OpenFPGA/vpr7_x2p/vpr/SRC/pack/output_clustering.c

610 lines
20 KiB
C
Executable File

/*
Jason Luu 2008
Print complex block information to a file
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "vpr_types.h"
#include "globals.h"
#include "output_clustering.h"
#include "read_xml_arch_file.h"
#define LINELENGTH 1024
#define TAB_LENGTH 4
/****************** Subroutines local to this module ************************/
/**************** Subroutine definitions ************************************/
static void print_tabs(FILE *fpout, int num_tabs) {
int i;
for (i = 0; i < num_tabs; i++) {
fprintf(fpout, "\t");
}
}
static void print_string(const char *str_ptr, int *column, int num_tabs, FILE * fpout) {
/* Prints string without making any lines longer than LINELENGTH. Column *
* points to the column in which the next character will go (both used and *
* updated), and fpout points to the output file. */
int len;
len = strlen(str_ptr);
if (len + 3 > LINELENGTH) {
vpr_printf(TIO_MESSAGE_ERROR, "in print_string: String %s is too long for desired maximum line length.\n", str_ptr);
exit(1);
}
if (*column + len + 2 > LINELENGTH) {
fprintf(fpout, "\n");
print_tabs(fpout, num_tabs);
*column = num_tabs * TAB_LENGTH;
}
fprintf(fpout, "%s ", str_ptr);
*column += len + 1;
}
static void print_net_name(int inet, int *column, int num_tabs, FILE * fpout) {
/* This routine prints out the vpack_net name (or open) and limits the *
* length of a line to LINELENGTH characters by using \ to continue *
* lines. net_num is the index of the vpack_net to be printed, while *
* column points to the current printing column (column is both *
* used and updated by this routine). fpout is the output file *
* pointer. */
const char *str_ptr;
if (inet == OPEN)
str_ptr = "open";
else
str_ptr = vpack_net[inet].name;
print_string(str_ptr, column, num_tabs, fpout);
}
static void print_interconnect(int inode, int *column, int num_tabs,
FILE * fpout) {
/* This routine prints out the vpack_net name (or open) and limits the *
* length of a line to LINELENGTH characters by using \ to continue *
* lines. net_num is the index of the vpack_net to be printed, while *
* column points to the current printing column (column is both *
* used and updated by this routine). fpout is the output file *
* pointer. */
char *str_ptr, *name;
int prev_node, prev_edge;
int len;
if (rr_node[inode].net_num == OPEN) {
print_string("open", column, num_tabs, fpout);
} else {
str_ptr = NULL;
prev_node = rr_node[inode].prev_node;
prev_edge = rr_node[inode].prev_edge;
if (prev_node == OPEN
&& rr_node[inode].pb_graph_pin->port->parent_pb_type->num_modes
== 0
&& rr_node[inode].pb_graph_pin->port->type == OUT_PORT) { /* This is a primitive output */
print_net_name(rr_node[inode].net_num, column, num_tabs, fpout);
} else {
name =
rr_node[prev_node].pb_graph_pin->output_edges[prev_edge]->interconnect->name;
if (rr_node[prev_node].pb_graph_pin->port->parent_pb_type->depth
>= rr_node[inode].pb_graph_pin->port->parent_pb_type->depth) {
/* Connections from siblings or children should have an explicit index, connections from parent does not need an explicit index */
len =
strlen(
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name)
+ rr_node[prev_node].pb_graph_pin->parent_node->placement_index
/ 10
+ strlen(
rr_node[prev_node].pb_graph_pin->port->name)
+ rr_node[prev_node].pb_graph_pin->pin_number
/ 10 + strlen(name) + 11;
str_ptr = (char*)my_malloc(len * sizeof(char));
sprintf(str_ptr, "%s[%d].%s[%d]->%s ",
