
ALLIANCE TUTORIAL
Pierre & Marie Curie University

year 2001 - 2002

PART 3
place and route

Frederic AK Kai-shing LAM

PART 3 Place and route

Contents

1 Introduction
2 Inversor and buffer drawing under GRAAL

2.1 Introduction
2.1.1 Technological environment
2.1.2 GRAAL
2.1.3 COUGAR
2.1.4 YAGLE
2.1.5 PROOF

2.2 inversor Diagram
2.3 Buffer diagram
2.4 sxlib gauge
2.5 steps to follow

2.5.1 Create an inversor
2.5.2 Create a buffer

3 Place and Route
3.1 Amd2901 architecture
3.2 Tools used
3.3 Technological environment
3.4 Beware of naming the files
3.5 Data-path predefined placement
3.6 heart Placement
3.7 Route the heart
3.8 pads placement

4 Annexes

ALLIANCE TUTORIAL 2

PART 3 Place and route

PART 3 : Place and route

All the files used in this part are located under
/tutorial/place_and_route/src directory.
This directory contents three subdirectories and one Makefile :

• Makefile
• inversor

– Makefile
– inversor.vbe : behavioral description
– inv_x1.ap : inversor cell under GRAAL

• buffer

– Makefile
– buffer.vbe : behavioral description
– buf_x2.ap : buffer cell under GRAAL

• amd2901

– Makefile
– amd2901_ctl.vbe : behavioral description of control part
– amd2901_dpt.vbe : behavioral description of data-path
– amd2901_ctl.c : file .c of control part
– amd2901_dpt.c : file .c of data-path
– amd2901_core.c : file .c of heart
– amd2901_chip.c : file .c of the circuit with their pads
– pattern.pat : tests file

ALLIANCE TUTORIAL 3

PART 3 Place and route

1 Introduction

The goal of this tutorial is to present some ALLIANCE tools :

• GRAAL Graphic layout editor ;

• DRUC Design rule checker ;

• COUGAR Symbolic layout extractor ;

• PROOF Formal proof between two behavioral descriptions ;

• OCP, OCR, RING place and route tools .

The beginning of this tutorial will relate to the drawing under GRAAL of a in-
versor cell and a buffer. The predefined cells concepts, model and hierarchy will be
introduced .
Then this tutorial contain the methodology used in Alliance to produce the amd2901
physical layout that you conceived in Alliance Tutorial PART 2 "Synthesis" (All the
documents used will be provided to you).

ALLIANCE TUTORIAL 4

PART 3 Place and route

2 Inversor and buffer drawing under GRAAL

2.1 Introduction

The library can be enriched by new cells with GRAAL editor .
GRAAL is an editor of symbolic layout integrating the drawing rules checker DRUC.
The first part here aims to draw a inversor cell inv_x1 in the shape of a predefined cell
sxlib by complying with the provided drawing rules.

2.1.1 Technological environment

Some tools of Alliance use a particular technological environment. It is indicated
by the environment variable RDS_TECHNO_NAME which must be positioned with
/asim/alliance/etc/cmos_12.rds

2.1.2 GRAAL

The layout editor handles six different objects types which we can create with the menu
CREATE :

• The ”instance” (physical cells importation)

• The abutment boxes which define the cell limits

• Segments: DiffN, DiffP, Poly, Alu1, Alu2... CAluX is used to indicate a possible
portion for the connectors.

• VIAs or contacts: ContDiffN, ContDiffP, ContPoly and ViaMetal1/Metal2.

• Big VIAs

• Transistors: NMOS or PMOS

GRAAL uses the environment variable GRAAL_TECHNO_NAME. It must be po-
sitioned with /asim/alliance/etc/cmos_12.graal.

