
ALLIANCE TUTORIAL
Pierre & Marie Curie University

Year 2001 - 2002

PART 2
Logical synthesis

Ak Frederic Lam Kai-shing

PART 2 Logical synthesis

The goal of this tutorial is to allow a rapid use of some ALLIANCE
tools, developed at the LIP6 laboratory of Pierre and Marie Curie Uni-
versity.

The tutorial is composed of 3 great parts independent from each other:

• VHDL modeling and simulation
• Logical synthesis
• Place and route

Before any handling you must ensure that all the environment vari-
ables are correctly positioned and that the Alliance tools are readily
available when invoking them at the prompt. All the tools used in this
tutorial are documented at least with a manual page.

ALLIANCE TUTORIAL 2

PART 2 Logical synthesis

Contents

1 Introduction
2 Finite states machine Synthesis

2.1 Introduction
2.2 MOORE and MEALY automatons
2.3 SYF and VHDL
2.4 Example
2.5 Step to follow

3 Automat for digicode
3.1 Step to follow

4 Logical synthesis and structural optimization
4.1 Introduction

4.1.1 Logical synthesis
4.1.2 Solve fan-out problems
4.1.3 Long path visualization
4.1.4 Netlist Checking
4.1.5 Scan-path insertion

4.2 Step to follow
4.2.1 Mapping on predefined cells
4.2.2 Netlist visualization
4.2.3 Boolean network optimization
4.2.4 Netlist optimization
4.2.5 Netlist checking
4.2.6 Scan-path insertion in the netlist

5 AMD 2901
5.1 exercise
5.2 step to follow
5.3 error found

6 AMD2901 structure
7 Part controls realization

7.1 genlib description example
7.2 provided files checking
7.3 Part controls description

8 Data-path realization
8.1 Example of description with genlib macro-functions

ALLIANCE TUTORIAL 3

PART 2 Logical synthesis

8.2 Data-path description
9 The Makefile or how to manage tasks dependency

9.1.1 Rules
9.1.2 models Rules
9.1.3 Variables definitions
9.1.4 Predefined variables

10 Appendix: Diagrams as an indication but not-in conformity with
the behavioral

ALLIANCE TUTORIAL 4

PART 2 Logical synthesis

PART 2 :
Logical Synthesis

All the files used in this part are located under
/tutorial/synthesis/src directory.
This directory contents four subdirectories and one Makefile :

• Makefile
• amdbug

– Makefile
– amdfindbug.pat : tests file
– several files amd.vbe : behavioral description

• meter

– Makefile
– cpt5.fsm : description in fsm
– cpt5.pat : tests file

• digicode

– Makefile
– digicode.fsm : description in fsm
– paramfile.lax : use to modify the fan-out
– digicode.pat : tests file
– scan.path : make it possible to observe registers contents

• amd2901

– Makefile
– amd2901_ctl.vbe : behavioral description of control part
– amd2901_dpt.vbe : behavioral description of data-path
– amd2901_ctl.c : file .c of control part
– amd2901_dpt.c : file .c of data-path
– amd2901_core.c : file .c of heart
– amd2901_chip.c : file .c of the circuit with their pads
– pattern.pat : tests file

ALLIANCE TUTORIAL 5

PART 2 Logical synthesis

1 Introduction

The goal of this section is to present some ALLIANCE tools which are:

• Logical synthesis tools SYF, BOOM, BOOG, LOON, SCAPIN ;
• Data-path generation toolGENLIB ;
• netlist graphic visual display XSCH ;
• formal proof Tools FLATBEH, PROOF;
• The simulator ASIMUT ;

The first two sections will relate to the netlist generation and vali-
dation methods of predefined cells. Indeed, even if it is acquired that
the tools for ALLIANCE generation function correctly, the validation of
each generated view is essential . It makes it possible to limit the cost
and the time of the design.
The two other sections will be reserved for the data-path generation
and the control part of AMD2901.

2 Finite states machine Synthesis

2.1 Introduction

A pure combinative circuit does not have internal registers. So its out-
puts depend only on its primary inputs. Conversely, a synchronous se-
quential circuit having internal registers sees its outputs changing ac-
cording to its inputs but also memorized values in its registers. Conse-
quently, the circuit state at the moment t+1 also depends on its state at
the moment t. This type of circuit can be modelled by a finite states
machine.