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name,
rr_node[prev_node].pb_graph_pin->parent_node->placement_index,
rr_node[prev_node].pb_graph_pin->port->name,
rr_node[prev_node].pb_graph_pin->pin_number, name);
} else {
len =
strlen(
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name)
+ strlen(
rr_node[prev_node].pb_graph_pin->port->name)
+ rr_node[prev_node].pb_graph_pin->pin_number
/ 10 + strlen(name) + 8;
str_ptr = (char*)my_malloc(len * sizeof(char));
sprintf(str_ptr, "%s.%s[%d]->%s ",
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name,
rr_node[prev_node].pb_graph_pin->port->name,
rr_node[prev_node].pb_graph_pin->pin_number, name);
}
print_string(str_ptr, column, num_tabs, fpout);
}
if (str_ptr)
free(str_ptr);
}
}
static void print_open_pb_graph_node(t_pb_graph_node * pb_graph_node,
int pb_index, boolean is_used, int tab_depth, FILE * fpout) {
int column = 0;
int i, j, k, m;
const t_pb_type * pb_type, *child_pb_type;
t_mode * mode = NULL;
int prev_edge, prev_node;
t_pb_graph_pin *pb_graph_pin;
int mode_of_edge, port_index, node_index;
mode_of_edge = UNDEFINED;
pb_type = pb_graph_node->pb_type;
print_tabs(fpout, tab_depth);
if (is_used) {
/* Determine mode if applicable */
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (pb_type->ports[i].type == OUT_PORT) {
assert(!pb_type->ports[i].is_clock);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb_graph_node->output_pins[port_index][j].pin_count_in_cluster;
if (pb_type->num_modes > 0
&& rr_node[node_index].net_num != OPEN) {
prev_edge = rr_node[node_index].prev_edge;
prev_node = rr_node[node_index].prev_node;
pb_graph_pin = rr_node[prev_node].pb_graph_pin;
mode_of_edge =
pb_graph_pin->output_edges[prev_edge]->interconnect->parent_mode_index;
assert(
mode == NULL || &pb_type->modes[mode_of_edge] == mode);
mode = &pb_type->modes[mode_of_edge];
}
}
port_index++;
}
}
assert(mode != NULL && mode_of_edge != UNDEFINED);
fprintf(fpout,
"<block name=\"open\" instance=\"%s[%d]\" mode=\"%s\">\n",
pb_graph_node->pb_type->name, pb_index, mode->name);
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t<inputs>\n");
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (!pb_type->ports[i].is_clock
&& pb_type->ports[i].type == IN_PORT) {
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t\t<port name=\"%s\">",
pb_graph_node->pb_type->ports[i].name);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb_graph_node->input_pins[port_index][j].pin_count_in_cluster;
print_interconnect(node_index, &column, tab_depth + 2,
fpout);
}
fprintf(fpout, "</port>\n");
port_index++;
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t</inputs>\n");
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t<outputs>\n");
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (pb_type->ports[i].type == OUT_PORT) {
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t\t<port name=\"%s\">",
pb_graph_node->pb_type->ports[i].name);
assert(!pb_type->ports[i].is_clock);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb_graph_node->output_pins[port_index][j].pin_count_in_cluster;
print_interconnect(node_index, &column, tab_depth + 2,
fpout);
}
fprintf(fpout, "</port>\n");
port_index++;
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t</outputs>\n");
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t<clocks>\n");
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (pb_type->ports[i].is_clock
&& pb_type->ports[i].type == IN_PORT) {
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t\t<port name=\"%s\">",
