,49,NON
M 54,36,60,*,CONT_VIA,3,50,NON
M 55,48,60,*,CONT_VIA,3,48,NON
M 56,60,55,*,CONT_VIA,3,47,NON
EOF
.fi
.SH SEE ALSO
.BR Alliance (1),
.BR alc (1),
.BR MBK (1)
.so man1/alc_bug_report.1

View File

@ -0,0 +1,141 @@
.\" $Id: catal.5,v 1.1 2002/09/24 08:44:43 czo Exp $
.\" @(#)catal.2 2.11 91/08/22 ; Labo masi cao-vlsi; Author : Frederic Petrot
.TH CATAL 5 "October 1, 1997" "ASIM/LIP6" "ALLIANCE FILE FORMATS"
.if t \{\
.so man1/alc_contents.mac
.XS \n%
.ti 0.2i
catal
.XE \}
.SH NAME
catal \- catalog file format
.SH SYNOPSYS
.nf
.if n \{\
.ft B \}
.if t \{\
.ft CR \}
#include <mutnnn.h>
$MBK_WORK_LIB/$MBK_CATAL_NAME
($MBK_CATA_LIB)/$MBK_CATAL_NAME
.ft R
.fi
.so man1/alc_origin.1
.SH DESCRIPTION
.TP
Predefined libraries
The environment variable \fBMBK_CATA_LIB\fP(1) defines several paths
corresponding to the \fIAlliance\fP predefined cell libraries.
Each library is in one unix directory.
.RS
.TP 20
\fIsclib\fP
standard cell library
.TP 20
\fIdplib\fP
data-path compiler library
.TP 20
\fIgrlib\fP
register file generator library
.TP 20
\fIbslib\fP
barrel shifter generator library
.TP 20
\fIgalib\fP
fast adder generator library
.TP 20
\fIrolib\fP
high speed rom generator library
.TP 20
\fIralib\fP
static ram generator library
.PP
Only the standart cell library \fBsclib\fP(1) is available in the Alliance 1.1
release.
.LP
For each library, a special file named \fBCATAL\fP describes the library
contents.
This file must be in the same directory as the library cells.
For the \fBAlliance\fP tools, the cells described in the predefined libraries
are read only.
.RE
.TP
The working library
The environment variable \fBMBK_WORK_LIB\fP(1) defines the current working
directory.
Its default value is \fB.\fP (dot).
This directory will contain the user cells, seen as read write by the
\fIAlliance\fP tools.
It is not necessary to describe all the user cells in a catalog file.
But the user can locally define a catalog file for the working library.
The local catalog file name is set by the environment variable
\fBMBK_CATAL_NAME\fP(1), \fBCATAL\fP by default.
\fIAlliance\fP will concatenate all catalog files of the predefined libraries
and the optional catalog file of the working library to access the attributs
of each cell.
.TP
Cells attributs
A cell may be characterized by four attributs:
.RS
.TP 20
\fBC\fP
this attribut means that the cell is a leaf cell in the context of a recursive
flatten, for either the layout or netlist view.
The cell will not be flattened.
.TP
\fBG\fP
this attribut means that the cell has an existing equivalent \fIGDS\fP or
\fICIF\fP representation.
It is used by the symbolic to real translation tool, \fBs2r\fP(1), to
make direct replacements.
.TP
\fBF\fP
this attribut means that the cell is used as a feed through by a router.
For example, the standard cell router, \fBscr\fP(1), will use such cells to
fill gaps in the cells rows.
.TP
\fBD\fP
this attribut is used only in the user defined catalog.
As the user is not allowed to delete a cell in a predefined library, it is
possible to virtually remove a cell of a predefined library with the \fBD\fP
attribut in the user defined catalog.
.RE
.SH EXAMPLE
.ta 3n 6n 9n 12n 15n 18n 21n
.nf
.if n \{\
.ft B \}
.if t \{\
.ft CR \}
a2_y C
a2p_y C
a3_y C
a3p_y C
n1_y C
na2_y C
p1_y C
tie_y C
\&.
\&.
\&.
p1_y G
\&.
\&.
\&.
tie_y F
.ft R
.fi
.SH SEE ALSO
.BR mbk (1),
.BR sclib (1),
.BR incatalog (3),
.BR incatalogdelete (3),
.BR incatalogfeed (3),
.BR incataloggds (3),
.BR MBK_CATA_LIB (1),
.BR MBK_CATAL_NAME (1),
.BR MBK_WORK_LIB (1).
.so man1/alc_bug_report.1

View File

@ -0,0 +1,14 @@
===================================================================
Modification le : Tue Sep 24 10:44:33 CEST 2002
Par : czo
===================================================================
Update of /users/outil/alliance/cvsroot/alliance/src/mbk/man5
In directory bip.lip6.fr:/users/soft5/newlabo/dev/alliance/src/mbk/man5
Log Message:
Directory /users/outil/alliance/cvsroot/alliance/src/mbk/man5 added to the repository
===================================================================

View File

@ -0,0 +1,819 @@
.\" $Id: prol.5,v 1.1 2002/09/24 08:44:44 czo Exp $
.\" @(#)prol.5 2.11 91/08/22; Labo Cao-vlsi; Author : Frederic Petrot & Franck Wajsburt
.TH PROL 5 "October 1, 1997" "ASIM/LIP6" "RDS FILE FORMATS"
.SH NAME
\fBprol\fP \- define the rules for symbolic to real layout translation
.so man1/alc_origin.1
.SH DESCRIPTION
This file describes the rules used by the \fBmbk\fP(1) to \fBrds\fP translator.