ALLIANCE TUTORIAL 6

PART 2 Logical synthesis

Figure 1: Automat

2.2 MOORE and MEALY automaton

The MOORE automaton sees the state of its outputs changing only on
clock-edges. The inputs can thus move between two clock-edges with-
out modifying the outputs. But in the case of MEALY automaton, the
variation of the inputs can modify at any time the value of the outputs.
It will be essential to separate the generation function from the transi-
tion function (Moore automaton). For that, two distinct processes will
materialize the next state calculation and its update.

Figure 2: Automats

ALLIANCE TUTORIAL 7

PART 2 Logical synthesis

2.3 SYF and VHDL

In order to describe the automatons, we use a particular VHDL style
description that defines architecture "fsm" (finite-state machine).

The corresponding file also has the extension fsm . From this file, the
tool SYF makes the automaton synthesis and transforms this abstracted
automaton into a Boolean network. SYF thus generates a VHDL file
with the format vbe . Like the majority of the tools used in alliance, it is
necessary to position some variables before using SYF . To know them,
you defer to the man of syf .

2.4 Example

In order to familiarize with the syntax description of a fsm file, an ex-
ample of three "1" successive meter is presented. Its vocation is to detect
for example on a connection series, a sequence of three "1" successive.
The states graph is represented on the figure 3.
The fsm format is also described in a man . Think of consulting it.

ALLIANCE TUTORIAL 8

PART 2 Logical synthesis

entity circuit is
port (

ck, i, reset, vdd, vss : in bit;
o : out bit

);
end circuit;
architecture MOORE of circuit is

type ETAT _TYPE is (E0, E1, E2, E3);
signal EF, EP : ETAT _TYPE;

- - pragma CURRENT _STATE EP
- - pragma NEXT _STATE EF
- - pragma CLOCK CK

begin
process (EP, i, reset)
begin

if (reset=’1’) then
EF<=E0;

else
case EP is

when E0 =
if (i=’1’) then

EF <= E1;
else

EF <= E0;
end if;

when E1 =
if (i=’1’) then

EF <= E2;
else

EF <= E0;
end if;

when E2 =
if (i=’1’) then

EF <= E3;
else

EF <= E0;
end if;

when E3 =
if (i=’1’) then

EF <= E3;
else

EF <= E0;
end if;

when others = assert (’1’)
report "etat illegal";

end case;
end if;
case EP is

when E0 =
o <= ’0’ ;

when E1 =
o <= ’0’ ;

when E2 =
o <= ’0’ ;

when E3 =
o <= ’1’ ;

when others = assert (’1’)
report "etat illegal";

end case;
end process;
process(ck)
begin

if (ck=’1’ and not ck’stable) then
EP <= EF;

end if;
end process;

end MOORE;

ALLIANCE TUTORIAL 9

PART 2 Logical synthesis

Figure 3: states graph of three "1" successive meter

2.5 Step to follow

Now used the example to write the description of a five "1" successive
meter in aMoore automaton.

• position the environment variables .
• launch SYF with the coding options -a, -J, -m, -O, -R and by using

the options -CEV .

-a Uses "Asp" as encoding algorithm.

-j Uses "Jedi" as encoding algorithm.

-m Uses "Mustang" as encoding algorithm.

-o Uses the one hot encoding algorithm.

-r Uses distinct random numbers for state encoding.

> syf -CEV -a <fsm_source>

• visualize the files enc . Those files contains one state name followed
by its hexadecimal code.
• write test vectors and simulate under ASIMUT .

ALLIANCE TUTORIAL 10

PART 2 Logical synthesis

3 Automaton for digicode

We want to realize a chip for digicode whose keyboard is represented
on the figure 4. The specifications are as follows:

Figure 4: Clavier

• The numbers from 0 to 9 are coded in natural binary on 4 bits. A
and B are coded in the following way:

– A: 1010
– B: 1011

• The digicode work in two modes:

– Day Mode: The door opens while pressing on "O" or if entering
the good code

– Night Mode: The door opens only if the code is correct.

To distinguish the two cases an external "timer" calculates the sig-
nal day which is equal to ’ 1 ’ between 8h00 and 20h00 and ’ 0 ’
otherwise.
• The digicode order an alarm as soon as one of the entered numbers

is not the good.
• The digicode automaton returns in idle state if nothing returned

to the keyboard at the end of 5 seconds or if alarm sounded during
2mn - signal reset -. For that it receives a signal from reset external
timer.

