OpenFPGA/vpr7_x2p/vpr/SRC/route/rr_graph_util.c

104 lines
3.2 KiB
C
Executable File

#include "util.h"
#include "vpr_types.h"
#include "globals.h"
#include "rr_graph_util.h"
t_linked_edge *
insert_in_edge_list(INP t_linked_edge * head, INP int edge, INP short iswitch) {
/* Inserts a new element at the head of a linked list. Returns the new head *
* of the list. One argument is the address of the head of a list of free *
* edge_list elements. If there are any elements on this free list, the new *
* element is taken from it. Otherwise a new one is malloced. */
t_linked_edge *linked_edge;
linked_edge = (t_linked_edge *) my_malloc(sizeof(t_linked_edge));
linked_edge->edge = edge;
linked_edge->iswitch = iswitch;
linked_edge->next = head;
return linked_edge;
}
#if 0
void
free_linked_edge_soft(INOUT t_linked_edge * edge_ptr,
INOUT t_linked_edge ** free_list_head_ptr)
{
/* This routine does a soft free of the structure pointed to by edge_ptr by *
* adding it to the free list. You have to pass in the address of the *
* head of the free list. */
edge_ptr->next = *free_list_head_ptr;
*free_list_head_ptr = edge_ptr;
}
#endif
int seg_index_of_cblock(t_rr_type from_rr_type, int to_node) {
/* Returns the segment number (distance along the channel) of the connection *
* box from from_rr_type (CHANX or CHANY) to to_node (IPIN). */
if (from_rr_type == CHANX)
return (rr_node[to_node].xlow);
else
/* CHANY */
return (rr_node[to_node].ylow);
}
int seg_index_of_sblock(int from_node, int to_node) {
/* Returns the segment number (distance along the channel) of the switch box *
* box from from_node (CHANX or CHANY) to to_node (CHANX or CHANY). The *
* switch box on the left side of a CHANX segment at (i,j) has seg_index = *
* i-1, while the switch box on the right side of that segment has seg_index *
* = i. CHANY stuff works similarly. Hence the range of values returned is *
* 0 to nx (if from_node is a CHANX) or 0 to ny (if from_node is a CHANY). */
t_rr_type from_rr_type, to_rr_type;
from_rr_type = rr_node[from_node].type;
to_rr_type = rr_node[to_node].type;
if (from_rr_type == CHANX) {
if (to_rr_type == CHANY) {
return (rr_node[to_node].xlow);
} else if (to_rr_type == CHANX) {
if (rr_node[to_node].xlow > rr_node[from_node].xlow) { /* Going right */
return (rr_node[from_node].xhigh);
} else { /* Going left */
return (rr_node[to_node].xhigh);
}
} else {
vpr_printf(TIO_MESSAGE_ERROR, "in seg_index_of_sblock: to_node %d is of type %d.\n",
to_node, to_rr_type);
exit(1);
}
}
/* End from_rr_type is CHANX */
else if (from_rr_type == CHANY) {
if (to_rr_type == CHANX) {
return (rr_node[to_node].ylow);
} else if (to_rr_type == CHANY) {
if (rr_node[to_node].ylow > rr_node[from_node].ylow) { /* Going up */
return (rr_node[from_node].yhigh);
} else { /* Going down */
return (rr_node[to_node].yhigh);
}
} else {
vpr_printf(TIO_MESSAGE_ERROR, "in seg_index_of_sblock: to_node %d is of type %d.\n",
to_node, to_rr_type);
exit(1);
}
}
/* End from_rr_type is CHANY */
else {
vpr_printf(TIO_MESSAGE_ERROR, "in seg_index_of_sblock: from_node %d is of type %d.\n",
from_node, from_rr_type);
exit(1);
}
}