2209 lines
56 KiB
C
2209 lines
56 KiB
C
/*
|
||
* re_*comp and friends - compile REs
|
||
* This file #includes several others (see the bottom).
|
||
*
|
||
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
|
||
*
|
||
* Development of this software was funded, in part, by Cray Research Inc.,
|
||
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
|
||
* Corporation, none of whom are responsible for the results. The author
|
||
* thanks all of them.
|
||
*
|
||
* Redistribution and use in source and binary forms -- with or without
|
||
* modification -- are permitted for any purpose, provided that
|
||
* redistributions in source form retain this entire copyright notice and
|
||
* indicate the origin and nature of any modifications.
|
||
*
|
||
* I'd appreciate being given credit for this package in the documentation of
|
||
* software which uses it, but that is not a requirement.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
||
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
||
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
||
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*
|
||
*/
|
||
|
||
#include "regguts.h"
|
||
|
||
/*
|
||
* forward declarations, up here so forward datatypes etc. are defined early
|
||
*/
|
||
/* =====^!^===== begin forwards =====^!^===== */
|
||
/* automatically gathered by fwd; do not hand-edit */
|
||
/* === regcomp.c === */
|
||
int compile(regex_t *, const chr *, size_t, int);
|
||
static void moresubs(struct vars *, int);
|
||
static int freev(struct vars *, int);
|
||
static void makesearch(struct vars *, struct nfa *);
|
||
static struct subre *parse(struct vars *, int, int, struct state *, struct state *);
|
||
static struct subre *parsebranch(struct vars *, int, int, struct state *, struct state *, int);
|
||
static void parseqatom(struct vars *, int, int, struct state *, struct state *, struct subre *);
|
||
static void nonword(struct vars *, int, struct state *, struct state *);
|
||
static void word(struct vars *, int, struct state *, struct state *);
|
||
static int scannum(struct vars *);
|
||
static void repeat(struct vars *, struct state *, struct state *, int, int);
|
||
static void bracket(struct vars *, struct state *, struct state *);
|
||
static void cbracket(struct vars *, struct state *, struct state *);
|
||
static void brackpart(struct vars *, struct state *, struct state *);
|
||
static const chr *scanplain(struct vars *);
|
||
static void onechr(struct vars *, pchr, struct state *, struct state *);
|
||
static void dovec(struct vars *, struct cvec *, struct state *, struct state *);
|
||
static void wordchrs(struct vars *);
|
||
static struct subre *subre(struct vars *, int, int, struct state *, struct state *);
|
||
static void freesubre(struct vars *, struct subre *);
|
||
static void freesrnode(struct vars *, struct subre *);
|
||
static int numst(struct subre *, int);
|
||
static void markst(struct subre *);
|
||
static void cleanst(struct vars *);
|
||
static long nfatree(struct vars *, struct subre *, FILE *);
|
||
static long nfanode(struct vars *, struct subre *, FILE *);
|
||
static int newlacon(struct vars *, struct state *, struct state *, int);
|
||
static void freelacons(struct subre *, int);
|
||
static void rfree(regex_t *);
|
||
static void dump(regex_t *, FILE *);
|
||
static void dumpst(struct subre *, FILE *, int);
|
||
static void stdump(struct subre *, FILE *, int);
|
||
static const char *stid(struct subre *, char *, size_t);
|
||
/* === regc_lex.c === */
|
||
static void lexstart(struct vars *);
|
||
static void prefixes(struct vars *);
|
||
static void lexnest(struct vars *, const chr *, const chr *);
|
||
static void lexword(struct vars *);
|
||
static int next(struct vars *);
|
||
static int lexescape(struct vars *);
|
||
static int lexdigits(struct vars *, int, int, int);
|
||
static int brenext(struct vars *, pchr);
|
||
static void skip(struct vars *);
|
||
static chr newline(NOPARMS);