ALLIANCE TUTORIAL 11

PART 2 Logical synthesis

• The chip work at 10MHz.
• Any pressure of a key of the keyboard is accompanied by the signal

press_kbd . This one announces to the chip that the output data of
the keyboard is valid. This signal is to 1 during a clock-edge.

The code is 53A17 (but you can take the code who agrees to you).
The interface of the automaton is as follows:

• in ck
• in reset
• in day
• in i[3:0]
• in O
• in press_kbd
• out door
• out alarm

Figure 5: Digicode states graph

3.1 Step to follow

• draw the states graph .
• write it in the fsm format .

ALLIANCE TUTORIAL 12

PART 2 Logical synthesis

• synthesize with SYF by using the coding options -a, -j, -m, -o, -r
and by using the options -CEV.

> syf -CEV -a <fsm_source>

• write test vectors.
• simulate with ASIMUT all the behavioral views obtained.

ALLIANCE TUTORIAL 13

PART 2 Logical synthesis

4 Logical synthesis and structural optimization

4.1 Introduction

4.1.1 Logical synthesis

The logical synthesis makes it possible to obtain a netlist gates starting
from a Boolean network (format vbe). Several tools are available:

• The tool BOOM allows the Boolean network optimization before
synthesis.
• The tool BOOG makes it possible to synthesize a netlist by using

a library with predefined cells such as SXLIB . The netlist can
be either with the format vst or with the format al . Check the
environment variable MBK_OUT_LO=vst.

4.1.2 Solve fan-out problems

The netlists generated contain sometimes intern signals attacking a sig-
nificant number of gates (large FAN-OUT). This results in a clock edges
deterioration . In order to solve these problems, the tool LOON re-
places the cells having a fan-out too large by more powerful cells or
insert buffers.

4.1.3 Long path visualization

At any moment, the netlists can be graphically edited . The tool XSCH
makes it possible to visualize the longest path thanks to the files xsc
and vst generated at the same time by BOOG and LOON .

ALLIANCE TUTORIAL 14

PART 2 Logical synthesis

Figure 6: Simplified timing diagram

Equivalent resistor R of the figure 6 is calculated on the totality of
the transistors of the AND belonging to the active way. In the same
way, the capacity C is calculated on the busy transistors of the NOR
corresponding to the way between i0 and the output of the cell.

4.1.4 Netlist Checking

The netlist must be validated. For that, you have ASIMUT , but also the
tool PROOF which proceeds to a formal comparison of two behavioral
descriptions (vbe). The tool FLATBEH makes it possible to obtain the
new behavioral file starting from the netlist .

4.1.5 Scan-path insertion

With SCAPIN its possible to introduce a scan-path into the netlist. The
scan-path allow you to observe in test mode the contains of all regis-
ters of your circuit. The path is created by changing the registers into
mux_register or inserting a multiplexer in front of these registers.

ALLIANCE TUTORIAL 15

PART 2 Logical synthesis

4.2 Step to follow

4.2.1 Mapping on predefined cells

For each Boolean network obtained previously:

• position the environment variables;
• synthesize the structural view:

> boog <vbe_source>

• launch BOOG on different netlists to observe SYF options influ-
ence .
• validate the work of BOOG with ASIMUT , the netlists obtained

with test vectors which were used to validate the initial Boolean
network.

4.2.2 Netlist visualization

• The long path is described in the xsc file produced by boog .
The XSCH tool will use it to colour its way. To launch the graphic
editor:
>xsch -I vst -l <vst_source>

• The red color indicates the critical path.
• If you use the option ’ - slide ’ which makes it possible to post a

whole of netlists, do not forget to press on the keys ’ + ’ or ’ - ’ to
edit your files!

4.2.3 Boolean network optimization

To analyze Boolean optimization effect :

• launch Boolean optimization with the tool BOOM by asking an
optimization in surface then in delay ;

>boom -V <vbe_source> <vbe_destination>

• test BOOM with the various algorithms - S, - J, - B, - G, - p...,
the options specifie which algorithm has to be used for the boolean
optimization.

ALLIANCE TUTORIAL 16

PART 2 Logical synthesis

• compare the literal number after factorization.
• remake the Boolean networks synthesis with the tool BOOG and

compare the results.

4.2.4 Netlist optimization

For all the structural view obtained previously:

• launch LOON with the command:
>loon <vst_source> <vst_destination> <lax_param>

• carry out an fanout optimization by modifying the fanout factor in
the option file .lax .The optimization mode and level are able to be
change in this file.
• impose capacities values on the outputs.

