SOFA/HDL/common/wrapper_lines_generator.py

149 lines
7.8 KiB
Python
Raw Normal View History

#####################################################################
# Python script generate Verilog codes for the Caravel wrapper
# which interface the FPGA fabric and other SoC components
# This script will
# - generate the Verilog codes to connect FPGA inputs to Wishbone and Logic analyzer
# - generate the Verilog codes to connect FPGA outputs to Wishbone and Logic analyzer
#####################################################################
import os
from os.path import dirname, abspath, isfile
import shutil
import re
import argparse
import logging
#####################################################################
# Initialize logger
#####################################################################
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG)
#####################################################################
# Parse the options
# - OpenFPGA root path is a manadatory option
#####################################################################
parser = argparse.ArgumentParser(
description='Generator for technology-mapped wrapper')
parser.add_argument('--template_netlist', default='caravel_fpga_wrapper_hd_template.v',
help='Specify template verilog netlist')
parser.add_argument('--output_verilog', default='caravel_fpga_wrapper_hd.v',
help='Specify output verilog file path')
args = parser.parse_args()
#####################################################################
# Define Wishbone interface pin sequence
# The list start from left-side of the wrapper to the right side
# Target FPGA gpio start from 135, 134 ...
#####################################################################
wishbone_pins = ['wb_rst_i', 'wbs_ack_o', 'wbs_cyc_i',
'wbs_stb_i', 'wbs_we_i']
wishbone_pins.extend([f"wbs_sel_i[{i}]" for i in range(4)])
wishbone_pins.extend([f"wbs_adr_i[{i}]" for i in range(32)])
wishbone_pins.extend([f"wbs_dat_i[{i}]" for i in range(32)])
wishbone_pins.extend([f"wbs_dat_o[{i}]" for i in range(32)])
#####################################################################
# Define Logic Analyzer interface pin sequence
# The list start from left-side of the wrapper to the right side
# Target FPGA gpio start from 135, 134 ...
#####################################################################
logic_analyzer_pins = []
for ipin in range(13, 128):
logic_analyzer_pins.append(["la_data_in[" + str(ipin) + "]",
"la_data_out[" + str(ipin) + "]", "la_oen[" + str(ipin) + "]"])
#####################################################################
# Generate wrapper lines
#####################################################################
netlist_lines = []
num_wishbone_pins = len(wishbone_pins)
num_logic_analyzer_pins = len(logic_analyzer_pins)
num_gpio_pins = 135 - 21 + 1
print("Number of Wishbone pins: " + str(num_wishbone_pins))
print("Number of logic analyzer pins: " + str(num_logic_analyzer_pins))
print("Number of gpio pins: " + str(num_gpio_pins))
assert num_wishbone_pins < num_logic_analyzer_pins
assert num_logic_analyzer_pins == num_gpio_pins
for ipin in range(0, num_gpio_pins):
curr_line = ""
if ((ipin < num_wishbone_pins) and (ipin < num_logic_analyzer_pins)):
# If this is an input pin of wishbone interface, whose postfix is '_i', we use MUX
# otherwise, this is an output pin, we just wire the input to logic analyzer
if ((wishbone_pins[ipin].endswith("_i")) or (re.search(r'_i\[\d+\]$', wishbone_pins[ipin], re.M | re.I))):
##############################################################
# SOC INPUT will be directly driven by either
# - the Wishbone input
# or
# - the logic analyzer input
# through a multiplexer controlled by the signal 'la_wb_switch
curr_line = " " + "sky130_fd_sc_hd__mux2_1 FPGA2SOC_IN_" + str(135 - ipin) + "_MUX (.S(la_wb_switch), .A1(" + str(
wishbone_pins[ipin]) + "), .A0(" + str(logic_analyzer_pins[ipin][0]) + "), .X(gfpga_pad_EMBEDDED_IO_HD_SOC_IN[" + str(135 - ipin) + "]));"
netlist_lines.append(curr_line + "\n")
##############################################################
# SOC OUTPUT will drive an output of logic analyzer
# since this I/O is going to interface a Wishbone input only
curr_line = " " + "assign " + \
str(logic_analyzer_pins[ipin][1]) + \
" = gfpga_pad_EMBEDDED_IO_HD_SOC_OUT[" + str(135 - ipin) + "];"
netlist_lines.append(curr_line + "\n")
elif ((wishbone_pins[ipin].endswith("_o")) or (re.search(r'_o\[\d+\]$', wishbone_pins[ipin], re.M | re.I))):
##############################################################
# SOC INPUT will be directly driven by logic analyzer
# since this I/O is going to interface a Wishbone output only
curr_line = " " + "assign gfpga_pad_EMBEDDED_IO_HD_SOC_IN[" + str(
135 - ipin) + "] = " + str(logic_analyzer_pins[ipin][0]) + ";"
netlist_lines.append(curr_line + "\n")
##############################################################
# SOC OUTPUT will drive the Wishbone output through a tri-state buffer
# As the buffer is enabled by logic '0', we use the inverted 'la_wb_switch'
curr_line = " " + "sky130_fd_sc_hd__ebufn_4 FPGA2SOC_OUT_" + str(135 - ipin) + "_DEMUX_WB (" + \
".TE_B(la_wb_switch_b), " + \
".A(" + "gfpga_pad_EMBEDDED_IO_HD_SOC_OUT[" + str(135 - ipin) + "]), " + \
".Z(" + str(wishbone_pins[ipin]) + ")" + \
");"
netlist_lines.append(curr_line + "\n")
##############################################################
# SOC OUTPUT will also drive the Logic Analyzer output through a tri-state buffer
# As the buffer is enabled by logic '0', we use the 'la_wb_switch'
curr_line = " " + "sky130_fd_sc_hd__ebufn_4 FPGA2SOC_OUT_" + str(135 - ipin) + "_DEMUX_LA (" + \
".TE_B(la_wb_switch), " + \
".A(" + "gfpga_pad_EMBEDDED_IO_HD_SOC_OUT[" + str(135 - ipin) + "]), " + \
".Z(" + str(logic_analyzer_pins[ipin][1]) + ")" + \
");"
netlist_lines.append(curr_line + "\n")
elif ((ipin >= num_wishbone_pins) and (ipin < num_logic_analyzer_pins)):
##############################################################
# SOC INPUT will be directly driven by logic analyzer
# since this I/O is going to interface logic analyzer input only
curr_line = " " + "assign gfpga_pad_EMBEDDED_IO_HD_SOC_IN[" + str(
135 - ipin) + "] = " + str(logic_analyzer_pins[ipin][0]) + ";"
netlist_lines.append(curr_line + "\n")
##############################################################
# SOC OUTPUT will directly drive logic analyzer
# since this I/O is going to interface logic analyzer output only
curr_line = " " + "assign " + \
str(logic_analyzer_pins[ipin][1]) + \
" = gfpga_pad_EMBEDDED_IO_HD_SOC_OUT[" + str(135 - ipin) + "];"
netlist_lines.append(curr_line + "\n")
if isfile(args.output_verilog):
os.remove(args.output_verilog)
with open(args.template_netlist, "r") as wp:
template_netlist = wp.readlines()
for line_num, eachline in enumerate(template_netlist):
if "Autogenerate code start" in eachline:
logging.info(f"Inserting on line {line_num}")
template_netlist[line_num+1:line_num+1] = netlist_lines
logging.info("Outputting HDL codes to " +
str(args.output_verilog) + " ...")
vlog_file = open(args.output_verilog, "w")
vlog_file.write("".join(template_netlist))
vlog_file.close()
break