610 lines
20 KiB
C
Executable File
610 lines
20 KiB
C
Executable File
/*
|
|
Jason Luu 2008
|
|
Print complex block information to a file
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "util.h"
|
|
#include "vpr_types.h"
|
|
#include "globals.h"
|
|
#include "output_clustering.h"
|
|
#include "read_xml_arch_file.h"
|
|
|
|
#define LINELENGTH 1024
|
|
#define TAB_LENGTH 4
|
|
|
|
/****************** Subroutines local to this module ************************/
|
|
|
|
/**************** Subroutine definitions ************************************/
|
|
|
|
static void print_tabs(FILE *fpout, int num_tabs) {
|
|
int i;
|
|
for (i = 0; i < num_tabs; i++) {
|
|
fprintf(fpout, "\t");
|
|
}
|
|
}
|
|
|
|
static void print_string(const char *str_ptr, int *column, int num_tabs, FILE * fpout) {
|
|
|
|
/* Prints string without making any lines longer than LINELENGTH. Column *
|
|
* points to the column in which the next character will go (both used and *
|
|
* updated), and fpout points to the output file. */
|
|
|
|
int len;
|
|
|
|
len = strlen(str_ptr);
|
|
if (len + 3 > LINELENGTH) {
|
|
vpr_printf(TIO_MESSAGE_ERROR, "in print_string: String %s is too long for desired maximum line length.\n", str_ptr);
|
|
exit(1);
|
|
}
|
|
|
|
if (*column + len + 2 > LINELENGTH) {
|
|
fprintf(fpout, "\n");
|
|
print_tabs(fpout, num_tabs);
|
|
*column = num_tabs * TAB_LENGTH;
|
|
}
|
|
|
|
fprintf(fpout, "%s ", str_ptr);
|
|
*column += len + 1;
|
|
}
|
|
|
|
static void print_net_name(int inet, int *column, int num_tabs, FILE * fpout) {
|
|
|
|
/* This routine prints out the vpack_net name (or open) and limits the *
|
|
* length of a line to LINELENGTH characters by using \ to continue *
|
|
* lines. net_num is the index of the vpack_net to be printed, while *
|
|
* column points to the current printing column (column is both *
|
|
* used and updated by this routine). fpout is the output file *
|
|
* pointer. */
|
|
|
|
const char *str_ptr;
|
|
|
|
if (inet == OPEN)
|
|
str_ptr = "open";
|
|
else
|
|
str_ptr = vpack_net[inet].name;
|
|
|
|
print_string(str_ptr, column, num_tabs, fpout);
|
|
}
|
|
|
|
static void print_interconnect(int inode, int *column, int num_tabs,
|
|
FILE * fpout) {
|
|
|
|
/* This routine prints out the vpack_net name (or open) and limits the *
|
|
* length of a line to LINELENGTH characters by using \ to continue *
|
|
* lines. net_num is the index of the vpack_net to be printed, while *
|
|
* column points to the current printing column (column is both *
|
|
* used and updated by this routine). fpout is the output file *
|
|
* pointer. */
|
|
|
|
char *str_ptr, *name;
|
|
int prev_node, prev_edge;
|
|
int len;
|
|
|
|
if (rr_node[inode].net_num == OPEN) {
|
|
print_string("open", column, num_tabs, fpout);
|
|
} else {
|
|
str_ptr = NULL;
|
|
prev_node = rr_node[inode].prev_node;
|
|
prev_edge = rr_node[inode].prev_edge;
|
|
|
|
if (prev_node == OPEN
|
|
&& rr_node[inode].pb_graph_pin->port->parent_pb_type->num_modes
|
|
== 0
|
|
&& rr_node[inode].pb_graph_pin->port->type == OUT_PORT) { /* This is a primitive output */
|
|
print_net_name(rr_node[inode].net_num, column, num_tabs, fpout);
|
|
} else {
|
|
name =
|
|
rr_node[prev_node].pb_graph_pin->output_edges[prev_edge]->interconnect->name;
|
|