pb_graph_node->pb_type->ports[i].name);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb_graph_node->clock_pins[port_index][j].pin_count_in_cluster;
print_interconnect(node_index, &column, tab_depth + 2,
fpout);
}
fprintf(fpout, "</port>\n");
port_index++;
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t</clocks>\n");
if (pb_type->num_modes > 0) {
for (i = 0; i < mode->num_pb_type_children; i++) {
child_pb_type = &mode->pb_type_children[i];
for (j = 0; j < mode->pb_type_children[i].num_pb; j++) {
port_index = 0;
is_used = FALSE;
for (k = 0; k < child_pb_type->num_ports && !is_used; k++) {
if (child_pb_type->ports[k].type == OUT_PORT) {
for (m = 0; m < child_pb_type->ports[k].num_pins;
m++) {
node_index =
pb_graph_node->child_pb_graph_nodes[mode_of_edge][i][j].output_pins[port_index][m].pin_count_in_cluster;
if (rr_node[node_index].net_num != OPEN) {
is_used = TRUE;
break;
}
}
port_index++;
}
}
print_open_pb_graph_node(
&pb_graph_node->child_pb_graph_nodes[mode_of_edge][i][j],
j, is_used, tab_depth + 1, fpout);
}
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "</block>\n");
} else {
fprintf(fpout, "<block name=\"open\" instance=\"%s[%d]\"/>\n",
pb_graph_node->pb_type->name, pb_index);
}
}
static void print_pb(FILE *fpout, t_pb * pb, int pb_index, int tab_depth) {
int column;
int i, j, k, m;
const t_pb_type *pb_type, *child_pb_type;
t_pb_graph_node *pb_graph_node;
t_mode *mode;
int port_index, node_index;
boolean is_used;
pb_type = pb->pb_graph_node->pb_type;
pb_graph_node = pb->pb_graph_node;
mode = &pb_type->modes[pb->mode];
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
print_tabs(fpout, tab_depth);
if (pb_type->num_modes == 0) {
fprintf(fpout, "<block name=\"%s\" instance=\"%s[%d]\">\n", pb->name,
pb_type->name, pb_index);
} else {
fprintf(fpout, "<block name=\"%s\" instance=\"%s[%d]\" mode=\"%s\">\n",
pb->name, pb_type->name, pb_index, mode->name);
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t<inputs>\n");
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (!pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT) {
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t\t<port name=\"%s\">",
pb_graph_node->pb_type->ports[i].name);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb->pb_graph_node->input_pins[port_index][j].pin_count_in_cluster;
if (pb_type->parent_mode == NULL) {
print_net_name(rr_node[node_index].net_num, &column,
tab_depth, fpout);
} else {
print_interconnect(node_index, &column, tab_depth + 2,
fpout);
}
}
fprintf(fpout, "</port>\n");
port_index++;
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t</inputs>\n");
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t<outputs>\n");
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (pb_type->ports[i].type == OUT_PORT) {
assert(!pb_type->ports[i].is_clock);
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t\t<port name=\"%s\">",
pb_graph_node->pb_type->ports[i].name);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb->pb_graph_node->output_pins[port_index][j].pin_count_in_cluster;
print_interconnect(node_index, &column, tab_depth + 2, fpout);
}
fprintf(fpout, "</port>\n");
port_index++;
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t</outputs>\n");
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t<clocks>\n");
port_index = 0;
for (i = 0; i < pb_type->num_ports; i++) {
if (pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT) {
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t\t<port name=\"%s\">",
