OpenFPGA/vpr7_x2p/vpr/SRC/fpga_spice/spice/spice_lut.c

376 lines
13 KiB
C

/***********************************/
/* SPICE Modeling for VPR */
/* Xifan TANG, EPFL/LSI */
/***********************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <assert.h>
#include <sys/stat.h>
#include <unistd.h>
/* Include vpr structs*/
#include "util.h"
#include "physical_types.h"
#include "vpr_types.h"
#include "globals.h"
#include "rr_graph.h"
#include "rr_graph_swseg.h"
#include "vpr_utils.h"
/* Include spice support headers*/
#include "linkedlist.h"
#include "fpga_spice_globals.h"
#include "spice_globals.h"
#include "fpga_spice_utils.h"
#include "spice_utils.h"
#include "spice_mux.h"
#include "spice_pbtypes.h"
#include "spice_lut.h"
/***** Subroutines *****/
void fprint_spice_lut_subckt(FILE* fp,
t_spice_model spice_model) {
int i;
int num_input_port = 0;
t_spice_model_port** input_ports = NULL;
int num_output_port = 0;
t_spice_model_port** output_ports = NULL;
int num_sram_port = 0;
t_spice_model_port** sram_ports = NULL;
float total_width;
int width_cnt;
/* Ensure a valid file handler*/
if (NULL == fp) {
vpr_printf(TIO_MESSAGE_ERROR,"(File:%s,[LINE%d])Invalid file handler!\n",
__FILE__, __LINE__);
}
/* Find input ports, output ports and sram ports*/
input_ports = find_spice_model_ports(&spice_model, SPICE_MODEL_PORT_INPUT, &num_input_port, TRUE);
output_ports = find_spice_model_ports(&spice_model, SPICE_MODEL_PORT_OUTPUT, &num_output_port, TRUE);
sram_ports = find_spice_model_ports(&spice_model, SPICE_MODEL_PORT_SRAM, &num_sram_port, TRUE);
/* Check */
assert(1 == num_input_port);
assert(1 == num_output_port);
assert(1 == num_sram_port);
fprintf(fp, "***** Auto-generated LUT info: spice_model_name = %s, size = %d *****\n",
spice_model.name, input_ports[0]->size);
/* Define the subckt*/
fprintf(fp, ".subckt %s ", spice_model.name); /* Subckt name*/
/* Input ports*/
for (i = 0; i < input_ports[0]->size; i++) {
fprintf(fp, "%s%d ", input_ports[0]->prefix, i);
}
/* output ports*/
assert(1 == output_ports[0]->size);
fprintf(fp, "%s ", output_ports[0]->prefix);
/* sram ports */
for (i = 0; i < sram_ports[0]->size; i++) {
fprintf(fp, "%s%d ", sram_ports[0]->prefix, i);
}
/* local vdd and gnd*/
fprintf(fp, "svdd sgnd\n");
/* Input buffers */
for (i = 0; i < input_ports[0]->size; i++) {
/* For negative input of LUT MUX*/
/* Output inverter with maximum size allowed
* until the rest of width is smaller than threshold */
total_width = spice_model.lut_input_buffer->size * spice_model.lut_input_buffer->f_per_stage;
width_cnt = 0;
while (total_width > max_width_per_trans) {
fprintf(fp, "Xinv0_in%d_no%d %s%d lut_mux_in%d_inv svdd sgnd inv size=\'%g\'",
i, width_cnt,
input_ports[0]->prefix, i,
i, max_width_per_trans);
fprintf(fp, "\n");
/* Update */
total_width = total_width - max_width_per_trans;
width_cnt++;
}
/* Print if we still have to */
if (total_width > 0) {
fprintf(fp, "Xinv0_in%d_no%d %s%d lut_mux_in%d_inv svdd sgnd inv size=\'%g\'",
i, width_cnt,
input_ports[0]->prefix, i,
i, total_width);
fprintf(fp, "\n");
}
/* For postive input of LUT MUX, we use the tapered_buffer subckt directly */
assert(1 == spice_model.lut_input_buffer->tapered_buf);
fprintf(fp, "X%s_in%d %s%d lut_mux_in%d svdd sgnd tapbuf_level%d_f%d\n",
spice_model.lut_input_buffer->spice_model->prefix, i,
input_ports[0]->prefix, i, i,
spice_model.lut_input_buffer->tap_buf_level,
spice_model.lut_input_buffer->f_per_stage);
fprintf(fp, "\n");
}
/* Output buffers already included in LUT MUX */
/* LUT MUX*/
assert(sram_ports[0]->size == (int)pow(2.,(double)(input_ports[0]->size)));
fprintf(fp, "Xlut_mux ");
/* SRAM ports of LUT, they are inputs of lut_muxes*/
for (i = 0; i < sram_ports[0]->size; i++) {
fprintf(fp, "%s%d ", sram_ports[0]->prefix, i);
}
/* Output port, LUT output is LUT MUX output*/
fprintf(fp, "%s ", output_ports[0]->prefix);