In the following file, symbolic layout objects are refered as \fBmbk\fP(1)
objects, \fBmbk\fP(1) being the internal data structure that supports
symbolic representation.
On the other hand, \fBrds\fP is a data structure describing mainly rectangles,
and is therefore used for real layout representation.
.PP
Some syntaxic remarques on the way to write the file follow.
The case of identifiers is not significant, so NDIF is equivalent to NdiF.
Comments are allowed anywhere in the file, using the \fIsharp\fP (#) as start of
comment, and \fInewline\fP as end of comment.
A line begining with a \fIsharp\fP will be ignored, and a line containing a
\fIsharp\fP will be read up to the character preeceding it.
A \fInewline\fP can be escaped using the \fIbackslash\fP (\) followed by
the \fInewline\fP.
If some character, spaces or tabs for example, follow the \fIbackslash\fP,
chances are that a syntax error will be issued.
.PP
First, some important process parameters are needed, the physical grid step,
that is the least common multiple of all the technologies values in terms of
layout distances, and the
.ie t \(*l,
.el lambda,
computed from a careful observation of the process design rules.
.br
Then, a set of tables is needed, to describe how to translate a symbolic
object, belonging to the \fBmbk\fP(1) world, and a set of layout rectangles,
in \fBrds\fP.
.br
Each table has a special meaning, and its parametrization exend beeing not
full, some borders are to be evocated.
Several type of table exists indeed.
Some are needed for object translation, others for post treatment
parametrization, others to define cif or gds identifiers regarding rds ones.
.br
Many things seem to be parametrizable, but in fact, mostly, if not only,
numbers, names in cif and gds translation tables, and boolean value in post
treatement may be changed without problems.
.PP
For any table, if some layer is not applicable, it can simply be omitted.
The default action is `do nothing', or use a value of 0.0 for all entries.
.SH LAYERS AND PATTERNS
Since the goal of this file is to allow translation from \fBmbk\fP(1)
to \fBrds\fP, the meaning of the layers in both representation shall be known.
.br
\s+2\fBMbk layers\fP\s-2
.RS 5
.TP 20
NWELL
minimum width 4 ; N-well.
.TP 20
PWELL
minimum width 4 ; P-well.
.TP 20
NTIE
minimum width 2 ; N diffusion for polarisation.
.TP 20
PTIE
minimum width 2 ; P diffusion for polarisation.
.TP 20
NDIF
minimum width 2 ; N diffusion for transistor.
.TP 20
PDIF
minimum width 2 ; P diffusion for transistor.
.TP 20
NTRANS
minimum width 1 (gate width) ; N transistor.
.TP 20
PTRANS
minimum width 1 (gate width) ; P transistor.
.TP 20
POLY
minimum width 1 ; polysilicon, not transistor gate.
.TP 20
ALU1
minimum width 1 ; first level of metal.
.TP 20
ALU2
minimum width 2 ; second level of metal.
.TP 20
ALU3
minimum width 3 ; third level of metal (unused).
.TP 20
TPOLY
minimum width 1 ; through route for POLY.
.TP 20
TALU1
minimum width 1 ; through route for ALU1.
.TP 20
TALU2
minimum width 2 ; through route for ALU2.
.TP 20
TALU3
minimum width 3 ; through route for ALU3 (unused).
.RE
\s+2\fBMbk patterns\fP\s-2
.RS 5
.TP 20
CONT_POLY
cut pattern from ALU1 to POLY
.TP 20
CONT_VIA
cut pattern from ALU1 to ALU2
.TP 20
CONT_VIA2
cut pattern from ALU2 to ALU3
.TP 20
CONT_DIF_N
cut pattern from ALU1 to NDIF
.TP 20
CONT_DIF_P
cut pattern from ALU1 to PDIF
.TP 20
CONT_BODY_N
cut pattern from ALU1 to NTIE
.TP 20
CONT_BODY_P
cut pattern from ALU1 to PTIE
.TP 20
C_X_N
corner primitive for L or S shaped N transistor
.TP 20
C_X_P
corner primitive for L or S shaped P transistor
.RE
\s+2\fBRds layers\fP\s-2
.RS 5
.TP 20
RDS_NWELL
N-well (or N-tub), bulk for P transistors.
.TP 20
RDS_PWELL
P-well (or P-tub), bulk for N transistors.
.TP 20
RDS_NDIF
use for symbolic extractor as equivalent of NDIF.
.TP 20
RDS_PDIF
use for symbolic extractor as equivalent of PDIF.
.TP 20
RDS_NTIE
use for symbolic extractor as equivalent of NTIE.
.TP 20
RDS_PTIE
use for symbolic extractor as equivalent of PTIE.
.TP 20
RDS_POLY
polysillicon run, for cell internal wirering.
.TP 20
RDS_GATE
transistor polysillicon, for gate.
.TP 20
RDS_TPOLY
polysillicon feed through.
Indicate to a router that a track is free of polysillicon.
.TP 20
RDS_CONT
hole in the isolating layer between polysillicon or active area and
first metal level.
.TP 20
RDS_ALU1
first metal level run.
.TP 20
RDS_TALU1
first metal level feed through.
Indicates to a router that a track is free of first metal level.
.TP 20
RDS_VIA1
hole in the isolating layer between first metal level and second metal level.
.TP 20
RDS_ALU2
second metal level run.
.TP 20
RDS_TALU2
second metal level feed through.
Indicate to a router that a track is free of second metal level.