4.2.5 Netlist checking

to carry out on the best of your netlists:

• validate the work of LOON by using under ASIMUT the netlists
obtained with the test vectors which were used to validate the initial
behavioral view.
• Make a formal checking of your netlist by comparing it with the

origin behavioral file resulting from SYF :

>flatbeh <vst_source> <vbe_dest>

>proof -d <vbe_origine> <vbe_dest>

Compare if the files are quite identical.

4.2.6 Scan-path insertion in the netlist

to carry out on the best of your netlists:

• insert a scan-path connecting all the digicode registers.

>scapin -VRB <vst_source> <path_file> <vst_dest>

ALLIANCE TUTORIAL 17

PART 2 Logical synthesis

Example of .path file

BEGIN_PATH_REG

cs_0
cs_1
cs_2
END_PATH_REG

BEGIN_CONNECTOR

SCAN_IN scin
SCAN_OUT scout
SCAN_TEST test
END_CONNECTOR

• build ten patterns to test the scan-path and simulate with ASIMUT
.

ALLIANCE TUTORIAL 18

PART 2 Logical synthesis

5 AMD 2901

5.1 exercise

For beginning here is an exercise to understand AMD2901 functional-
ity, to conceive it in the continuation of this tutorial. To explore all the
functionalities, you will have to validate the behavioral view that will
be provided. The DATA will be find in appendix.

The validation will have to be carried out using test vectors gener-
ated with genpat. The vectors must be carefully written to enable you
to detect a BUG insidiously inserted in your behavioral file .vbe . Ap-
proximately 500 patterns will be enough for debugging your AMD 2901.

5.2 step to follow

It is necessary to generate test vectors which methodically test all the
parts and function of the AMD following the specifications contained in
the documentation.

• filling and reading the 16 boxes memories of the RAM .
• test the RAM shifter
• filling and reading of the accumulator.
• test the accumulator shifter .
• test the arithmetic and logical operations (addition, subtraction, over-

flow, carry, propagation, etc...) .
• exhaustive test of the inputs conditioned by I[2:0].
• data-path test vectors

5.3 error found

you can notice that for the RAM shifter values "101" and "111" of i[8:6],
the AMD causes a shift of the accumulator that should not take place.

for the values "000" and "001" of i[8:6], we have the writing of ALU in
the RAM .

The AMD carries out the operation R xor S for I[5:3]=111 instead of
carrying out the operation for I[5:3]=110.

It carries out the operation /(R Xor S) for I[5:3]=110 instead of I[5:3]=111.

ALLIANCE TUTORIAL 19

PART 2 Logical synthesis

6 AMD2901 structure

We break up Amd2901 into 2 blocks:

Figure 7: Amd2901 Organization

• The data-path contains the Amd2901 regular parts , the registers
and the arithmetic logic unit.
• The control part contains irregular logic, the instructions decoding

and the flags calculation.

ALLIANCE TUTORIAL 20

PART 2 Logical synthesis

We will use the following hierarchical description:

Figure 8: Hierarchy

The provided files are as follows:

• amd2901_ctl.vbe, behavioral description of the part controls
• amd2901_dpt.vbe, behavioral description of the part data-path
• amd2901_ctl.c, file C of the part controls
• amd2901_dpt.c, file C of the part of data path
• amd2901_core.c, file C of the heart
• amd2901_chip.c, file C of the circuit containing the pads
• pattern.pat, tests file
• CATAL, file listing the behavioral files, to be modify
• Makefile, to automate the generation

ALLIANCE TUTORIAL 21

PART 2 Logical synthesis

7 Part controls realization

This part of irregular logic will be carried out with the cells of the library
SXLIB.

Description in VHDL netlist (i.e .vst) of the various gates hazardous
when the circuit contain several thousands of them. there exists a tool
for procedural signals lists generation , genlib . It is then enough to
describe in C using macro-functions the signals list in gates of the block.
The library of macro-functions C is called genlib . The genlib exe-
cution produces a description VHDL with the format .VST . For more
details, consult the manual (man) on genlib .

