OpenFPGA/vpr7_x2p/vpr/SRC/device/mux_utils.cpp

382 lines
15 KiB
C++

/**************************************************
* This file includes a series of most utilized functions
* that are used to implement a multiplexer
*************************************************/
#include <cmath>
#include <algorithm>
#include "spice_types.h"
#include "util.h"
#include "vtr_assert.h"
#include "decoder_library_utils.h"
#include "mux_utils.h"
/* Validate the number of inputs for a multiplexer implementation,
* the minimum supported size is 2
* otherwise, there is no need for a MUX
*/
bool valid_mux_implementation_num_inputs(const size_t& mux_size) {
return (2 <= mux_size);
}
/**************************************************
* Find the actual number of datapath inputs for a multiplexer implementation
* 1. if there are no requirements on constant inputs, mux_size is the actual one
* 2. if there exist constant inputs, mux_size should minus 1
* This function is mainly used to recover the number of datapath inputs
* for MUXGraphs which is a generic representation without labelling datapath inputs
*************************************************/
size_t find_mux_num_datapath_inputs(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Should be either MUX or LUT
* LUTs do have an tree-like MUX, but there is no need for a constant input!
*/
VTR_ASSERT ((SPICE_MODEL_MUX == circuit_lib.model_type(circuit_model))
|| (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) );
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
return mux_size;
}
if (true == circuit_lib.mux_add_const_input(circuit_model)) {
return mux_size - 1;
}
return mux_size;
}
/**************************************************
* Find the actual number of inputs for a multiplexer implementation
* 1. if there are no requirements on constant inputs, mux_size is the actual one
* 2. if there exist constant inputs, mux_size should plus 1
*************************************************/
size_t find_mux_implementation_num_inputs(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Should be either MUX or LUT
* LUTs do have an tree-like MUX, but there is no need for a constant input!
*/
VTR_ASSERT ((SPICE_MODEL_MUX == circuit_lib.model_type(circuit_model))
|| (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) );
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
return mux_size;
}
if (true == circuit_lib.mux_add_const_input(circuit_model)) {
return mux_size + 1;
}
return mux_size;
}
/**************************************************
* Find the structure for a multiplexer implementation
* 1. In most cases, the structure should follow the
* mux_structure defined by users in the CircuitLibrary
* 2. However, a special case may apply when mux_size is 2
* In such case, we will force a TREE structure
* regardless of users' specification as this is the
* most efficient structure
*************************************************/
enum e_spice_model_structure find_mux_implementation_structure(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Ensure the mux size is valid ! */
VTR_ASSERT(valid_mux_implementation_num_inputs(mux_size));
/* Branch on the mux sizes */
if (2 == mux_size) {
/* Tree-like is the best structure of CMOS MUX2 */
if (SPICE_MODEL_DESIGN_CMOS == circuit_lib.design_tech_type(circuit_model)) {
return SPICE_MODEL_STRUCTURE_TREE;
}
VTR_ASSERT_SAFE(SPICE_MODEL_DESIGN_RRAM == circuit_lib.design_tech_type(circuit_model));
/* One-level is the best structure of RRAM MUX2 */
return SPICE_MODEL_STRUCTURE_ONELEVEL;
}
return circuit_lib.mux_structure(circuit_model);
}
/**************************************************
* Find the number of levels for a tree-like multiplexer implementation
*************************************************/
size_t find_treelike_mux_num_levels(const size_t& mux_size) {
/* Do log2(mux_size), have a basic number */
size_t level = (size_t)(log((double)mux_size)/log(2.));
/* Fix the error, i.e. mux_size=5, level = 2, we have to complete */
while (mux_size > pow(2.,(double)level)) {
level++;
}
return level;
}
/**************************************************
* Find the number of inputs for majority of branches
* in a multi-level multiplexer implementation
*************************************************/
size_t find_multilevel_mux_branch_num_inputs(const size_t& mux_size,