.TP 20
RDS_VIA2
hole in the isolating layer between second metal level and third metal level.
.TP 20
RDS_ALU3
third metal level run.
.TP 20
RDS_TALU3
third metal level feed through.
Indicate to a router that a track is free of third metal level.
.TP 20
RDS_ALU4
fourth metal.
(Used only for GaAs designs.)
.TP 20
RDS_VIA3
hole in the isolating layer between third metal level and fourth metal level.
(Used only for GaAs designs.)
.TP 20
RDS_ACTIV
active area dropped in N or P implant to build transistors.
.TP 20
RDS_NIMP
implant area, (sometime known as N select), for N transistors.
.TP 20
RDS_PIMP
implant area, (sometime known as P select), for P transistors.
.TP 20
RDS_CPAS
passivation, used in pads.
.TP 20
RDS_USER0
user defined purpose layer.
(May be used for DRC logical operations.)
.TP 20
RDS_USER1
user defined purpose layer.
(May be used for DRC logical operations.)
.TP 20
RDS_USER2
user defined purpose layer.
(May be used for DRC logical operations.)
.TP 20
RDS_REF
virtual layer for the representation of symbolic references
.TP 20
RDS_ABOX
virtual layer needed to indicate the abutment box of a model.
.TP 20
RDS_DEFAULT
default layer, shall never appear anywhere.
.RE
.SH FILE DESCRIPTION
The following lines describe the file, entry by entry, specifying what is
expected.
.TP 20
\s+2\fBPhysical grid\fP\s-2
.ie t \{\
.ta 9m
.ft CR \}
.el \{\
.ta 25m
.ft B \}
DEFINE PHYSICAL_GRID .5
.ft R
.br
This statement defines the minimum grid spacing enforced by the foundry.
.TP
\s+2\fBLambda\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
DEFINE LAMBDA 1
.ft R
.br
This defines the value of the
.ie n lambda
.el \(*l
in
.ie n microns.
.el \(*m.
This value, like any other one in the rest of the file \fImust\fP be a multiple
of the
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
PHYSICAL_GRID\fR.
.TP
\s+2\fBSegment translation table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE MBK_TO_RDS_SEGMENT\fR
.br
This table contains all the informations needed to translate a symbolic
segment of a given layer onto one, two or three real rectangles of
specified layers.
An example of this table is given below, with values needed for a
technology where one
.ie n lambda
.el \(*l
is equal to 1.05
.ie microns
.el \(*m
and the design grid is set to 0.15
.ie n microns.
.el \(*m.
.PP
.ie n \{\
.ft B \}
.el \{\
.ft CR \}
.nf
TABLE MBK_TO_RDS_SEGMENT
NWELL RDS_NWELL VW 3.15 6.30 0.0 ALL
NDIF RDS_ACTIV VW 0.60 -0.90 0.0 ALL \\
RDS_NIMP VW 2.10 2.10 0.0 ALL
PDIF RDS_ACTIV VW 0.60 -0.90 0.0 ALL \\
RDS_PIMP VW 2.10 2.10 0.0 ALL
NTIE RDS_ACTIV VW 0.60 -0.90 0.0 ALL \\
RDS_NIMP VW 1.20 0.30 0.0 ALL
PTIE RDS_ACTIV VW 0.60 -0.90 0.0 ALL \\
RDS_PIMP VW 1.20 0.30 0.0 ALL
NTRANS RDS_GATE VW 0.00 0.15 0.0 ALL \\
RDS_ACTIV VW -1.50 4.35 0.0 ALL \\
RDS_NIMP VW 0.00 7.35 0.0 ALL
PTRANS RDS_GATE VW 0.00 0.15 0.0 ALL \\
RDS_ACTIV VW -1.50 4.35 0.0 ALL \\
RDS_PIMP VW 0.00 7.35 0.0 ALL
POLY RDS_POLY VW 0.60 0.15 0.0 ALL
ALU1 RDS_ALU1 VW 0.90 0.75 0.0 ALL
ALU2 RDS_ALU2 VW 0.90 -0.30 0.0 ALL
TPOLY RDS_TPOLY VW 0.60 0.15 0.0 ALL
TALU1 RDS_TALU1 VW 0.90 0.75 0.0 ALL
TALU2 RDS_TALU2 VW 0.90 -0.30 0.0 ALL
END
.fi
.ft R
.RS 20
The first column is the \fBmbk\fP(1) layer name to be translated, then there
one or more groups of 6 columns each.
For each physical rectangle, there are 3 parameters :
.br
\- rds layer name
.br
\- One of \fBVW\fR, \fBLCW\fR, \fBRCW\fR that indicates the `type' of segment
to be generated
.br
\- physical length extension: \fIDLR\fP
.br
\- physical width oversize: \fIDWR\fP
.br
\- offset from symbolic axis: \fIOFFSET\fP
.br
\- tools for which the generated rectangle is applicable:
\fBALL\fR, \fBDRC\fR (for the symbolic design rule checker,
see \fBdruc\fR(1)), \fBEXT\fR
(for the symbolic extractor, see \fBlynx\fR(1))
These parameters are meant regarding the symbolic segment.
.RE
.TP 20
\s+2\fBConnectors translation table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE MBK_TO_RDS_CONNECTOR\fR
.br
This table contains all the informations needed to translate a symbolic
connector of a given layer onto one \fIsingle\fP real rectangle.
.br
An example of this table is given below, with values needed for a
technology where one
.ie n lambda
.el \(*l
is equal to 1.05
.ie microns
.el \(*m
and the design grid is set to 0.15
.ie n micron.