if (rr_node[prev_node].pb_graph_pin->port->parent_pb_type->depth
|
|
>= rr_node[inode].pb_graph_pin->port->parent_pb_type->depth) {
|
|
/* Connections from siblings or children should have an explicit index, connections from parent does not need an explicit index */
|
|
len =
|
|
strlen(
|
|
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name)
|
|
+ rr_node[prev_node].pb_graph_pin->parent_node->placement_index
|
|
/ 10
|
|
+ strlen(
|
|
rr_node[prev_node].pb_graph_pin->port->name)
|
|
+ rr_node[prev_node].pb_graph_pin->pin_number
|
|
/ 10 + strlen(name) + 11;
|
|
str_ptr = (char*)my_malloc(len * sizeof(char));
|
|
sprintf(str_ptr, "%s[%d].%s[%d]->%s ",
|
|
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name,
|
|
rr_node[prev_node].pb_graph_pin->parent_node->placement_index,
|
|
rr_node[prev_node].pb_graph_pin->port->name,
|
|
rr_node[prev_node].pb_graph_pin->pin_number, name);
|
|
} else {
|
|
len =
|
|
strlen(
|
|
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name)
|
|
+ strlen(
|
|
rr_node[prev_node].pb_graph_pin->port->name)
|
|
+ rr_node[prev_node].pb_graph_pin->pin_number
|
|
/ 10 + strlen(name) + 8;
|
|
str_ptr = (char*)my_malloc(len * sizeof(char));
|
|
sprintf(str_ptr, "%s.%s[%d]->%s ",
|
|
rr_node[prev_node].pb_graph_pin->parent_node->pb_type->name,
|
|
rr_node[prev_node].pb_graph_pin->port->name,
|
|
rr_node[prev_node].pb_graph_pin->pin_number, name);
|
|
}
|
|
print_string(str_ptr, column, num_tabs, fpout);
|
|
}
|
|
if (str_ptr)
|
|
free(str_ptr);
|
|
}
|
|
}
|
|
|
|
static void print_open_pb_graph_node(t_pb_graph_node * pb_graph_node,
|
|
int pb_index, boolean is_used, int tab_depth, FILE * fpout) {
|
|
int column = 0;
|
|
int i, j, k, m;
|
|
const t_pb_type * pb_type, *child_pb_type;
|
|
t_mode * mode = NULL;
|
|
int prev_edge, prev_node;
|
|
t_pb_graph_pin *pb_graph_pin;
|
|
int mode_of_edge, port_index, node_index;
|
|
|
|
mode_of_edge = UNDEFINED;
|
|
|
|
pb_type = pb_graph_node->pb_type;
|
|
|
|
print_tabs(fpout, tab_depth);
|
|
|
|
if (is_used) {
|
|
/* Determine mode if applicable */
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (pb_type->ports[i].type == OUT_PORT) {
|
|
assert(!pb_type->ports[i].is_clock);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb_graph_node->output_pins[port_index][j].pin_count_in_cluster;
|
|
if (pb_type->num_modes > 0
|
|
&& rr_node[node_index].net_num != OPEN) {
|
|
prev_edge = rr_node[node_index].prev_edge;
|
|
prev_node = rr_node[node_index].prev_node;
|
|
pb_graph_pin = rr_node[prev_node].pb_graph_pin;
|
|
mode_of_edge =
|
|
pb_graph_pin->output_edges[prev_edge]->interconnect->parent_mode_index;
|
|
assert(
|
|
mode == NULL || &pb_type->modes[mode_of_edge] == mode);
|
|
mode = &pb_type->modes[mode_of_edge];
|
|
}
|
|
}
|
|
port_index++;
|
|
}
|
|
}
|
|
|
|
assert(mode != NULL && mode_of_edge != UNDEFINED);
|
|
fprintf(fpout,
|
|
"<block name=\"open\" instance=\"%s[%d]\" mode=\"%s\">\n",
|
|
pb_graph_node->pb_type->name, pb_index, mode->name);
|
|
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t<inputs>\n");
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (!pb_type->ports[i].is_clock
|
|
&& pb_type->ports[i].type == IN_PORT) {
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t\t<port name=\"%s\">",
|
|