Steps to follow to create a sxlib cell by respecting the sxlib gauge : (cf 2.4 Sxlib
gauge)

• place the supply Vdd and Vss using the menu CREATE->Segment

• place the VIAs using the menu CREATE->VIA

• place the transistors PMOS and NMOS using the menu CREATE->Transistor

• place the NWell body using the menu CREATE->Segment

• place the input/output connectors using the menu CREATE->VIA

ALLIANCE TUTORIAL 5

PART 3 Place and route

• link the transistor P and the transistor N with the Poly segment using the menu
CREATE->Segment

• supply each transistor by linking them with Ndiff and Pdiff segments and VIAs
contacts

• define the cell limit with an abutment box using the menu CREATE->Abutment
Box

2.1.3 COUGAR

The tool COUGAR is able to extract the netlist from a circuit to the format vst
starting from a description with the format ap . To extract on the level transistor, the
command to be used is:

> cougar -t file1 file2

COUGAR uses the environment variables MBK_IN_PH and MBK_OUT_LO
according to the input and output formats. For example to generate a netlist with the
format .al starting from a description .ap it is necessary to write:

> MBK_IN_PH = ap

> export MBK_IN_PH

> MBK_OUT_LO = al

> export MBK_OUT_LO

> cougar -t circuit circuit

2.1.4 YAGLE

The tool YAGLE is able to extract the behavioral VHDL description of a circuit to the
format .vbe starting from a netlist with the format .al if this one is on the transistor
level . The command to be used is:

> MBK_IN_LO = al

> export MBK_IN_LO

> YAGLE_BEH_FORMAT = vbe

> export YAGLE_BEH_FORMAT

> yagle file1 file2

ALLIANCE TUTORIAL 6

PART 3 Place and route

Above all, you must use the command:

> source /users/soft5/newlabo/AvtTools/etc/avt_env.csh

which allows to set up the environment necessary to use YAGLE .
Documentations for this tool are in : /users/soft5/newlabo/AvtTools/doc

But the tool YAGLE is not part of Alliance anymore. If you want to use it, you
have to get the licence from Avertec.

2.1.5 PROOF

When we want to prove the equivalence between two behavioral descriptions of the
same circuit with N inputs, we can simulate by asimut 2n vectors for two descriptions
and compare them. This solution quickly becomes expensive in CPU time and it is
better to use formal proof tool which carries out the "mathematical" comparison of
the two Boolean networks. PROOF carries out this operation between descriptions
file1.vbe and file2.vbe by the command:

> proof file1 file2

2.2 inversor Diagram

The theoretical inversor diagram is presented at the following figure:

Figure 1: transistors diagram of a C-MOS inversor

ALLIANCE TUTORIAL 7

PART 3 Place and route

2.3 Buffer diagram

The theoretical buffer diagram is presented at the following figure:

Figure 2: transistors diagram of a C-mos buffer

It uses two inversors according to the hierarchy:

Figure 3: C-mos buffer hierarchy
‘

2.4 sxlib gauge

• The sxlib cells have whole 50 lambdas height and a multiple of 5 lambdas width.

• The supply Vdd and Vss are carried out in Calu1; they have 6 lambdas width and
are horizontally placed in top and bottom of the cell.

• The transistors P are placed close to the Vdd while transistors N are placed close
to the Vss.

• Box N must have 24 lambdas height .

• The special segments CAluX (CAlu1, Calu2, CAlu3...) form the cell interface
(PORT_MAP) and play the role of ”flat” connectors. They must obligatorily be
placed on a 5x5 grid and can be anywhere in the cell.

ALLIANCE TUTORIAL 8

PART 3 Place and route

• The special segments TAlux (TAlu1, TAlu2...) are used to indicate the obstacles
for the router. When you want to protect AluX segment, it is necessary to cover
them or surround them by corresponding TAlux (same layer). TAluX are placed
on a grid with 5 lambdas steps (figure 5).

• The minimal width of CAlu1 is 2 lambda, plus 1 lambda for the extension (figure
6).

• The boxes N and P must be polarized. It should be respectively connected to
Vdd and Vss .

You will find a summary of these constraints on the diagram 4:

Figure 4: a cell model of the sxlib library

ALLIANCE TUTORIAL 9

PART 3 Place and route

Figure 5: Use the layer TAluX like protection

Figure 6: Low size of CAlu1

2.5 steps to follow

2.5.1 Create an inversor

• describe the cell inversor behavior in a file .vbe .

ALLIANCE TUTORIAL 10

PART 3 Place and route

• draw the inversor "stick-diagram" inv_x1 whose transistors diagram is repre-
sented on the figure 1.