7.1 genlib description example

here a simple circuit:

The file genlib correspondent is as follows:

ALLIANCE TUTORIAL 22

PART 2 Logical synthesis

#include <genlib.h>
main()

{
GENLIB_DEF_LOFIG("circuit");

/* Connectors declaration */
GENLIB_LOCON("a",IN,"a1");
GENLIB_LOCON("b",IN,"b1");
GENLIB_LOCON("c",IN,"c1");
GENLIB_LOCON("d",IN,"d1");
GENLIB_LOCON("e",IN,"e1");
GENLIB_LOCON("s",OUT,"s1");

GENLIB_LOCON("vdd",IN,"vdd");
GENLIB_LOCON("vss",IN,"vss");

/* Logical gates instanciation */
GENLIB_LOINS("na2_x1","nand2","a1","c1","f1","vdd","vss",0);
GENLIB_LOINS("no2_x1","nor2","b1","e1","g1","vdd","vss",0);
GENLIB_LOINS("o2_x2","or2","d1","f1","h1","vdd","vss",0);
GENLIB_LOINS("inv_x1","inv","g1","i1","vdd","vss",0);
GENLIB_LOINS("a2_x2","and2","h1","i1","s1","vdd","vss",0);

/* Save of the figure */
GENLIB_SAVE_LOFIG();
exit(0);

}

Save it under the name “ circuit.c ” then compile the file with the
command :
> genlib circuit

You obtain the file “ circuit.vst ”. (if is not it, it may be that your
environment is badly configured for genlib). In this case, pass to the
section “ Part controls description ”.

7.2 provided files checking

Create the file CATAL in your simulation directory . It must contain
the following lines:

amd2901_ctl C
amd2901_dpt C

That causes to indicate to the simulator which should be taken the
behavioral files (.vbe) of “ amd2901_ctl ” and of “ amd2901_dpt ’ ’.

ALLIANCE TUTORIAL 23

PART 2 Logical synthesis

> asimut amd2901_chip pattern result

You can control the result by using xpat on the file “ result ”.

7.3 Part controls description

The diagrams corresponding to the signals list to realize are provided to
you. compile it by using the steps below.

Generate the signals list vst starting from the file c by the command:
> genlib amd2901_ctl

Then validate the structural view obtained by simulating the com-
plete circuit with the tests vectors which are provided to you. Replace
the behavioral view of the part controls by his structural view by remov-
ing the name amd2901_ctl of CATAL file.
> asimut -zerodelay amd2901_chip vecteurs result

Note that one carries out a simulation “ without delay ” of the netlist.
In the event of problem, do not hesitate to use xpat .
> asimut amd2901_chip pattern result

After having validated the functional behavior of the netlist, simulate
with delay. Modify times between the patterns. Indeed, asimut is
able to evaluate the propagation times for each gates of the netlist. but
beware asimut can just evaluate and the route cannot be considered.This
is not of course possible step for a behavioral file.

ALLIANCE TUTORIAL 24

PART 2 Logical synthesis

8 Data-path realization

The data path is formed by the regular logic of the circuit. In order to
benefit from this regularity, we generates the signals list in the vectorial
operators form (or columns) via the macro-functions of the tool genlib
. That makes it possible to save place by using several times the same
material . For example, the NOT of a mux of N bits is instanciate only
once for these N bits...

8.1 Example of description with genlib macro-functions

Let us consider the following circuit:

Here the corresponding data-path structure :

Each gate occupies a column, a column making it possible to treat a
whole of bits for the same operator. The first line represents bit 3, the
last bit 0 .

ALLIANCE TUTORIAL 25

PART 2 Logical synthesis

The file genlib correspondent is as follows:

#include <genlib.h>
main()

{
GENLIB_DEF_LOFIG("data_path");

/* connectors declaration */
GENLIB_LOCON("a[3:0]",IN,"a[3:0]");
GENLIB_LOCON("b[3:0]",IN,"b[3:0]");
GENLIB_LOCON("c[3:0]",IN,"c[3:0]");
GENLIB_LOCON("v",IN,"w");
GENLIB_LOCON("cout",OUT,"ct");
GENLIB_LOCON("s[3:0]",OUT,"s[3:0]");
GENLIB_LOCON("cmd",IN,"cmd");
GENLIB_LOCON("vdd",IN,"vdd");
GENLIB_LOCON("vss",IN,"vss");

/* operators creation */
GENLIB_MACRO(GEN_NAND2, "model_nand2_4bits", F_PLACE, 4, 1);
GENLIB_MACRO(GEN_OR2, "model_or2_4bits", F_PLACE, 4);
GENLIB_MACRO(GEN_ADSB2F, "model_add2_4bits", F_PLACE, 4);

/* operators Instanciation */
GENLIB_LOINS("model_nand2_4bits", "model_nand2_4bits",

"v", "v", "v", "v",
"a[3:0]",
"d_aux[3:0]",
vdd, vss, NULL);