.el \(*m.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE MBK_TO_RDS_CONNECTOR
POLY RDS_POLY 0.6 0.15
ALU1 RDS_ALU1 0.9 0.75
ALU2 RDS_ALU2 0.9 -0.3
END
.fi
.ft R
.RS 20
One symbolic connector is translated into one
physical rectangle using 3 parameters :
.br
\- rds layer name
.br
\- physical width oversize: \fIDWR\fP
.br
\- physical extension on each side of the abutment box: \fIDER\fP
.RE
.RS 20
It is discouraged to use active or well layers as connectors while
designing.
.RE
.TP 20
\s+2\fBVias translation table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE MBK_TO_RDS_VIA\fR
.br
This table contains all the informations needed to translate a symbolic
via of a given layer onto one to four real rectangles of user
specified layers.
An example of this table is given below, with values needed for a
technology where one
.ie n lambda
.el \(*l
is equal to 1.05
.ie microns
.el \(*m
and the design grid is set to 0.15
.ie n micron.
.el \(*m.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE MBK_TO_RDS_VIA
CONT_BODY_N RDS_ALU1 3 RDS_CONT 1.5 RDS_ACTIV 3.3 RDS_NIMP 4.5
CONT_BODY_P RDS_ALU1 3 RDS_CONT 1.5 RDS_ACTIV 3.3 RDS_PIMP 4.5
CONT_DIF_N RDS_ALU1 3 RDS_CONT 1.5 RDS_ACTIV 3.3 RDS_NIMP 6.3
CONT_DIF_P RDS_ALU1 3 RDS_CONT 1.5 RDS_ACTIV 3.3 RDS_PIMP 6.3
CONT_POLY RDS_ALU1 3 RDS_CONT 1.5 RDS_POLY 3
CONT_VIA RDS_ALU1 3 RDS_VIA1 1.5 RDS_ALU2 3
CONT_VIA2
C_X_N RDS_GATE 1.2 RDS_ACTIV 5.4 RDS_NIMP 8.4
C_X_P RDS_GATE 1.2 RDS_ACTIV 5.4 RDS_PIMP 8.4
END
.fi
.br
.ft R
.RS 20
This table describes how to translate one symbolic via,
to 2, 3 or 4 physical rectangles.
The table is defined as follow :
The first column is the \fBmbk\fP(1) via name to translate, then there are
4 groups of 2 columns each, which correspond to four potential targets
\fBrds\fP rectangles of user specified layer.
In one group the first column is the \fBrds\fP layer name, the second one is
the \fBrds\fP layer width.
The rectangle is centered on the contact coordinates, and expands in the four
direction of half the given width value.
.RE
.TP 20
\s+2\fBDenotching values table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE S2R_OVERSIZE_DENOTCH\fR
.br
This table contains the oversize value needed to erase notches.
All the rectangles of the same \fBrds\fP layer are oversized by this value
and then merged alltogether and undersized by the same value.
An example of this table is given below.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE S2R_OVERSIZE_DENOTCH
RDS_NWELL 3.00
RDS_POLY 0.75
RDS_GATE 0.75
RDS_ALU1 0.75
RDS_ALU2 0.75
RDS_ACTIV 1.05
RDS_NIMP 2.55
RDS_PIMP 2.55
END
.fi
.ft R
.RS 20
For some \fBrds\fP layers, like RDS_NWELL, RDS_NIMP and RDS_PIMP, two
rectangles distant from less or equal the minimun spacing design
rule must be merged in a single one.
In this case, the oversize value is equal to the minimum spacing rule
between two edges of the same layer divided by 2.
.br
Some other \fBrds\fP layers, like RDS_ALU1, ..., must not be merged.
In this case, the oversize value is equal to the minimum spacing rule
between two edges of the same layer divided by 2, minus the physical
grid.
.br
Some layers never create notch, such as RDS_VIA1 or RDS_CONT, so
the oversize value is null.
.RE
.TP 20
\s+2\fBRing width\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE S2R_BLOC_RING_WIDTH\fR
.br
s2r must merge segments to erase notches even if those segments
are in two different hierarchical level blocs, for example, two
blocs abuted side to side.
So, it must be able to fetch segments inside blocs.
It is not needed to flatten the entire bloc, only a ring is
necessary. The ring is computed from the abutment box edges or from
the envelop edges of the overlapping blocs.
.br
An example of this table is given below.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE S2R_BLOC_RING_WIDTH
RDS_NWELL 6
RDS_POLY 1.8
RDS_GATE 1.8
RDS_ALU1 1.8
RDS_ALU2 1.8
RDS_ACTIV 2.4
RDS_NIMP 1.8
RDS_PIMP 1.8
END
.fi
.br
.ft R
.RS 20
The normal ring width is the minimum spacing design rule between two
segments of the same rds layer.
.br
A zero means that no ring is wanted for that rds layer.
.RE
.TP 20
\s+2\fBMinimum real layer width design rule\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE S2R_MINIMUM_LAYER_WIDTH\fR
.br
This table contains the minimum width of each rds layer.
It is used by s2r to avoid creating rectangles below the minimum
required, during the merge operation.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE S2R_MINIMUM_LAYER_WIDTH
RDS_NWELL 6
RDS_POLY 1.2
RDS_GATE 1.2
RDS_ALU1 1.8
RDS_ALU2 1.8
RDS_ACTIV 1.2
RDS_NIMP 2.7
RDS_PIMP 2.7
END
.fi
.ft R
.RS 20
A zero can be specified, when it is sure that this layer is
not to be merged, because not treated by s2r.