Figure 7: stick diagram

• draw the cell under GRAAL by respecting the gauge specified on the figure 4.

• validate the symbolic drawing rules by launching DRUC under GRAAL.

• extract the netlist from the inversor to the format al with COUGAR.

• extract the behavioral VHDL with YAGLE

• carry out the formal proof between the file .vbe extracts by YAGLE and the file
.vbe from the initial specification.

2.5.2 Create a buffer

The buffer is produced under GRAAL starting from the instanciated of two inversors.
The hierarchy thus created is represented on the figure 3. The transistors diagram is
represented on the figure 2.

ALLIANCE TUTORIAL 11

PART 3 Place and route

• describe the cell buffer behavior in a file .vbe .

• draw the cell under GRAAL by respecting the gauge specified on the figure 4.
You will use for that the instanciated function of GRAAL . The cell with instan-
ciate is of course the inversor, which you will connect (will routing) manually.

• validate the symbolic drawing rules by launching DRUC under GRAAL.

• extract the netlist from the buffer to the format al with COUGAR.

• extract the behavioral VHDL with YAGLE

• carry out the formal proof between the file .vbe extracts by YAGLE and the file
.vbe from the initial specification.

Do not forget that the mans exist... We provide you the cells behaviour description
inversor.vbe and buffer.vbe; and the cells inversor and buffer draws under GRAAL .

3 Place and Route

3.1 Amd2901 architecture

Am2901 breaks up into 2 blocks: the part controls which gathers the logical “ glu ” and
the operative part (data-path).

Figure 8: Amd decomposition in functional units

• The data-path contains the regular parts of Amd2901, the registers and the arith-
metic logic unit.

ALLIANCE TUTORIAL 12

PART 3 Place and route

• The control part contains irregular logic, the instructions decoding and the “ flags
” calculation.

Hierarchical description used is as follows:

Figure 9: Hierarchy used

3.2 Tools used

You will use place and route tools ocp and ocr , thus all tools for checking seen in the
first part of this Tutorial .
ocp is the placer, ocr allows routing over the cell. The data-path and the control part
will be placed and routed together and not separately.
You will use also lvx, the netlists comparator. When the system is too complex it is diffi-
cult to use proof, the formal comparator (calculations too long). A netlists comparison
then is used. Test the two methods (proof and lvx).

3.3 Technological environment

ALLIANCE TUTORIAL 13

PART 3 Place and route

> VH_MAXERR = 10

> export VH_MAXERR

> MBK_WORK_LIB = .

> export MBK_WORK_LIB

> MBK_CATA_LIB = $ALLIANCE_TOP/cells/sxlib

> export MBK_CATA_LIB

> MBK_CATA_LIB = $MBK_CATA_LIB:$ALLIANCE_TOP/cells/dp_sxlib

> export MBK_CATA_LIB

> MBK_CATA_LIB = $MBK_CATA_LIB:$ALLIANCE_TOP/cells/padlib

> export MBK_CATA_LIB

> MBK_CATA_LIB $MBK_CATA_LIB:.

> export MBK_CATA_LIB

> MBK_CATAL_NAME = CATAL

> export MBK_CATAL_NAME

> MBK_IN_LO = vst

> export MBK_IN_LO

> MBK_OUT_LO = vst

> export MBK_OUT_LO

> MBK_IN_PH = ap

> export MBK_IN_PH

> MBK_OUT_PH = ap

> export MBK_OUT_PH

3.4 Beware of naming the files

Generally, the files describing a logical netlist must be the same name as the corre-
sponding file describing the physical netlist. the file amd2901_dpt.vst (LOFIG) must
correspond to the file amd2901_dpt.ap (PHFIG). The same applies to the file amd2901_core.
Check well that you do not overwrite a file!