pb_graph_node->pb_type->ports[i].name);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb_graph_node->input_pins[port_index][j].pin_count_in_cluster;
|
|
print_interconnect(node_index, &column, tab_depth + 2,
|
|
fpout);
|
|
}
|
|
fprintf(fpout, "</port>\n");
|
|
port_index++;
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t</inputs>\n");
|
|
|
|
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t<outputs>\n");
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (pb_type->ports[i].type == OUT_PORT) {
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t\t<port name=\"%s\">",
|
|
pb_graph_node->pb_type->ports[i].name);
|
|
assert(!pb_type->ports[i].is_clock);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb_graph_node->output_pins[port_index][j].pin_count_in_cluster;
|
|
print_interconnect(node_index, &column, tab_depth + 2,
|
|
fpout);
|
|
}
|
|
fprintf(fpout, "</port>\n");
|
|
port_index++;
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t</outputs>\n");
|
|
|
|
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t<clocks>\n");
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (pb_type->ports[i].is_clock
|
|
&& pb_type->ports[i].type == IN_PORT) {
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t\t<port name=\"%s\">",
|
|
pb_graph_node->pb_type->ports[i].name);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb_graph_node->clock_pins[port_index][j].pin_count_in_cluster;
|
|
print_interconnect(node_index, &column, tab_depth + 2,
|
|
fpout);
|
|
}
|
|
fprintf(fpout, "</port>\n");
|
|
port_index++;
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t</clocks>\n");
|
|
|
|
if (pb_type->num_modes > 0) {
|
|
for (i = 0; i < mode->num_pb_type_children; i++) {
|
|
child_pb_type = &mode->pb_type_children[i];
|
|
for (j = 0; j < mode->pb_type_children[i].num_pb; j++) {
|
|
port_index = 0;
|
|
is_used = FALSE;
|
|
for (k = 0; k < child_pb_type->num_ports && !is_used; k++) {
|
|
if (child_pb_type->ports[k].type == OUT_PORT) {
|
|
for (m = 0; m < child_pb_type->ports[k].num_pins;
|
|
m++) {
|
|
node_index =
|
|
pb_graph_node->child_pb_graph_nodes[mode_of_edge][i][j].output_pins[port_index][m].pin_count_in_cluster;
|
|
if (rr_node[node_index].net_num != OPEN) {
|
|
is_used = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
port_index++;
|
|
}
|
|
}
|
|
print_open_pb_graph_node(
|
|
&pb_graph_node->child_pb_graph_nodes[mode_of_edge][i][j],
|
|
j, is_used, tab_depth + 1, fpout);
|
|
}
|
|
}
|
|
}
|
|
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "</block>\n");
|
|
} else {
|
|
fprintf(fpout, "<block name=\"open\" instance=\"%s[%d]\"/>\n",
|
|
pb_graph_node->pb_type->name, pb_index);
|
|
}
|
|
}
|
|
|
|
static void print_pb(FILE *fpout, t_pb * pb, int pb_index, int tab_depth) {
|
|
|
|
int column;
|
|
int i, j, k, m;
|
|
const t_pb_type *pb_type, *child_pb_type;
|
|
t_pb_graph_node *pb_graph_node;
|
|
t_mode *mode;
|
|
int port_index, node_index;
|
|
boolean is_used;
|
|
|
|
pb_type = pb->pb_graph_node->pb_type;
|
|
pb_graph_node = pb->pb_graph_node;
|
|
mode = &pb_type->modes[pb->mode];
|
|
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
|
|
print_tabs(fpout, tab_depth);
|
|
if (pb_type->num_modes == 0) {
|
|
fprintf(fpout, "<block name=\"%s\" instance=\"%s[%d]\">\n", pb->name,
|
|
pb_type->name, pb_index);
|
|
} else {
|
|