pb_graph_node->pb_type->ports[i].name);
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
node_index =
pb->pb_graph_node->clock_pins[port_index][j].pin_count_in_cluster;
if (pb_type->parent_mode == NULL) {
print_net_name(rr_node[node_index].net_num, &column,
tab_depth, fpout);
} else {
print_interconnect(node_index, &column, tab_depth + 2,
fpout);
}
}
fprintf(fpout, "</port>\n");
port_index++;
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "\t</clocks>\n");
if (pb_type->num_modes > 0) {
for (i = 0; i < mode->num_pb_type_children; i++) {
for (j = 0; j < mode->pb_type_children[i].num_pb; j++) {
/* If child pb is not used but routing is used, I must print things differently */
if ((pb->child_pbs[i] != NULL)
&& (pb->child_pbs[i][j].name != NULL)) {
print_pb(fpout, &pb->child_pbs[i][j], j, tab_depth + 1);
} else {
is_used = FALSE;
child_pb_type = &mode->pb_type_children[i];
port_index = 0;
for (k = 0; k < child_pb_type->num_ports && !is_used; k++) {
if (child_pb_type->ports[k].type == OUT_PORT) {
for (m = 0; m < child_pb_type->ports[k].num_pins;
m++) {
node_index =
pb_graph_node->child_pb_graph_nodes[pb->mode][i][j].output_pins[port_index][m].pin_count_in_cluster;
if (rr_node[node_index].net_num != OPEN) {
is_used = TRUE;
break;
}
}
port_index++;
}
}
print_open_pb_graph_node(
&pb_graph_node->child_pb_graph_nodes[pb->mode][i][j],
j, is_used, tab_depth + 1, fpout);
}
}
}
}
print_tabs(fpout, tab_depth);
fprintf(fpout, "</block>\n");
}
static void print_clusters(t_block *clb, int num_clusters, FILE * fpout) {
/* Prints out one cluster (clb). Both the external pins and the *
* internal connections are printed out. */
int icluster;
for (icluster = 0; icluster < num_clusters; icluster++) {
rr_node = clb[icluster].pb->rr_graph;
/* TODO: Must do check that total CLB pins match top-level pb pins, perhaps check this earlier? */
print_pb(fpout, clb[icluster].pb, icluster, 1);
}
}
static void print_stats(t_block *clb, int num_clusters) {
/* Prints out one cluster (clb). Both the external pins and the *
* internal connections are printed out. */
int ipin, icluster, itype, inet;/*, iblk;*/
/*int unabsorbable_ffs;*/
int total_nets_absorbed;
boolean * nets_absorbed;
int *num_clb_types, *num_clb_inputs_used, *num_clb_outputs_used;
nets_absorbed = NULL;
num_clb_types = num_clb_inputs_used = num_clb_outputs_used = NULL;
num_clb_types = (int*) my_calloc(num_types, sizeof(int));
num_clb_inputs_used = (int*) my_calloc(num_types, sizeof(int));
num_clb_outputs_used = (int*) my_calloc(num_types, sizeof(int));
nets_absorbed = (boolean *) my_calloc(num_logical_nets, sizeof(boolean));
for (inet = 0; inet < num_logical_nets; inet++) {
nets_absorbed[inet] = TRUE;
}
#if 0
/*counting number of flipflops which cannot be absorbed to check the optimality of the packer wrt CLB density*/
unabsorbable_ffs = 0;
for (iblk = 0; iblk < num_logical_blocks; iblk++) {
if (strcmp(logical_block[iblk].model->name, "latch") == 0) {
if (vpack_net[logical_block[iblk].input_nets[0][0]].num_sinks > 1
|| strcmp(
logical_block[vpack_net[logical_block[iblk].input_nets[0][0]].node_block[0]].model->name,
"names") != 0) {
unabsorbable_ffs++;
}
}
}
vpr_printf(TIO_MESSAGE_INFO, "\n");
vpr_printf(TIO_MESSAGE_INFO, "%d FFs in input netlist not absorbable (ie. impossible to form BLE).\n", unabsorbable_ffs);
#endif
/* Counters used only for statistics purposes. */
for (icluster = 0; icluster < num_clusters; icluster++) {
for (ipin = 0; ipin < clb[icluster].type->num_pins; ipin++) {