3.5 Data-path predefined placement

For the moment, your file amd2901_dpt.c contains only one logical description of the
netlist. eg you have a file C which contains the lines:

GENLIB_DEF_LOFIG()
...
GENLIB_SAVE_LOFIG()

That enables you to generate a description structural in file VST . But at the same
time, genlib generated physical descriptions of each column in files AP . It is about
placing these columns explicitly.
Take again the file amd2901_dpt.c and include the lines :

ALLIANCE TUTORIAL 14

PART 3 Place and route

GENLIB_DEF_PHFIG()
...
GENLIB_SAVE_PHFIG()

The suspension points are to be supplemented, they represent your operators place-
ment. You have for, that GENLIB functions :

• GENLIB_PLACE()

• GENLIB_PLACE_RIGHT()

• GENLIB_PLACE_TOP()

• GENLIB_PLACE_LEFT()

• GENLIB_PLACE_BOTTOM()

• GENLIB_PLACE_ON()

• GENLIB_DEF_AB()

• ...

Use GENLIB manual. The placement of the data path columns should not be made
randomly. The routing depends on it.

Use genlib to generate all:

>genlib amd2901_dpt

The figure 10 summarizes the followed process:

ALLIANCE TUTORIAL 15

PART 3 Place and route

Figure 10: predefined placement

Figure 11: predefined Columns before placement of the part controls

ALLIANCE TUTORIAL 16

PART 3 Place and route

Do not forget to include a abutment box!

3.6 heart Placement

Same manner, take again the file amd2901_core.c and place data path explicitly. You
should not place the part controls. This one exists only in the form of a structural
description. It is the placer ocp which will undertake some (during the placement of
the heart ocp detects which are the cells not placed and supplements the placement).
You should nevertheless envisage space for the cells placement to the top of the data-
path.

Include the lines:

GENLIB_DEF_PHFIG()
...
GENLIB_SAVE_PHFIG()

The suspension points represent the placement of data-path. Space necessary to
the placer to place the cells of the control part will be determined by successive ap-
proximations. You will have to adjust dimensions of the heart abutment box (GEN-
LIB_DEF_AB()). Use the command:

> genlib amd2901_core

and
> ocp -partial amd2901_core -ioc amd2901_core amd2901_core amd2901_core_p

The option – partial indicates that you transmit a partial placement of the data-path.
The option – ioc request the loading of a file giving the placement of the connectors.
This file, amd2901_core.ioc is provided to you (Modify it according to your predefined
placement. The connectors must be in north and the south). The third argument is the
netlist heart, the fourth is the file AP result.

The figure 12 summarize the followed process:

ALLIANCE TUTORIAL 17

PART 3 Place and route

Figure 12: Placement

3.7 Route the heart

Routing the heart by using ocr in the following way:

> ocr -P amd2901_core_p -L amd2901_core -O amd2901_core -l 3 -v -i 30

3.8 pads placement

The heart is now completed. The pads still should be added allowing the connection
of the inputs/outputs to the case.
The tool ring allows to instanciate the pads it has need for signals list describing the
relations between the heart and the pads, as well as a file .rin specifying the geomet-
rical provision of the crown of pads.

This file uses syntax:

ALLIANCE TUTORIAL 18

PART 3 Place and route

> east (pi1 pi0)

> west (pck pi4)

> north (pvdd pvss)

> south (pvdde pvsse)

Where pi1, pi0... are the names of the pads ”instances”. Name it “ amd2902_chip.rin
” and apply the command

> ring amd2901_chip amd2901_chip

We will validate the work of ring with the tools druc , lynx and lvx .

Validate the drawing rules:

> druc amd2901_chip

Extract the symbolic layout and flattened it:

> MBK_OUT_LO = al

> export MBK_OUT_LO

> cougar -f amd2901_chip

Compare two netlists :

> lvx vst al amd2901_chip amd2901_chip -f

> MBK_OUT_LO = vst

> export MBK_OUT_LO

simulated the file extracts with asimut . Pay attention to the file CATAL !
To know the number of transistors, we carry out an extraction of the circuit on the level
transistor:

> cougar -t amd2901_chip amd2901_chip

If you want to see the amd2901 control part :

> make view_ctl_logic

ALLIANCE TUTORIAL 19

PART 3 Place and route

If you want to see the data-path physical layout:

> make view_dpt_physic

note: you can see in red the critical path.
If you want to see the chip physical layout:

> make view_chip_physic

If you want to see the different propagation times:

> make view_chip_simulation

ALLIANCE TUTORIAL 20

PART 3 Place and route

4 Annexes

Figure 13: data-path general view

ALLIANCE TUTORIAL 21