/* input port, LUT input is LUT MUX sram*/
for (i = 0; i < input_ports[0]->size; i++) {
fprintf(fp, "lut_mux_in%d lut_mux_in%d_inv ", i, i);
}
/* Local vdd and gnd*/
fprintf(fp, "svdd sgnd %s_mux_size%d\n", spice_model.name, sram_ports[0]->size);
/* End of LUT subckt*/
fprintf(fp, ".eom\n");
/* Free */
free(input_ports);
free(output_ports);
free(sram_ports);
return;
}
/* Print LUT subckts into a SPICE file*/
void generate_spice_luts(char* subckt_dir,
int num_spice_model,
t_spice_model* spice_models) {
FILE* fp = NULL;
char* sp_name = my_strcat(subckt_dir, luts_spice_file_name);
int imodel = 0;
/* Create FILE*/
fp = fopen(sp_name, "w");
if (NULL == fp) {
vpr_printf(TIO_MESSAGE_ERROR,"(FILE:%s,LINE[%d])Failure in create SPICE netlist %s",__FILE__, __LINE__, wires_spice_file_name);
exit(1);
}
fprint_spice_head(fp,"LUTs");
for (imodel = 0; imodel < num_spice_model; imodel++) {
if ((SPICE_MODEL_LUT == spice_models[imodel].type)
&&(NULL == spice_models[imodel].model_netlist)) {
fprint_spice_lut_subckt(fp, spice_models[imodel]);
}
}
/* Close*/
fclose(fp);
return;
}
void fprint_pb_primitive_lut(FILE* fp,
char* subckt_prefix,
t_pb* prim_pb,
t_logical_block* mapped_logical_block,
t_pb_graph_node* cur_pb_graph_node,
int index,
t_spice_model* spice_model,
int lut_status) {
int i;
int num_sram = 0;
int* sram_bits = NULL; /* decoded SRAM bits */
int truth_table_length = 0;
char** truth_table = NULL;
int lut_size = 0;
int num_input_port = 0;
t_spice_model_port** input_ports = NULL;
int num_output_port = 0;
t_spice_model_port** output_ports = NULL;
int num_sram_port = 0;
t_spice_model_port** sram_ports = NULL;
char* formatted_subckt_prefix = format_spice_node_prefix(subckt_prefix); /* Complete a "_" at the end if needed*/
t_pb_type* cur_pb_type = NULL;
char* port_prefix = NULL;
int cur_num_sram = 0;
char* sram_vdd_port_name = NULL;
int num_lut_pin_nets;
int* lut_pin_net = NULL;
/* Ensure a valid file handler*/
if (NULL == fp) {
vpr_printf(TIO_MESSAGE_ERROR,"(File:%s,[LINE%d])Invalid file handler!\n",
__FILE__, __LINE__);
exit(1);
}
/* Ensure a valid pb_graph_node */
if (NULL == cur_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,"(File:%s,[LINE%d])Invalid cur_pb_graph_node!\n",
__FILE__, __LINE__);
exit(1);
}
/* Asserts */
assert(SPICE_MODEL_LUT == spice_model->type);
/* Check if this is an idle logical block mapped*/
switch (lut_status) {
case PRIMITIVE_WIRED_LUT:
/* Give a special truth table */
assert (VPACK_COMB == mapped_logical_block->type);
/* Get the mapped vpack_net_num of this physical LUT pb */
get_mapped_lut_pb_input_pin_vpack_net_num(prim_pb, &num_lut_pin_nets, &lut_pin_net);
/* consider LUT pin remapping when assign lut truth tables */
/* Match truth table and post-routing results */
truth_table = assign_post_routing_wired_lut_truth_table(mapped_logical_block,
num_lut_pin_nets, lut_pin_net, &truth_table_length);
break;
case PRIMITIVE_IDLE:
break;
case PRIMITIVE_NORMAL:
assert (NULL != mapped_logical_block);
/* Back-annotate to logical block */
/* Back-annotate to logical block */
mapped_logical_block->mapped_spice_model = spice_model;
mapped_logical_block->mapped_spice_model_index = spice_model->cnt;
assert (VPACK_COMB == mapped_logical_block->type);
/* Get the mapped vpack_net_num of this physical LUT pb */
get_mapped_lut_pb_input_pin_vpack_net_num(prim_pb, &num_lut_pin_nets, &lut_pin_net);
/* consider LUT pin remapping when assign lut truth tables */
/* Match truth table and post-routing results */
truth_table = assign_post_routing_lut_truth_table(mapped_logical_block,
num_lut_pin_nets, lut_pin_net, &truth_table_length);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s, [LINE%d]) Invalid status(=%d) for LUT!\n",
__FILE__, __LINE__, lut_status);
exit(1);
}
/* Determine size of LUT*/
input_ports = find_spice_model_ports(spice_model, SPICE_MODEL_PORT_INPUT, &num_input_port, TRUE);