if (clb[icluster].nets[ipin] != OPEN) {
nets_absorbed[clb[icluster].nets[ipin]] = FALSE;
if (clb[icluster].type->class_inf[clb[icluster].type->pin_class[ipin]].type
== RECEIVER) {
num_clb_inputs_used[clb[icluster].type->index]++;
} else if (clb[icluster].type->class_inf[clb[icluster].type->pin_class[ipin]].type
== DRIVER) {
num_clb_outputs_used[clb[icluster].type->index]++;
}
}
}
num_clb_types[clb[icluster].type->index]++;
}
for (itype = 0; itype < num_types; itype++) {
if (num_clb_types[itype] == 0) {
vpr_printf(TIO_MESSAGE_INFO, "\t%s: # blocks: %d, average # input + clock pins used: %g, average # output pins used: %g\n",
type_descriptors[itype].name, num_clb_types[itype], 0.0, 0.0);
} else {
vpr_printf(TIO_MESSAGE_INFO, "\t%s: # blocks: %d, average # input + clock pins used: %g, average # output pins used: %g\n",
type_descriptors[itype].name, num_clb_types[itype],
(float) num_clb_inputs_used[itype] / (float) num_clb_types[itype],
(float) num_clb_outputs_used[itype] / (float) num_clb_types[itype]);
}
}
total_nets_absorbed = 0;
for (inet = 0; inet < num_logical_nets; inet++) {
if (nets_absorbed[inet] == TRUE) {
total_nets_absorbed++;
}
}
vpr_printf(TIO_MESSAGE_INFO, "Absorbed logical nets %d out of %d nets, %d nets not absorbed.\n",
total_nets_absorbed, num_logical_nets, num_logical_nets - total_nets_absorbed);
free(nets_absorbed);
free(num_clb_types);
free(num_clb_inputs_used);
free(num_clb_outputs_used);
/* TODO: print more stats */
}
void output_clustering(t_block *clb, int num_clusters, boolean global_clocks,
boolean * is_clock, char *out_fname, boolean skip_clustering) {
/*
* This routine dumps out the output netlist in a format suitable for *
* input to vpr. This routine also dumps out the internal structure of *
* the cluster, in essentially a graph based format. */
FILE *fpout;
int bnum, netnum, column;
fpout = fopen(out_fname, "w");
fprintf(fpout, "<block name=\"%s\" instance=\"FPGA_packed_netlist[0]\">\n",
out_fname);
fprintf(fpout, "\t<inputs>\n\t\t");
column = 2 * TAB_LENGTH; /* Organize whitespace to ident data inside block */
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
if (logical_block[bnum].type == VPACK_INPAD) {
print_string(logical_block[bnum].name, &column, 2, fpout);
}
}
fprintf(fpout, "\n\t</inputs>\n");
fprintf(fpout, "\n\t<outputs>\n\t\t");
column = 2 * TAB_LENGTH;
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
if (logical_block[bnum].type == VPACK_OUTPAD) {
print_string(logical_block[bnum].name, &column, 2, fpout);
}
}
fprintf(fpout, "\n\t</outputs>\n");
column = 2 * TAB_LENGTH;
if (global_clocks) {
fprintf(fpout, "\n\t<clocks>\n\t\t");
for (netnum = 0; netnum < num_logical_nets; netnum++) {
if (is_clock[netnum]) {
print_string(vpack_net[netnum].name, &column, 2, fpout);
}
}
fprintf(fpout, "\n\t</clocks>\n\n");
}
/* Print out all input and output pads. */
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
switch (logical_block[bnum].type) {
case VPACK_INPAD:
case VPACK_OUTPAD:
case VPACK_COMB:
case VPACK_LATCH:
if (skip_clustering) {
assert(0);
}
break;
case VPACK_EMPTY:
vpr_printf(TIO_MESSAGE_ERROR, "in output_netlist: logical_block %d is VPACK_EMPTY.\n",
bnum);
exit(1);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR, "in output_netlist: Unexpected type %d for logical_block %d.\n",
logical_block[bnum].type, bnum);
}
}
if (skip_clustering == FALSE)
print_clusters(clb, num_clusters, fpout);
fprintf(fpout, "</block>\n\n");
fclose(fpout);
print_stats(clb, num_clusters);
}