const size_t& mux_level) {
/* Special Case: mux_size = 2 */
if (2 == mux_size) {
return mux_size;
}
if (1 == mux_level) {
return mux_size;
}
if (2 == mux_level) {
size_t num_input_per_unit = (size_t)sqrt(mux_size);
while ( num_input_per_unit * num_input_per_unit < mux_size) {
num_input_per_unit++;
}
return num_input_per_unit;
}
VTR_ASSERT_SAFE(2 < mux_level);
size_t num_input_per_unit = 2;
while (pow((double)num_input_per_unit, (double)mux_level) < mux_size) {
num_input_per_unit++;
}
if (!valid_mux_implementation_num_inputs(num_input_per_unit)) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Number of inputs of each basis should be at least 2!\n",
__FILE__, __LINE__);
exit(1);
}
return num_input_per_unit;
}
/**************************************************
* Build a location map for intermediate buffers
* that may appear at the multiplexing structure of a LUT
* Here is a tricky thing:
* By default, the first and last stage should not exist any intermediate buffers
* For example:
* There are 5 stages in a 4-stage multiplexer is available for buffering
* but only 3 stages [1,2,3] are intermedate buffers
* and these are users' specification
*
* +-------+ +-------+ +-------+ +-------+
* location | stage | location | stage | location | stage | location | stage | location
* [0] | [0] | [1] | [1] | [2] | [2] | [3] | [3] | [5]
* +-------+ +-------+ +-------+ +-------+
*
* We will check if the length of location map matches the number of
* multiplexer levels. And then complete a location map
* for the given multiplexers
*************************************************/
std::vector<bool> build_mux_intermediate_buffer_location_map(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& num_mux_levels) {
/* Deposite a default location map */
std::vector<bool> location_map(num_mux_levels, false);
std::string location_map_str;
/* ONLY for LUTs: intermediate buffers may exist if specified */
if (SPICE_MODEL_LUT != circuit_lib.model_type(circuit_model)) {
return location_map;
}
/* Get location map when the flag of intermediate buffer is on */
if (true == circuit_lib.is_lut_intermediate_buffered(circuit_model)) {
location_map_str = circuit_lib.lut_intermediate_buffer_location_map(circuit_model);
}
/* If no location map is specified, we can return here */
if (location_map_str.empty()) {
return location_map;
}
/* Check if the user-defined location map matches the number of mux levels*/
VTR_ASSERT(num_mux_levels - 2 == location_map_str.length());
/* Apply the location_map string to the intermediate stages of multiplexers */
for (size_t i = 0; i < location_map_str.length(); ++i) {
/* '1' indicates that an intermediate buffer is needed at the location */
if ('1' == location_map_str[i]) {
location_map[i + 1] = true;
}
}
return location_map;
}
/**************************************************
* Convert a linked list of MUX architecture to MuxLibrary
* TODO: this function will be deleted when MUXLibrary fully
* replace legacy data structures
*************************************************/
MuxLibrary convert_mux_arch_to_library(const CircuitLibrary& circuit_lib, t_llist* muxes_head) {
t_llist* temp = muxes_head;
MuxLibrary mux_lib;
/* Walk through the linked list */
while(temp) {
VTR_ASSERT_SAFE(NULL != temp->dptr);
t_spice_mux_model* cur_spice_mux_model = (t_spice_mux_model*)(temp->dptr);
/* Bypass the spice models who has a user-defined subckt */
if (NULL != cur_spice_mux_model->spice_model->verilog_netlist) {
/* Move on to the next*/
temp = temp->next;
continue;
}
/* Build a MUX graph for the model */
/* Find the circuit model id by the name */
CircuitModelId circuit_model = circuit_lib.model(cur_spice_mux_model->spice_model->name);
mux_lib.add_mux(circuit_lib, circuit_model, cur_spice_mux_model->size);
/* Move on to the next*/
temp = temp->next;
}
return mux_lib;
}
/**************************************************
* Find the number of reserved configuration bits for a multiplexer
* The reserved configuration bits is only used by ReRAM-based multiplexers
* It is actually the shared BL/WLs among ReRAMs
*************************************************/
size_t find_mux_num_reserved_config_bits(const CircuitLibrary& circuit_lib,
const CircuitModelId& mux_model,
const MuxGraph& mux_graph) {
if (SPICE_MODEL_DESIGN_RRAM != circuit_lib.design_tech_type(mux_model)) {