output_ports = find_spice_model_ports(spice_model, SPICE_MODEL_PORT_OUTPUT, &num_output_port, TRUE);
sram_ports = find_spice_model_ports(spice_model, SPICE_MODEL_PORT_SRAM, &num_sram_port, TRUE);
assert(1 == num_input_port);
assert(1 == num_output_port);
assert(1 == num_sram_port);
lut_size = input_ports[0]->size;
num_sram = (int)pow(2.,(double)(lut_size));
assert(num_sram == sram_ports[0]->size);
assert(1 == output_ports[0]->size);
/* Get current counter of mem_bits, bl and wl */
cur_num_sram = get_sram_orgz_info_num_mem_bit(sram_spice_orgz_info);
/* Generate sram bits, use the default value of SRAM port */
sram_bits = generate_lut_sram_bits(truth_table_length, truth_table,
lut_size, sram_ports[0]->default_val);
/* Print the subckts*/
cur_pb_type = cur_pb_graph_node->pb_type;
if (NULL != mapped_logical_block) {
fprintf(fp, "***** Logical block mapped to this LUT: %s *****\n",
mapped_logical_block->name);
}
/* Subckt definition*/
fprintf(fp, ".subckt %s%s[%d] ", formatted_subckt_prefix, cur_pb_type->name, index);
/* Print inputs, outputs, inouts, clocks, NO SRAMs*/
/*
port_prefix = (char*)my_malloc(sizeof(char)*
(strlen(formatted_subckt_prefix) + strlen(cur_pb_type->name) + 1 +
strlen(my_itoa(index)) + 1 + 1));
sprintf(port_prefix, "%s%s[%d]", formatted_subckt_prefix, cur_pb_type->name, index);
*/
/* Simplify the prefix, make the SPICE netlist readable*/
port_prefix = (char*)my_malloc(sizeof(char)*
(strlen(cur_pb_type->name) + 1 +
strlen(my_itoa(index)) + 1 + 1));
sprintf(port_prefix, "%s[%d]", cur_pb_type->name, index);
/* Only dump the global ports belonging to a spice_model
* Do not go recursive, we can freely define global ports anywhere in SPICE netlist
*/
rec_fprint_spice_model_global_ports(fp, spice_model, FALSE);
fprint_pb_type_ports(fp, port_prefix, 0, cur_pb_type);
/* SRAM bits are fixed in this subckt, no need to define them here*/
/* Local Vdd and gnd*/
fprintf(fp, "svdd sgnd\n");
/* Definition ends*/
/* Print the encoding in SPICE netlist for debugging */
fprintf(fp, "***** Truth Table for LUT[%d], size=%d. *****\n",
spice_model->cnt, lut_size);
for (i = 0; i < truth_table_length; i++) {
fprintf(fp,"* %s *\n", truth_table[i]);
}
fprintf(fp, "***** SRAM bits for LUT[%d], size=%d, num_sram=%d. *****\n",
spice_model->cnt, lut_size, num_sram);
fprintf(fp, "*****");
for (i = 0; i < num_sram; i++) {
fprintf(fp, "%d", sram_bits[i]);
}
fprintf(fp, "*****\n");
/* Call SRAM subckts*/
/* Give the VDD port name for SRAMs */
sram_vdd_port_name = (char*)my_malloc(sizeof(char)*
(strlen(spice_tb_global_vdd_lut_sram_port_name)
+ 1 ));
sprintf(sram_vdd_port_name, "%s",
spice_tb_global_vdd_lut_sram_port_name);
/* Now Print SRAMs one by one */
for (i = 0; i < num_sram; i++) {
fprint_spice_one_sram_subckt(fp, sram_spice_orgz_info, spice_model, sram_vdd_port_name);
}
/* Call LUT subckt*/
fprintf(fp, "X%s[%d] ", spice_model->prefix, spice_model->cnt);
/* Connect inputs*/
/* Connect outputs*/
fprint_pb_type_ports(fp, port_prefix, 0, cur_pb_type);
/* Connect srams*/
for (i = 0; i < num_sram; i++) {
assert( (0 == sram_bits[i]) || (1 == sram_bits[i]) );
fprint_spice_sram_one_outport(fp, sram_spice_orgz_info, cur_num_sram + i, sram_bits[i]);
}
/* vdd should be connected to special global wire gvdd_lut and gnd,
* Every LUT has a special VDD for statistics
*/
fprintf(fp, "gvdd_%s[%d] sgnd %s\n", spice_model->prefix, spice_model->cnt, spice_model->name);
/* TODO: Add a nodeset for convergence */
/* End of subckt*/
fprintf(fp, ".eom\n");
/* Store the configuraion bit to linked-list */
add_sram_conf_bits_to_llist(sram_spice_orgz_info, cur_num_sram,
num_sram, sram_bits);
spice_model->cnt++;
/*Free*/
for (i = 0; i < truth_table_length; i++) {
free(truth_table[i]);
}
free(truth_table);
my_free(formatted_subckt_prefix);
my_free(input_ports);
my_free(output_ports);
my_free(sram_ports);
my_free(sram_bits);
my_free(port_prefix);
my_free(sram_vdd_port_name);
return;
}