|
||
static chr chrnamed(struct vars *, const chr *, const chr *, pchr);
|
||
/* === regc_color.c === */
|
||
static void initcm(struct vars *, struct colormap *);
|
||
static void freecm(struct colormap *);
|
||
static void cmtreefree(struct colormap *, union tree *, int);
|
||
static color setcolor(struct colormap *, pchr, pcolor);
|
||
static color maxcolor(struct colormap *);
|
||
static color newcolor(struct colormap *);
|
||
static void freecolor(struct colormap *, pcolor);
|
||
static color pseudocolor(struct colormap *);
|
||
static color subcolor(struct colormap *, pchr c);
|
||
static color newsub(struct colormap *, pcolor);
|
||
static void subrange(struct vars *, pchr, pchr, struct state *, struct state *);
|
||
static void subblock(struct vars *, pchr, struct state *, struct state *);
|
||
static void okcolors(struct nfa *, struct colormap *);
|
||
static void colorchain(struct colormap *, struct arc *);
|
||
static void uncolorchain(struct colormap *, struct arc *);
|
||
static void rainbow(struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *);
|
||
static void colorcomplement(struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *);
|
||
#ifdef REG_DEBUG
|
||
static void dumpcolors(struct colormap *, FILE *);
|
||
static void fillcheck(struct colormap *, union tree *, int, FILE *);
|
||
static void dumpchr(pchr, FILE *);
|
||
#endif
|
||
/* === regc_nfa.c === */
|
||
static struct nfa *newnfa(struct vars *, struct colormap *, struct nfa *);
|
||
static void freenfa(struct nfa *);
|
||
static struct state *newstate(struct nfa *);
|
||
static struct state *newfstate(struct nfa *, int flag);
|
||
static void dropstate(struct nfa *, struct state *);
|
||
static void freestate(struct nfa *, struct state *);
|
||
static void destroystate(struct nfa *, struct state *);
|
||
static void newarc(struct nfa *, int, pcolor, struct state *, struct state *);
|
||
static void createarc(struct nfa *, int, pcolor, struct state *, struct state *);
|
||
static struct arc *allocarc(struct nfa *, struct state *);
|
||
static void freearc(struct nfa *, struct arc *);
|
||
static void changearctarget(struct arc *, struct state *);
|
||
static int hasnonemptyout(struct state *);
|
||
static struct arc *findarc(struct state *, int, pcolor);
|
||
static void cparc(struct nfa *, struct arc *, struct state *, struct state *);
|
||
static void sortins(struct nfa *, struct state *);
|
||
static int sortins_cmp(const void *, const void *);
|
||
static void sortouts(struct nfa *, struct state *);
|
||
static int sortouts_cmp(const void *, const void *);
|
||
static void moveins(struct nfa *, struct state *, struct state *);
|
||
static void copyins(struct nfa *, struct state *, struct state *);
|
||
static void mergeins(struct nfa *, struct state *, struct arc **, int);
|
||
static void moveouts(struct nfa *, struct state *, struct state *);
|
||
static void copyouts(struct nfa *, struct state *, struct state *);
|
||
static void cloneouts(struct nfa *, struct state *, struct state *, struct state *, int);
|
||
static void delsub(struct nfa *, struct state *, struct state *);
|
||
static void deltraverse(struct nfa *, struct state *, struct state *);
|
||
static void dupnfa(struct nfa *, struct state *, struct state *, struct state *, struct state *);
|
||
static void duptraverse(struct nfa *, struct state *, struct state *, int);
|
||
static void cleartraverse(struct nfa *, struct state *);
|
||
static void specialcolors(struct nfa *);
|
||
static long optimize(struct nfa *, FILE *);
|
||
static void pullback(struct nfa *, FILE *);
|
||
static int pull(struct nfa *, struct arc *, struct state **);
|
||
static void pushfwd(struct nfa *, FILE *);
|
||
static int push(struct nfa *, struct arc *, struct state **);
|
||
#define INCOMPATIBLE 1 /* destroys arc */
|
||
#define SATISFIED 2 /* constraint satisfied */
|
||
#define COMPATIBLE 3 /* compatible but not satisfied yet */
|
||