return 0;
}
std::vector<size_t> mux_branch_sizes = mux_graph.branch_sizes();
/* For tree-like multiplexers: they have two shared configuration bits */
if ( (1 == mux_branch_sizes.size())
&& (2 == mux_branch_sizes[0]) ) {
return mux_branch_sizes[0];
}
/* One-level multiplexer */
if ( 1 == mux_graph.num_levels() ) {
return mux_graph.num_inputs();
}
/* Multi-level multiplexers: TODO: This should be better tested and clarified
* Now the multi-level multiplexers are treated as cascaded one-level multiplexers
* Use the maximum branch sizes and multiply it by the number of levels
*/
std::vector<size_t>::iterator max_mux_branch_size = std::max_element(mux_branch_sizes.begin(), mux_branch_sizes.end());
return mux_graph.num_levels() * (*max_mux_branch_size);
}
/**************************************************
* Find the number of configuration bits for a CMOS multiplexer
* In general, the number of configuration bits is
* the number of memory bits for a mux_graph
* However, when local decoders are used,
* the number of configuration bits are reduced to log2(X)
*************************************************/
static
size_t find_cmos_mux_num_config_bits(const CircuitLibrary& circuit_lib,
const CircuitModelId& mux_model,
const MuxGraph& mux_graph,
const e_sram_orgz& sram_orgz_type) {
size_t num_config_bits = 0;
switch (sram_orgz_type) {
case SPICE_SRAM_MEMORY_BANK:
case SPICE_SRAM_SCAN_CHAIN:
case SPICE_SRAM_STANDALONE:
num_config_bits = mux_graph.num_memory_bits();
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
if (true == circuit_lib.mux_use_local_encoder(mux_model)) {
num_config_bits = find_mux_local_decoder_addr_size(mux_graph.num_memory_bits());
}
return num_config_bits;
}
/**************************************************
* Find the number of configuration bits for a RRAM multiplexer
* In general, the number of configuration bits is
* the number of levels for a mux_graph
* This is due to only the last BL/WL of the multiplexer is
* independent from each other
* However, when local decoders are used,
* the number of configuration bits should be consider all the
* shared(reserved) configuration bits and independent bits
*************************************************/
static
size_t find_rram_mux_num_config_bits(const CircuitLibrary& circuit_lib,
const CircuitModelId& mux_model,
const MuxGraph& mux_graph,
const e_sram_orgz& sram_orgz_type) {
size_t num_config_bits = 0;
switch (sram_orgz_type) {
case SPICE_SRAM_MEMORY_BANK:
/* In memory bank, by intensively share the Bit/Word Lines,
* we only need 1 additional BL and WL for each MUX level.
*/
num_config_bits = mux_graph.num_levels();
break;
case SPICE_SRAM_SCAN_CHAIN:
case SPICE_SRAM_STANDALONE:
/* Currently we DO NOT SUPPORT THESE, given an invalid number */
num_config_bits = size_t(-1);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d])Invalid type of SRAM organization!\n",
__FILE__, __LINE__);
exit(1);
}
if (true == circuit_lib.mux_use_local_encoder(mux_model)) {
/* TODO: this is a to-do work for ReRAM-based multiplexers and FPGAs
* The number of states of a local decoder only depends on how many
* memory bits that the multiplexer will have
* This may NOT be correct!!!
*/
return find_mux_local_decoder_addr_size(mux_graph.num_memory_bits());
}
return num_config_bits;
}
/**************************************************
* Find the number of configuration bits for
* a routing multiplexer
* Two cases are considered here.
* They are placed in different branches (sub-functions)
* in order to be easy in extending to new technology!
*************************************************/
size_t find_mux_num_config_bits(const CircuitLibrary& circuit_lib,
const CircuitModelId& mux_model,
const MuxGraph& mux_graph,
const e_sram_orgz& sram_orgz_type) {
size_t num_config_bits = size_t(-1);
switch (circuit_lib.design_tech_type(mux_model)) {
case SPICE_MODEL_DESIGN_CMOS:
num_config_bits = find_cmos_mux_num_config_bits(circuit_lib, mux_model, mux_graph, sram_orgz_type);
break;
case SPICE_MODEL_DESIGN_RRAM:
num_config_bits = find_rram_mux_num_config_bits(circuit_lib, mux_model, mux_graph, sram_orgz_type);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d])Invalid design_technology of MUX(name: %s)\n",
__FILE__, __LINE__, circuit_lib.model_name(mux_model).c_str());
exit(1);
}
return num_config_bits;
}