.RE
.TP 20
\s+2\fBPost treatment configuration table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE S2R_POST_TREAT\fR
.br
This table indicates to s2r which rds layers must be post-processed.
Precicely if a layer is only to be be translated, or translated
and then post-processed.
Translated means translate and fit from symbolic to real, and
postreated that it should also be merged with its neighbours.
For example, it's not necesary to merge cut layers such as RDS_CONT.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE S2R_POST_TREAT
RDS_NWELL TREAT NULL
RDS_PWELL NOTREAT NULL
RDS_NDIF NOTREAT NULL
RDS_PDIF NOTREAT NULL
RDS_NTIE NOTREAT NULL
RDS_PTIE NOTREAT NULL
RDS_POLY TREAT NULL
RDS_GATE TREAT NULL
RDS_TPOLY NOTREAT NULL
RDS_CONT NOTREAT NULL
RDS_ALU1 TREAT NULL
RDS_TALU1 NOTREAT NULL
RDS_VIA1 NOTREAT NULL
RDS_ALU2 TREAT NULL
RDS_TALU2 NOTREAT NULL
RDS_VIA2 NOTREAT NULL
RDS_ALU3 NOTREAT NULL
RDS_TALU3 NOTREAT NULL
RDS_ACTIV TREAT NULL
RDS_NIMP TREAT RDS_PIMP
RDS_PIMP TREAT RDS_NIMP
RDS_REF NOTREAT NULL
RDS_ABOX NOTREAT NULL
END
.fi
.ft R
.RS 20
If set to NOTREAT, the first parameter indicates a translation.
If set to TREAT, then the layer is translated and then post-treated
.br
To post-process creates problems with the implantation layers.
It is possible to have a good symbolic layout (no symbolic design
rule errors), and have a resulting layout with DRC violations,
created by a poor post-processing.
It is due to the fact that these layers do not exist in symbolic,
so it is not possible to apply them drc verifications.
If two rectangles of these layers are too close (less than a
given value), they must be merged.
Generally, there is no problem, but when corners are too near it is
impossible to merge with the classical algorithm,
\fIexpand\fP, \fImerge\fP, then \fIshrink\fP.
.br
Rectangles, known as scotches, are created to merge anyway,
like this :
.RE
.ie t \{\
.ft CR \}
.el \fB
.nf
+--------+ +--------+ +-----+--+
|////////| |////////| |/////|//|
|//+--+//| |//+--+//| |//+--|//|
|//| |//| gives -> |//| |//| or -> |//| |//|
|//+--+//| +-----------+ |//+--|//|
|////////| |///////////| |/////|//|
+--------+ +--------+//| +-----|//|
^ +--------+ |//|-----+ |//+--------+
| |////////| |//|/////| |///////////|
o--->|//+--+//| |//|--+//| +-----------+
| |//| |//| |//| |//| |//| |//|
implant |//+--+//| |//|--+//| |//|--+//|
areas |////////| |//|/////| |//|/////|
+--------+ +--+-----+ +--+-----+
.fi
.ft R
.RS 20
A N implantation layer should not overlap a P implantation one.
We say that P implantations and N implantations are
complementary. A scotch will not be created if it intersects with
any of the rectangles of the complementary layers.
.br
If a record contains in the second field a rds layer different from
NULL, it indicates the complementary layer.
This implies that if it is a layer that might need scotches
the algorithm will try not to intersect with it when creating
scotches.
.RE
.TP 20
\s+2\fBExtraction graph table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE LYNX_GRAPH\fR
.br
This table gives the connexion graph between the rds layers.
For each layer, the list of the connectable layers is written.
Up to now, the extractor works only on translated symbolic layout.
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE LYNX_GRAPH
RDS_NDIF RDS_CONT RDS_NDIF
RDS_PDIF RDS_CONT RDS_PDIF
RDS_NTIE RDS_CONT RDS_NTIE
RDS_PTIE RDS_CONT RDS_PTIE
RDS_POLY RDS_CONT RDS_GATE RDS_POLY
RDS_GATE RDS_POLY RDS_GATE
RDS_CONT RDS_PDIF RDS_NDIF RDS_POLY RDS_PTIE RDS_NTIE RDS_ALU1 RDS_CONT
RDS_ALU1 RDS_CONT RDS_VIA1 RDS_ALU1 RDS_REF
RDS_REF RDS_CONT RDS_VIA1 RDS_ALU1 RDS_REF
RDS_VIA1 RDS_ALU1 RDS_ALU2 RDS_VIA1
RDS_ALU2 RDS_VIA1 RDS_VIA2 RDS_ALU2
RDS_VIA2 RDS_ALU2 RDS_ALU3 RDS_VIA2
RDS_ALU3 RDS_VIA2 RDS_ALU3
END
.fi
.TP 20
\s+2\fBExtraction capacitance table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE LYNX_CAPA\fR
.br
This table gives the capacitance in picofarad per square lambda of each
layer.
The extractor computes only substrat capacitances.
The capacitances associated with gate or drain or sources are not computed.
On the other hand the transistor sizes (area, perimeter) are computed.
(This is to ensure compatibility with Spice).
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE LYNX_CAPA
RDS_POLY 1.00e-04
RDS_ALU1 0.50e-04
RDS_ALU2 0.25e-04
END
.fi
.TP 20
\s+2\fBCif translation table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE CIF_LAYER\fR
.br
This table gives the equivalence between internal layers and their
representation in the \fBcif\fP file format.