fprintf(fpout, "<block name=\"%s\" instance=\"%s[%d]\" mode=\"%s\">\n",
|
|
pb->name, pb_type->name, pb_index, mode->name);
|
|
}
|
|
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t<inputs>\n");
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (!pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT) {
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t\t<port name=\"%s\">",
|
|
pb_graph_node->pb_type->ports[i].name);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb->pb_graph_node->input_pins[port_index][j].pin_count_in_cluster;
|
|
if (pb_type->parent_mode == NULL) {
|
|
print_net_name(rr_node[node_index].net_num, &column,
|
|
tab_depth, fpout);
|
|
} else {
|
|
print_interconnect(node_index, &column, tab_depth + 2,
|
|
fpout);
|
|
}
|
|
}
|
|
fprintf(fpout, "</port>\n");
|
|
port_index++;
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t</inputs>\n");
|
|
|
|
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t<outputs>\n");
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (pb_type->ports[i].type == OUT_PORT) {
|
|
assert(!pb_type->ports[i].is_clock);
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t\t<port name=\"%s\">",
|
|
pb_graph_node->pb_type->ports[i].name);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb->pb_graph_node->output_pins[port_index][j].pin_count_in_cluster;
|
|
print_interconnect(node_index, &column, tab_depth + 2, fpout);
|
|
}
|
|
fprintf(fpout, "</port>\n");
|
|
port_index++;
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t</outputs>\n");
|
|
|
|
column = tab_depth * TAB_LENGTH + 8; /* Next column I will write to. */
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t<clocks>\n");
|
|
port_index = 0;
|
|
for (i = 0; i < pb_type->num_ports; i++) {
|
|
if (pb_type->ports[i].is_clock && pb_type->ports[i].type == IN_PORT) {
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t\t<port name=\"%s\">",
|
|
pb_graph_node->pb_type->ports[i].name);
|
|
for (j = 0; j < pb_type->ports[i].num_pins; j++) {
|
|
node_index =
|
|
pb->pb_graph_node->clock_pins[port_index][j].pin_count_in_cluster;
|
|
if (pb_type->parent_mode == NULL) {
|
|
print_net_name(rr_node[node_index].net_num, &column,
|
|
tab_depth, fpout);
|
|
} else {
|
|
print_interconnect(node_index, &column, tab_depth + 2,
|
|
fpout);
|
|
}
|
|
}
|
|
fprintf(fpout, "</port>\n");
|
|
port_index++;
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "\t</clocks>\n");
|
|
|
|
if (pb_type->num_modes > 0) {
|
|
for (i = 0; i < mode->num_pb_type_children; i++) {
|
|
for (j = 0; j < mode->pb_type_children[i].num_pb; j++) {
|
|
/* If child pb is not used but routing is used, I must print things differently */
|
|
if ((pb->child_pbs[i] != NULL)
|
|
&& (pb->child_pbs[i][j].name != NULL)) {
|
|
print_pb(fpout, &pb->child_pbs[i][j], j, tab_depth + 1);
|
|
} else {
|
|
is_used = FALSE;
|
|
child_pb_type = &mode->pb_type_children[i];
|
|
port_index = 0;
|
|
|
|
for (k = 0; k < child_pb_type->num_ports && !is_used; k++) {
|
|
if (child_pb_type->ports[k].type == OUT_PORT) {
|
|
for (m = 0; m < child_pb_type->ports[k].num_pins;
|
|
m++) {
|
|
node_index =
|
|
pb_graph_node->child_pb_graph_nodes[pb->mode][i][j].output_pins[port_index][m].pin_count_in_cluster;
|
|
if (rr_node[node_index].net_num != OPEN) {
|
|