static int combine(struct arc *, struct arc *);
|
||
static void fixempties(struct nfa *, FILE *);
|
||
static struct state *emptyreachable(struct nfa *, struct state *,
|
||
struct state *, struct arc **);
|
||
static int isconstraintarc(struct arc *);
|
||
static int hasconstraintout(struct state *);
|
||
static void fixconstraintloops(struct nfa *, FILE *);
|
||
static int findconstraintloop(struct nfa *, struct state *);
|
||
static void breakconstraintloop(struct nfa *, struct state *);
|
||
static void clonesuccessorstates(struct nfa *, struct state *, struct state *,
|
||
struct state *, struct arc *, char *, char *, int);
|
||
static void cleanup(struct nfa *);
|
||
static void markreachable(struct nfa *, struct state *, struct state *, struct state *);
|
||
static void markcanreach(struct nfa *, struct state *, struct state *, struct state *);
|
||
static long analyze(struct nfa *);
|
||
static void compact(struct nfa *, struct cnfa *);
|
||
static void carcsort(struct carc *, size_t);
|
||
static int carc_cmp(const void *, const void *);
|
||
static void freecnfa(struct cnfa *);
|
||
static void dumpnfa(struct nfa *, FILE *);
|
||
#ifdef REG_DEBUG
|
||
static void dumpstate(struct state *, FILE *);
|
||
static void dumparcs(struct state *, FILE *);
|
||
static void dumparc(struct arc *, struct state *, FILE *);
|
||
#endif
|
||
static void dumpcnfa(struct cnfa *, FILE *);
|
||
#ifdef REG_DEBUG
|
||
static void dumpcstate(int, struct cnfa *, FILE *);
|
||
#endif
|
||
/* === regc_cvec.c === */
|
||
static struct cvec *clearcvec(struct cvec *);
|
||
static void addchr(struct cvec *, pchr);
|
||
static void addrange(struct cvec *, pchr, pchr);
|
||
static struct cvec *newcvec(int, int);
|
||
static struct cvec *getcvec(struct vars *, int, int);
|
||
static void freecvec(struct cvec *);
|
||
/* === regc_locale.c === */
|
||
static celt element(struct vars *, const chr *, const chr *);
|
||
static struct cvec *range(struct vars *, celt, celt, int);
|
||
static int before(celt, celt);
|
||
static struct cvec *eclass(struct vars *, celt, int);
|
||
static struct cvec *cclass(struct vars *, const chr *, const chr *, int);
|
||
static struct cvec *allcases(struct vars *, pchr);
|
||
static int cmp(const chr *, const chr *, size_t);
|
||
static int casecmp(const chr *, const chr *, size_t);
|
||
/* automatically gathered by fwd; do not hand-edit */
|
||
/* =====^!^===== end forwards =====^!^===== */
|
||
|
||
/* internal variables, bundled for easy passing around */
|
||
struct vars {
|
||
regex_t *re;
|
||
const chr *now; /* scan pointer into string */
|
||
const chr *stop; /* end of string */
|
||
const chr *savenow; /* saved now and stop for "subroutine call" */
|
||
const chr *savestop;
|
||
int err; /* error code (0 if none) */
|
||
int cflags; /* copy of compile flags */
|
||
int lasttype; /* type of previous token */
|
||
int nexttype; /* type of next token */
|
||
chr nextvalue; /* value (if any) of next token */
|
||
int lexcon; /* lexical context type (see lex.c) */
|
||
int nsubexp; /* subexpression count */
|
||
struct subre **subs; /* subRE pointer vector */
|
||
size_t nsubs; /* length of vector */
|
||
struct subre *sub10[10]; /* initial vector, enough for most */
|
||
struct nfa *nfa; /* the NFA */
|
||
struct colormap *cm; /* character color map */
|
||
color nlcolor; /* color of newline */
|
||
struct state *wordchrs; /* state in nfa holding word-char outarcs */
|
||
struct subre *tree; /* subexpression tree */
|
||
struct subre *treechain; /* all tree nodes allocated */
|
||
struct subre *treefree; /* any free tree nodes */
|
||
int ntree; /* number of tree nodes, plus one */
|
||
struct cvec *cv; /* interface cvec */
|
||
struct cvec *cv2; /* utility cvec */
|
||
struct subre *lacons; /* lookahead-constraint vector */
|
||
int nlacons; /* size of lacons */
|
||
size_t spaceused; /* approx. space used for compilation */
|
||
};
|
||
|
||
/* parsing macros; most know that `v' is the struct vars pointer */