A table may look like that (for MOSIS layers):
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE CIF_LAYER
RDS_NWELL CWN
RDS_PWELL CWP
RDS_ACTIV CAA
RDS_NIMP CSN
RDS_PIMP CSP
RDS_POLY CPG
RDS_GATE CPG
RDS_CONT CCA
RDS_ALU1 CMF
RDS_VIA1 CVA
RDS_ALU2 CMS
END
.fi
.ft R
.TP 20
\s+2\fBGds translation table\fP\s-2
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
TABLE GDS_LAYER\fR
.br
This table gives the equivalence between internal layers and there
representation in the \fBgds\fP file.
A table may look like that (for CMP layers):
.PP
.ie t \{\
.ft CR \}
.el \{\
.ft B \}
.nf
TABLE GDS_LAYER
RDS_NWELL 1
RDS_POLY 11
RDS_GATE 11
RDS_CONT 16
RDS_ALU1 17
RDS_VIA1 18
RDS_ALU2 19
RDS_ACTIV 2
RDS_NIMP 12
RDS_PIMP 14
RDS_CPAS 20
END
.fi
.ft R
.SH SEE ALSO
Insights on the symbolic to real translation process are available in
the file \fBmapping.ps\fR
.so man1/alc_bug_report.1

283
alliance/src/mbk/man5/vbe.5 Normal file
View File

@ -0,0 +1,283 @@
.\" $Id: vbe.5,v 1.1 2002/09/24 08:44:44 czo Exp $
.\" @(#)VBE.5 1.0 Jan 28 1992 UPMC ; VUONG H.N.
.TH VBE 5 "October 1, 1997" "ASIM/LIP6" "VHDL subset of ASIM/LIP6/CAO-VLSI lab."
.SH NAME
.PP
\fBvbe\fP
.br
VHDL behavioural subset.
.so man1/alc_origin.1
.SH DESCRIPTION
.PP
This document describes the ALLIANCE VHDL subset for behavioural data
flow descriptions.
.PP
\fBCONCURRENT STATEMENTS\fP
.br
In a data flow architecture only concurrent statements (except \fIprocess\fP)
are supported. All sequential statements including loops, signal assignment,
etc .. are to be banished.
.PP
Allowed concurrent statements are:
.RS
simple signal assignment
.br
conditional signal assignment
.br
selected signal assignment
.br
concurrent assert statement
.br
block statement
.RE
.PP
\fBBUSES\fP
.br
When using concurrent statements, an ordinary signal can be assigned only once.
The value of the signal must be explicitly defined by the signal assignment
(for example, in a selected signal assignment the value of the target signal
is to be defined for \fBevery\fP value that the select expression can take).
.PP
The above constraint may be felt as a hard restriction when designing
distributed controled hardware (precharged line, distributed multiplexer,
etc ...). To hurdle this, VHDL uses a special feature: guarded-resolved signals.
.PP
A resolved signal is a signal declared with a resolved subtype (see vhdl(5)).
A resolved subtype is a type combined with a resolution function. A resolved
signal can be assigned by multiple signal assignments. Depending on the value
of each driver, the resolution function determines the effective value of the
signal.
.PP
A guarded signal is a resolved signal with drivers that can be disconected.
A guarded signal must be assigned inside a \fIblock\fP statement through a
\fIguarded\fP signal assignment.
.PP
A distributed multiplexer may be described as :
.nf
signal Distributed_Mux : mux_bit bus;
begin
first_driver_of_mux : block (Sel1 = '1')
begin
Distributed_Mux <= guarded Data1;
end block;
second_driver_of_mux : block (Sel2 = '1')
begin
Distributed_Mux <= guarded Data2;
end block;
.fi
.PP
\fBLATCHES and REGISTERS\fP
.br
Sequential elements must be explicitly declared using the type \fIreg_bit\fP
or \fIreg_vector\fP (and must be of kind \fIregister\fP). A sequential element
must be assigned inside a \fIblock\fP statement by a \fIguarded\fP signal
assignment.
.PP
Rising edge triggered D flip flop :
.nf
signal Reg : reg_bit register;
begin
flip_flop : block (ck = '1' and not ck'STABLE)
begin
Reg <= guarded Din;
end block;
.fi
.PP
Level sensitive latch:
.nf
signal Reg : reg_bit register;
begin
latch : block (ck = '1')
begin
Lat <= guarded Din;
end block;
.fi
.PP
In both cases, the guard expression must depend only on one signal if the
description is to be processed by the logic synthetizer (bop + scmap).
.PP
The following operators are only supported: \fBnot, and, or, xor, nor, nand,
&, =, /=\fP
.PP
They can be applied on all types supported by the subset. Other standard VHDL
operators (+, -, >, <, ...) have not been implemented in the present release.
.\" .PP
.\" \fBTIMING\fP
.\" .br
.\" A VHDL description can be used for:
.\" .RS
.\" a) validation of a specification (behavioural)
.\" .br
.\" b) direct synthesis of hardware (behavioural)
.\" .br
.\" c) validation of a structural netlist
.\" .RE
.\"
.\" .PP
.\" Detailed timing information is not available at design time (cases a and b).
.\" .PP
.\" For an extracted netlist (case c) the detailed timing analysis is performed
.\" by a specific tool: the static timing analyser TAS (not delivered in the
.\" present version of ALLIANCE).
.\"
.\" .PP
.\" Thus, timing specification is not supported by the ALLIANCE VHDL subset.
.\" Simulation is performed in zero delay mode.