is_used = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
port_index++;
|
|
}
|
|
}
|
|
print_open_pb_graph_node(
|
|
&pb_graph_node->child_pb_graph_nodes[pb->mode][i][j],
|
|
j, is_used, tab_depth + 1, fpout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
print_tabs(fpout, tab_depth);
|
|
fprintf(fpout, "</block>\n");
|
|
}
|
|
|
|
static void print_clusters(t_block *clb, int num_clusters, FILE * fpout) {
|
|
|
|
/* Prints out one cluster (clb). Both the external pins and the *
|
|
* internal connections are printed out. */
|
|
|
|
int icluster;
|
|
|
|
for (icluster = 0; icluster < num_clusters; icluster++) {
|
|
rr_node = clb[icluster].pb->rr_graph;
|
|
|
|
/* TODO: Must do check that total CLB pins match top-level pb pins, perhaps check this earlier? */
|
|
|
|
print_pb(fpout, clb[icluster].pb, icluster, 1);
|
|
}
|
|
}
|
|
|
|
static void print_stats(t_block *clb, int num_clusters) {
|
|
|
|
/* Prints out one cluster (clb). Both the external pins and the *
|
|
* internal connections are printed out. */
|
|
|
|
int ipin, icluster, itype, inet;/*, iblk;*/
|
|
/*int unabsorbable_ffs;*/
|
|
int total_nets_absorbed;
|
|
boolean * nets_absorbed;
|
|
|
|
int *num_clb_types, *num_clb_inputs_used, *num_clb_outputs_used;
|
|
|
|
nets_absorbed = NULL;
|
|
num_clb_types = num_clb_inputs_used = num_clb_outputs_used = NULL;
|
|
|
|
num_clb_types = (int*) my_calloc(num_types, sizeof(int));
|
|
num_clb_inputs_used = (int*) my_calloc(num_types, sizeof(int));
|
|
num_clb_outputs_used = (int*) my_calloc(num_types, sizeof(int));
|
|
|
|
|
|
nets_absorbed = (boolean *) my_calloc(num_logical_nets, sizeof(boolean));
|
|
for (inet = 0; inet < num_logical_nets; inet++) {
|
|
nets_absorbed[inet] = TRUE;
|
|
}
|
|
|
|
#if 0
|
|
|
|
/*counting number of flipflops which cannot be absorbed to check the optimality of the packer wrt CLB density*/
|
|
|
|
unabsorbable_ffs = 0;
|
|
for (iblk = 0; iblk < num_logical_blocks; iblk++) {
|
|
if (strcmp(logical_block[iblk].model->name, "latch") == 0) {
|
|
if (vpack_net[logical_block[iblk].input_nets[0][0]].num_sinks > 1
|
|
|| strcmp(
|
|
logical_block[vpack_net[logical_block[iblk].input_nets[0][0]].node_block[0]].model->name,
|
|
"names") != 0) {
|
|
unabsorbable_ffs++;
|
|
}
|
|
}
|
|
}
|
|
vpr_printf(TIO_MESSAGE_INFO, "\n");
|
|
vpr_printf(TIO_MESSAGE_INFO, "%d FFs in input netlist not absorbable (ie. impossible to form BLE).\n", unabsorbable_ffs);
|
|
#endif
|
|
|
|
/* Counters used only for statistics purposes. */
|
|
|
|
for (icluster = 0; icluster < num_clusters; icluster++) {
|
|
for (ipin = 0; ipin < clb[icluster].type->num_pins; ipin++) {
|
|
if (clb[icluster].nets[ipin] != OPEN) {
|
|
nets_absorbed[clb[icluster].nets[ipin]] = FALSE;
|
|
if (clb[icluster].type->class_inf[clb[icluster].type->pin_class[ipin]].type
|
|
== RECEIVER) {
|
|
num_clb_inputs_used[clb[icluster].type->index]++;
|
|
} else if (clb[icluster].type->class_inf[clb[icluster].type->pin_class[ipin]].type
|
|
== DRIVER) {
|
|
num_clb_outputs_used[clb[icluster].type->index]++;
|
|
}
|
|
}
|
|
}
|
|
num_clb_types[clb[icluster].type->index]++;
|
|
}
|
|
|
|
for (itype = 0; itype < num_types; itype++) {
|
|
if (num_clb_types[itype] == 0) {
|
|
vpr_printf(TIO_MESSAGE_INFO, "\t%s: # blocks: %d, average # input + clock pins used: %g, average # output pins used: %g\n",