|
||
#define NEXT() (next(v)) /* advance by one token */
|
||
#define SEE(t) (v->nexttype == (t)) /* is next token this? */
|
||
#define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */
|
||
#define VISERR(vv) ((vv)->err != 0)/* have we seen an error yet? */
|
||
#define ISERR() VISERR(v)
|
||
#define VERR(vv,e) ((vv)->nexttype = EOS, \
|
||
(vv)->err = ((vv)->err ? (vv)->err : (e)))
|
||
#define ERR(e) VERR(v, e) /* record an error */
|
||
#define NOERR() {if (ISERR()) return;} /* if error seen, return */
|
||
#define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */
|
||
#define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */
|
||
#define INSIST(c, e) do { if (!(c)) ERR(e); } while (0) /* error if c false */
|
||
#define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */
|
||
#define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y)
|
||
|
||
/* token type codes, some also used as NFA arc types */
|
||
#undef DIGIT /* prevent conflict with libtommath */
|
||
#define EMPTY 'n' /* no token present */
|
||
#define EOS 'e' /* end of string */
|
||
#define PLAIN 'p' /* ordinary character */
|
||
#define DIGIT 'd' /* digit (in bound) */
|
||
#define BACKREF 'b' /* back reference */
|
||
#define COLLEL 'I' /* start of [. */
|
||
#define ECLASS 'E' /* start of [= */
|
||
#define CCLASS 'C' /* start of [: */
|
||
#define END 'X' /* end of [. [= [: */
|
||
#define RANGE 'R' /* - within [] which might be range delim. */
|
||
#define LACON 'L' /* lookahead constraint subRE */
|
||
#define AHEAD 'a' /* color-lookahead arc */
|
||
#define BEHIND 'r' /* color-lookbehind arc */
|
||
#define WBDRY 'w' /* word boundary constraint */
|
||
#define NWBDRY 'W' /* non-word-boundary constraint */
|
||
#define SBEGIN 'A' /* beginning of string (even if not BOL) */
|
||
#define SEND 'Z' /* end of string (even if not EOL) */
|
||
#define PREFER 'P' /* length preference */
|
||
|
||
/* is an arc colored, and hence on a color chain? */
|
||
#define COLORED(a) \
|
||
((a)->type == PLAIN || (a)->type == AHEAD || (a)->type == BEHIND)
|
||
|
||
/* static function list */
|
||
static const struct fns functions = {
|
||
rfree, /* regfree insides */
|
||
};
|
||
|
||
/*
|
||
- compile - compile regular expression
|
||
* Note: on failure, no resources remain allocated, so regfree()
|
||
* need not be applied to re.
|
||
^ int compile(regex_t *, const chr *, size_t, int);
|
||
*/
|
||
int
|
||
compile(
|
||
regex_t *re,
|
||
const chr *string,
|
||
size_t len,
|
||
int flags)
|
||
{
|
||
AllocVars(v);
|
||
struct guts *g;
|
||
int i;
|
||
size_t j;
|
||
FILE *debug = (flags®_PROGRESS) ? stdout : NULL;
|
||
#define CNOERR() { if (ISERR()) return freev(v, v->err); }
|
||
|
||
/*
|
||
* Sanity checks.
|
||
*/
|
||
|
||
if (re == NULL || string == NULL) {
|
||
FreeVars(v);
|
||
return REG_INVARG;
|
||
}
|
||
if ((flags®_QUOTE) && (flags&(REG_ADVANCED|REG_EXPANDED|REG_NEWLINE))) {
|
||
FreeVars(v);
|
||
return REG_INVARG;
|
||
}
|
||
if (!(flags®_EXTENDED) && (flags®_ADVF)) {
|
||
FreeVars(v);
|
||
return REG_INVARG;
|
||
}
|
||
|
||
/*
|
||
* Initial setup (after which freev() is callable).
|
||
*/
|
||
|
||
v->re = re;
|
||
v->now = string;
|
||
v->stop = v->now + len;
|
||
v->savenow = v->savestop = NULL;
|
||
v->err = 0;
|
||
v->cflags = flags;
|
||
v->nsubexp = 0;
|
||
v->subs = v->sub10;
|
||
v->nsubs = 10;
|
||
for (j = 0; j < v->nsubs; j++) {
|
||
v->subs[j] = NULL;
|
||
}
|
||
v->nfa = NULL;
|
||
v->cm = NULL;
|
||
v->nlcolor = COLORLESS;
|
||
v->wordchrs = NULL;
|
||
v->tree = NULL;
|
||
v->treechain = NULL;
|
||
v->treefree = NULL;
|
||
v->cv = NULL;
|
||
v->cv2 = NULL;
|
||
v->lacons = NULL;
|
||
v->nlacons = 0;
|
||
v->spaceused = 0;
|
||
re->re_magic = REMAGIC;
|
||
re->re_info = 0; /* bits get set during parse */
|
||
re->re_csize = sizeof(chr);
|
||
re->re_guts = NULL;
|
||
re->re_fns = (char *)&functions;
|
||
|
||
/*
|
||
* More complex setup, malloced things.