.PP
\fBTIMING\fP
.br
Timing information can be specified in behavioural descriptions using
\fIafter clauses\fP. However, those delays are currently only used for
simulation. \fIAfter clauses\fP are supported but not used for synthesis
and formal proof.
.PP
\fIAfter clauses\fP in block statements (for guarded signal assignments)
are not supported for sequential elements (signals of kind register), but
supported for bus elements (signals of kind bus). This is because the VHDL
default \fIdisconnection time\fP is null and this can generate
unexpected behavior for sequential elements.
.PP
In selected signal assignment, only uniform delays are supported
(the same \fIAfter clause\fP in all assignments).
.PP
\fITransport option\fP is not supported. All delays are inertial delays.
.PP
\fBASSERT STATEMENT\fP
.br
Only two severity levels are supported in concurrent
assert statements:
.TP 15
\fBwarning\fP
print a warning message if the assert condition is not satisfied.
.TP 15
\fBerror\fP
print an error message if the assert condition is not satisfied. Then, stop
the simulation.
.PP
Assert statements are ignored by the logic synthesis tool.
.PP
\fBDON'T CARE\fP
.br
A special feature has been introduced in order to allow "don't care"
specification when the logic synthtizer is targeted (\fB Beware : this feature
is incompatible with the IEEE VHDL standard !!\fP).
.PP
An output can be assigned to the value 'D' (don't care). This is taken into
account by the logic synthesis tool in the optimization process. When the value
of an output is 'D' the logic synthesis tool may turn it into a '1' or a '0'.
.PP
A 'D' value is understood as a '0' by the logic simulator (asimut).
.PP
\fBARRAIES\fP
.br
Arraies other than bit_vector, reg_vector, mux_vector and wor_vector are not
supported.
.SH EXAMPLES
.PP
Here is the description of an adder with an accumulator register.
.nf
entity add_accu is
port (
clk : in bit;
command : in bit;
data_in : in bit_vector (31 downto 0);
data_out : out bit_vector (31 downto 0);
cry_out : out bit;
vdd : in bit;
vss : in bit
);
end add_accu;
architecture data_flow of add_accu is
signal eff_data : bit_vector (31 downto 0); -- effective operande
signal adder_out : bit_vector (31 downto 0); -- adder's result
signal adder_cry : bit_vector (32 downto 0); -- adder's carry
signal accum_reg : reg_vector (31 downto 0) register; -- accumulator
constant initialize : bit := '0';
constant accumulate : bit := '1';
begin
-- select the effective operand
with command select
eff_data <= X"0000_0000" when initialize,
accum_reg when accumulate;
-- compute the result out of the adder
adder_out <= eff_data xor data_in xor adder_cry;
adder_cry (0) <= '0';
adder_cry (32 downto 1) <= (eff_data and adder_cry (31 downto 0)) or
(data_in and adder_cry (31 downto 0)) or
(aff_data and data_in ) ;
-- write the result into the register on the rising edge of clk
write : block (clk = '1' and not clk'STABLE)
begin
accum_reg <= guarded adder_out;
end block;
-- assign outputs
cry_out <= adder_cry (32);
data_out <= accum_reg ;
-- check power supply
assert (vdd = '1' and vss = '0')
report "power sypply is missing"
severity ERROR;
end;
.fi
.SH SEE ALSO
.PP
vhdl(5), vst(5), bop(1), glop(1), scmap(1), c4map(1), asimut(1), proof(1), yagle(1)
.so man1/alc_bug_report.1

View File

@ -0,0 +1,133 @@
.\" $Id: vhdl.5,v 1.1 2002/09/24 08:44:44 czo Exp $
.\" @(#)vhdl.5 1.0 Jan 28 1993 UPMC ; VUONG H.N.
.TH VHDL 5 "October 1, 1997" "ASIM/LIP6" "VHDL subset of ASIM/LIP6/CAO-VLSI lab."
.SH NAME
.PP
\fBALLIANCE VHDL Subset\fP
.so man1/alc_origin.1
.SH DESCRIPTION
.PP
The ALLIANCE VHDL subset is dedicated to digital synchronous circuits design.
The same subset is used for:
.RS
logic simulation (asimut)
.br
logic synthesis (bop, scmap, glop)
.br
functionnal abstraction (yagle)
.br
formal proof (proof)
.RE
.PP
The ALLIANCE VHDL subset is fully compatible with the IEEE VHDL standard Ref.
1076 (1987). That means that a VHDL description using the ALLIANCE subset can
be simulated with any full-VHDL commercial compiler-simulator.
.PP
Here follows the main restrictions of the ALLIANCE subset.
.PP
The VHDL description of a circuit is made of two seperate parts: the external
view and the internal view.
.PP
The external view defines the name of the circuit and its interface. The
interface of a circuit is a list of ports. Each port is specified by its name,
its mode, its type, its constraint for an array and, its kind.
.PP
The mode of a port depends only on the manner the port is used inside the
circuit (in the internal view of the circuit). If the value of a port is to be
read in the view of the description, the port must be declared with the mode
\fIin\fP. If the value of a port is to be written by the internal view, the
port must be declared with the mode \fIout\fP. If both above conditions are
satisfied the port must be declared with the mode \fIinout\fP.
.PP
Only \fIstructural\fP and \fIbehavioural data flow\fP are supported as internal
view.
.PP
In order to allow automatic translation from structural VHDL to other netlist
formats (EDIF, ALLIANCE, COMPASS, ...) it is not possible to mix behavioural
and structural description. Of course, a circuit, a subcircuit or a cell can
have two different descriptions:
.RS
a structural view may be defined in a file with a .vst extension (see vst(5)).