GENLIB_LOINS("model_or2_4bits", "model_or2_4bits",
"d_aux[3:0]",
"b[3:0]",
"e_aux[3:0]",
vdd, vss, NULL);

GENLIB_LOINS("model_add2_4bits", "model_add2_4bits",
"cmd",
"cout",
"ovr",
"e_aux[3:0]",
"c[3:0]",
"s[3:0]",
vdd, vss, NULL);

/* Save of figure */
GENLIB_SAVE_LOFIG();
exit(0);

}

Save it under the name “ data_path.c ”, then compile the file with the
command:
> genlib data_path

You obtain the file “ data_path.vst ” (in the contrary case, it may be
that your environment is badly configured for genlib).In this case, pass
to the section “ Data path description”.

ALLIANCE TUTORIAL 26

PART 2 Logical synthesis

Note: genlib can also create the physical placement (the drawing)
of structural description .

8.2 Data-path description

The diagrams corresponding to the signals list to realize are provided to
you. compile it by using the steps below .

Generate the signals list vst starting from the file c by the command:

> genlib amd2901_dpt

Validate the netlist in the same way as for the part controls. Remove
file CATAL and simulate the circuit with asimut .
> asimut -zerodelay amd2901_chip pattern result

ALLIANCE TUTORIAL 27

PART 2 Logical synthesis

9 The Makefile or how to manage tasks dependency

The synthesis under Alliance breaks up into several tools being carried
out chronologically on a data flow. Each tool has its own options giving
the results more or less adapted according to the use of the circuit.

Figure 9: the synthesis

The data dependency in the flow are materialized in reality by file
dependency. The file Makefile carried out using the command make
makes it possible to manage these dependencies.

9.0.1 Rules

A Makefile is a file containing one or more rules translating the depen-
dency between the actions and the files.

example :

target1 : dependence1 dependence2
#Rq: each command must be preceded by a tabulation
command_X
command_Y

.

.

.

The dependencies and targets represent files in general.
Only the first rule (except the models cf 9.0.2) of the Makefile is exam-
ined. The following rules are ignored if they are not implied by the first.
So some dependencies of a rule X are themselves of the rules in the
Makefile then these last will be examined before the appealing rule X .
For each rule X examined, so at least one of its dependencies is more
recent than its target then the commands of the rule X will be carried

ALLIANCE TUTORIAL 28

PART 2 Logical synthesis

out. Note:: the commands are generally used to produce the target (i.e
a new file).
A target should not represent a file. In this case, the commands of this
rule will be always carried out.

9.0.2 models Rules

These rules are more general-purpose because you can specify more
complex dependency rules. A model rule be similar to a normal rule,
except a symbol (%) appears in the target name. The dependencies also
employ (%) to indicate the relation between the dependency name and
the target name. The following model rule specifies how all the files vst
are formed starting from the vbe .

#example of rule for the synthesis
%.vst : %.vbe

boog $*

9.0.3 Variables definitions

You can define variables in any place of the file Makefile , but for legi-
bility we will define them at the beginning of file.

#variables definitions
MY_COPY = cp -r
MY_NUM = 42
MY_STRING ="hello"

They are usable in any place of the Makefile . They must be preceded
by the character $

#use a variable in a rule

copy:
${MY_COPY} digicode.vbe tmp/

ALLIANCE TUTORIAL 29

PART 2 Logical synthesis

9.0.4 Predefined variables

• $@ Complete target name.
• $* Name of the targets file without the extension.
• $< Name of the first dependent file.
• $+ Names of all the dependent files with double dependencies

indexed in their order of appearance.
• $^ Names of all the dependent files. The doubles are remote.
• $? Names of all the dependent files more recent than the target.
• $% Name of member for targets which are archives (language C).

If, for example, the target is libDisp.a(image.o) , $% is image.o and
$@ is libDisp.a .

ALLIANCE TUTORIAL 30

PART 2 Logical synthesis

10 Appendix: Diagrams as an indication but not-in con-
formity with the behavioral

ALLIANCE TUTORIAL 31

PART 2 Logical synthesis

ALLIANCE TUTORIAL 32

PART 2 Logical synthesis

ALLIANCE TUTORIAL 33

PART 2 Logical synthesis

ALLIANCE TUTORIAL 34

PART 2 Logical synthesis

ALLIANCE TUTORIAL 35

PART 2 Logical synthesis

ALLIANCE TUTORIAL 36