|
|
type_descriptors[itype].name, num_clb_types[itype], 0.0, 0.0);
|
|
} else {
|
|
vpr_printf(TIO_MESSAGE_INFO, "\t%s: # blocks: %d, average # input + clock pins used: %g, average # output pins used: %g\n",
|
|
type_descriptors[itype].name, num_clb_types[itype],
|
|
(float) num_clb_inputs_used[itype] / (float) num_clb_types[itype],
|
|
(float) num_clb_outputs_used[itype] / (float) num_clb_types[itype]);
|
|
}
|
|
}
|
|
|
|
total_nets_absorbed = 0;
|
|
for (inet = 0; inet < num_logical_nets; inet++) {
|
|
if (nets_absorbed[inet] == TRUE) {
|
|
total_nets_absorbed++;
|
|
}
|
|
}
|
|
vpr_printf(TIO_MESSAGE_INFO, "Absorbed logical nets %d out of %d nets, %d nets not absorbed.\n",
|
|
total_nets_absorbed, num_logical_nets, num_logical_nets - total_nets_absorbed);
|
|
free(nets_absorbed);
|
|
free(num_clb_types);
|
|
free(num_clb_inputs_used);
|
|
free(num_clb_outputs_used);
|
|
/* TODO: print more stats */
|
|
}
|
|
|
|
void output_clustering(t_block *clb, int num_clusters, boolean global_clocks,
|
|
boolean * is_clock, char *out_fname, boolean skip_clustering) {
|
|
|
|
/*
|
|
* This routine dumps out the output netlist in a format suitable for *
|
|
* input to vpr. This routine also dumps out the internal structure of *
|
|
* the cluster, in essentially a graph based format. */
|
|
|
|
FILE *fpout;
|
|
int bnum, netnum, column;
|
|
|
|
fpout = fopen(out_fname, "w");
|
|
|
|
fprintf(fpout, "<block name=\"%s\" instance=\"FPGA_packed_netlist[0]\">\n",
|
|
out_fname);
|
|
fprintf(fpout, "\t<inputs>\n\t\t");
|
|
|
|
column = 2 * TAB_LENGTH; /* Organize whitespace to ident data inside block */
|
|
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
|
|
if (logical_block[bnum].type == VPACK_INPAD) {
|
|
print_string(logical_block[bnum].name, &column, 2, fpout);
|
|
}
|
|
}
|
|
fprintf(fpout, "\n\t</inputs>\n");
|
|
fprintf(fpout, "\n\t<outputs>\n\t\t");
|
|
|
|
column = 2 * TAB_LENGTH;
|
|
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
|
|
if (logical_block[bnum].type == VPACK_OUTPAD) {
|
|
print_string(logical_block[bnum].name, &column, 2, fpout);
|
|
}
|
|
}
|
|
fprintf(fpout, "\n\t</outputs>\n");
|
|
|
|
column = 2 * TAB_LENGTH;
|
|
if (global_clocks) {
|
|
fprintf(fpout, "\n\t<clocks>\n\t\t");
|
|
|
|
for (netnum = 0; netnum < num_logical_nets; netnum++) {
|
|
if (is_clock[netnum]) {
|
|
print_string(vpack_net[netnum].name, &column, 2, fpout);
|
|
}
|
|
}
|
|
fprintf(fpout, "\n\t</clocks>\n\n");
|
|
}
|
|
|
|
/* Print out all input and output pads. */
|
|
|
|
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
|
|
switch (logical_block[bnum].type) {
|
|
case VPACK_INPAD:
|
|
case VPACK_OUTPAD:
|
|
case VPACK_COMB:
|
|
case VPACK_LATCH:
|
|
if (skip_clustering) {
|
|
assert(0);
|
|
}
|
|
break;
|
|
|
|
case VPACK_EMPTY:
|
|
vpr_printf(TIO_MESSAGE_ERROR, "in output_netlist: logical_block %d is VPACK_EMPTY.\n",
|
|
bnum);
|
|
exit(1);
|
|
break;
|
|
|
|
default:
|
|
vpr_printf(TIO_MESSAGE_ERROR, "in output_netlist: Unexpected type %d for logical_block %d.\n",
|
|
logical_block[bnum].type, bnum);
|
|
}
|
|
}
|
|
|
|
if (skip_clustering == FALSE)
|
|
print_clusters(clb, num_clusters, fpout);
|
|
|
|
fprintf(fpout, "</block>\n\n");
|
|
|
|
fclose(fpout);
|
|
|
|
print_stats(clb, num_clusters);
|
|
}
|