.br
a behavioural data flow description may be defined in a file with a .vbe
extension (see vbe(5)).
.RE
.PP
A typical VHDL model will be made of a hierarcical structural description (a
hierarchy of structural files) and, for each leaf cell, a behavioural
description.
.PP
In a behavioural description, only concurrent statements (except \fIprocess\fP)
are supported. Up to now, sequential statements are not allowed by the ALLIANCE
VHDL compiler.
.\" .PP
.\" As behavioural descriptions are used for both logic simulation and logic
.\" synthesis, detailed timing information is not needed. That means, within a
.\" concurrent statement no delay can be specified (\fIafter\fP is not supported).
.PP
Timing information can be specified in behavioural descriptions using \fIAfter clauses\fP. However, those delays are currently only used for simulation. \fIAfter clauses\fP are supported but not used for synthesis and formal proof.
.PP
A predefined set of types has been defined (other user defined types are not
supported):
.TP 15
\fBbit\fP
the predefined standard bit type ('0' or '1')
.TP 15
\fBbit_vector\fP
array of bit
.TP 15
\fBmux_bit\fP
a resolved subtype of bit using the \fImux\fP resolution function. This
function checks that only one driver is actually connected to a signal. The
effective value of the signal is the value of the active driver. If all drivers
are disconnected, the value of the signal is '1' (pull up). A signal of type
mux_bit must be declared with the kind \fIbus\fP.
.TP 15
\fBmux_vector\fP
array of mux_bit
.TP 15
\fBwor_bit\fP
a resolved subtype of bit using the \fIwor\fP resolution function. This
function allows a signal be driven by more than one driver. All active drivers
have to drive the same value. The effective value of the signal is the value
of active drivers. If all drivers are disconnected, the value of the signal
is '1' (pull up). A signal of type wor_bit must be declared with the kind
\fIbus\fP.
.TP 15
\fBwor_vector\fP
array of wor_bit
.TP 15
\fBreg_bit\fP
a resolved subtype of bit using the \fIreg\fP resolution function. This
function checks that only one driver is actually connected to a signal. The
effective value of the signal is the value of the active driver. A signal of
type reg_bit must be declared with the kind \fIregister\fP (which makes the
signal keep its previous value when all drivers are disconnected).
.TP 15
\fBreg_vector\fP
array of reg_bit
.PP
In the next ALLIANCE release the VHDL subset will be largely extended
(sequential statements, user defined types) .
.SH SEE ALSO
.PP
vst(5), vbe(5), asimut(1), bop(1), glop(1), scmap(1), c4map(1), proof(1), yagle(1)
.so man1/alc_bug_report.1

104
alliance/src/mbk/man5/vst.5 Normal file
View File

@ -0,0 +1,104 @@
.\" $Id: vst.5,v 1.1 2002/09/24 08:44:44 czo Exp $
.\" @(#)VST.5 1.0 Jan 28 1992 UPMC ; VUONG H.N.
.TH VST 5 "October 1, 1997" "ASIM/LIP6" "VHDL subset of ASIM/LIP6/CAO-VLSI lab."
.SH NAME
.PP
\fBvst\fP
.br
VHDL structural subset.
.so man1/alc_origin.1
.SH DESCRIPTION
.PP
This document describes the ALLIANCE VHDL subset for structural descriptions.
.PP
The declaration part of a structural description includes signal decalarations
and component declarations.
.PP
An internal signal can be declared of any type supported by the present VHDL
subset except reg_bit and reg_vector.
.PP
A component must be declared with exactly the same port description as in its
entity specification. This means that local ports are to be declared with the
same name, type and kind and in the same order.
.PP
A structural description is a set of component instanciation statements.
Instances' ports are connected to each other trough signals in a port map
specification. Both explicit and implicit port map specifications are supported
by the ALLIANCE VHDL subset.
.PP
The present version of the VHDL compiler does not allow unconnected ports (the
\fIopen\fP mode is not supported).
.PP
Only the concatenation operator (&) can be used in the actual part (effective
signal conntected to a formal port) of a port map specification.
.SH EXAMPLES
.PP
Here is the description of an adder with an accumulator register.
.nf
entity add_accu is
port (
clk : in bit;
command : in bit;
data_in : in bit_vector (31 downto 0);
data_out : out bit_vector (31 downto 0);
cry_out : out bit;
vdd : in bit;
vss : in bit
);
end add_accu;
architecture structural of add_accu is
signal eff_data : bit_vector (31 downto 0); -- effective operande
signal adder_out : bit_vector (31 downto 0); -- adder's result
signal accu_out : bit_vector (31 downto 0); -- accumulator
component adder
port (a : in bit_vector (31 downto 0);
b : in bit_vector (31 downto 0);
res : out bit_vector (31 downto 0));
end component;
component and_32
port (a : in bit_vector (31 downto 0);
cmd : in bit;
res : out bit_vector (31 downto 0));
end component;
component falling_edge_reg
port (din : in bit_vector (31 downto 0);
clk : in bit;
dout : out bit_vector (31 downto 0));
end component;
begin
my_adder : adder
port map (a => eff_data, b => accu_out, res => adder_out);
my_mux : and_32
port map (cmd => command, a => accu_out, res => eff_data);
my_reg : falling_edge_reg
port map (din => adder_out, clk => clk, dout => accu_out);
end;
.fi
.SH SEE ALSO
.PP
vhdl(5), vbe(5), asimut(1)
.so man1/alc_bug_report.1