|
||
*/
|
||
|
||
re->re_guts = (char *)(MALLOC(sizeof(struct guts)));
|
||
if (re->re_guts == NULL) {
|
||
return freev(v, REG_ESPACE);
|
||
}
|
||
g = (struct guts *) re->re_guts;
|
||
g->tree = NULL;
|
||
initcm(v, &g->cmap);
|
||
v->cm = &g->cmap;
|
||
g->lacons = NULL;
|
||
g->nlacons = 0;
|
||
ZAPCNFA(g->search);
|
||
v->nfa = newnfa(v, v->cm, NULL);
|
||
CNOERR();
|
||
v->cv = newcvec(100, 20);
|
||
if (v->cv == NULL) {
|
||
return freev(v, REG_ESPACE);
|
||
}
|
||
|
||
/*
|
||
* Parsing.
|
||
*/
|
||
|
||
lexstart(v); /* also handles prefixes */
|
||
if ((v->cflags®_NLSTOP) || (v->cflags®_NLANCH)) {
|
||
/*
|
||
* Assign newline a unique color.
|
||
*/
|
||
|
||
v->nlcolor = subcolor(v->cm, newline());
|
||
okcolors(v->nfa, v->cm);
|
||
}
|
||
CNOERR();
|
||
v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final);
|
||
assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */
|
||
CNOERR();
|
||
assert(v->tree != NULL);
|
||
|
||
/*
|
||
* Finish setup of nfa and its subre tree.
|
||
*/
|
||
|
||
specialcolors(v->nfa);
|
||
CNOERR();
|
||
if (debug != NULL) {
|
||
fprintf(debug, "\n\n\n========= RAW ==========\n");
|
||
dumpnfa(v->nfa, debug);
|
||
dumpst(v->tree, debug, 1);
|
||
}
|
||
v->ntree = numst(v->tree, 1);
|
||
markst(v->tree);
|
||
cleanst(v);
|
||
if (debug != NULL) {
|
||
fprintf(debug, "\n\n\n========= TREE FIXED ==========\n");
|
||
dumpst(v->tree, debug, 1);
|
||
}
|
||
|
||
/*
|
||
* Build compacted NFAs for tree and lacons.
|
||
*/
|
||
|
||
re->re_info |= nfatree(v, v->tree, debug);
|
||
CNOERR();
|
||
assert(v->nlacons == 0 || v->lacons != NULL);
|
||
for (i = 1; i < v->nlacons; i++) {
|
||
if (debug != NULL) {
|
||
fprintf(debug, "\n\n\n========= LA%d ==========\n", i);
|
||
}
|
||
nfanode(v, &v->lacons[i], debug);
|
||
}
|
||
CNOERR();
|
||
if (v->tree->flags&SHORTER) {
|
||
NOTE(REG_USHORTEST);
|
||
}
|
||
|
||
/*
|
||
* Build compacted NFAs for tree, lacons, fast search.
|
||
*/
|
||
|
||
if (debug != NULL) {
|
||
fprintf(debug, "\n\n\n========= SEARCH ==========\n");
|
||
}
|
||
|
||
/*
|
||
* Can sacrifice main NFA now, so use it as work area.
|
||
*/
|
||
|
||
(DISCARD) optimize(v->nfa, debug);
|
||
CNOERR();
|
||
makesearch(v, v->nfa);
|
||
CNOERR();
|
||
compact(v->nfa, &g->search);
|
||
CNOERR();
|
||
|
||
/*
|
||
* Looks okay, package it up.
|
||
*/
|
||
|
||
re->re_nsub = v->nsubexp;
|
||
v->re = NULL; /* freev no longer frees re */
|
||
g->magic = GUTSMAGIC;
|
||
g->cflags = v->cflags;
|
||
g->info = re->re_info;
|
||
g->nsub = re->re_nsub;
|
||
g->tree = v->tree;
|
||
v->tree = NULL;
|
||
g->ntree = v->ntree;
|
||
g->compare = (v->cflags®_ICASE) ? casecmp : cmp;
|
||
g->lacons = v->lacons;
|
||
v->lacons = NULL;
|
||
g->nlacons = v->nlacons;
|
||
|
||
if (flags®_DUMP) {
|
||
dump(re, stdout);
|
||
}
|
||
|
||
assert(v->err == 0);
|
||
return freev(v, 0);
|
||
}
|
||
|
||
/*
|
||
- moresubs - enlarge subRE vector
|
||
^ static void moresubs(struct vars *, int);
|
||
*/
|
||
static void
|
||
moresubs(
|
||
struct vars *v,
|
||
int wanted) /* want enough room for this one */
|
||
{
|
||
struct subre **p;
|
||
size_t n;
|
||
|
||
assert(wanted > 0 && (size_t)wanted >= v->nsubs);
|
||
n = (size_t)wanted * 3 / 2 + 1;
|
||
if (v->subs == v->sub10) {
|
||
p = (struct subre **) MALLOC(n * sizeof(struct subre *));
|
||
if (p != NULL) {
|
||
memcpy(p, v->subs, v->nsubs * sizeof(struct subre *));
|
||
}
|
||
} else {
|
||
p = (struct subre **) REALLOC(v->subs, n*sizeof(struct subre *));
|
||
}
|
||
if (p == NULL) {
|
||
ERR(REG_ESPACE);
|
||
return;
|
||
}
|
||
|
||
v->subs = p;
|
||
for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++) {
|
||
*p = NULL;
|
||
}
|
||
assert(v->nsubs == n);
|
||
assert((size_t)wanted < v->nsubs);
|
||
}
|
||
|
||
/*
|
||
- freev - free vars struct's substructures where necessary
|
||
* Optionally does error-number setting, and always returns error code (if
|
||
* any), to make error-handling code terser.
|
||
^ static int freev(struct vars *, int);
|
||
*/
|
||
static int
|
||
freev(
|
||
struct vars *v,
|
||
int err)
|
||
{
|
||
int ret;
|
||
|
||
if (v->re != NULL) {
|
||
rfree(v->re);
|
||
}
|
||
if (v->subs != v->sub10) {
|
||
FREE(v->subs);
|
||
}
|
||
if (v->nfa != NULL) {
|
||
freenfa(v->nfa);
|
||
}
|
||
if (v->tree != NULL) {
|
||
freesubre(v, v->tree);
|
||
}
|
||
if (v->treechain != NULL) {
|
||
cleanst(v);
|
||
}
|
||
if (v->cv != NULL) {
|
||
freecvec(v->cv);
|
||
}
|
||
if (v->cv2 != NULL) {
|
||
freecvec(v->cv2);
|
||
}
|
||
if (v->lacons != NULL) {
|
||
freelacons(v->lacons, v->nlacons);
|
||
}
|
||
ERR(err); /* nop if err==0 */
|
||
|
||
ret = v->err;
|
||
FreeVars(v);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
- makesearch - turn an NFA into a search NFA (implicit prepend of .*?)
|
||
* NFA must have been optimize()d already.
|
||
^ static void makesearch(struct vars *, struct nfa *);
|
||
*/
|
||
static void
|
||
makesearch(
|
||
struct vars *v,
|
||
struct nfa *nfa)
|
||
{
|
||
struct arc *a, *b;
|
||
struct state *pre = nfa->pre;
|
||
struct state *s, *s2, *slist;
|
||
|
||
/*
|
||
* No loops are needed if it's anchored.
|
||
*/
|
||
|
||
for (a = pre->outs; a != NULL; a = a->outchain) {
|
||
assert(a->type == PLAIN);
|
||
if (a->co != nfa->bos[0] && a->co != nfa->bos[1]) {
|
||
break;
|
||
}
|
||
}
|
||
if (a != NULL) {
|
||
/*
|
||
* Add implicit .* in front.
|
||
*/
|
||
|
||
rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre);
|
||
|
||
/*
|
||
* And ^* and \A* too -- not always necessary, but harmless.
|
||
*/
|
||
|
||
newarc(nfa, PLAIN, nfa->bos[0], pre, pre);
|
||
newarc(nfa, PLAIN, nfa->bos[1], pre, pre);
|
||
}
|
||
|
||
/*
|
||
* Now here's the subtle part. Because many REs have no lookback
|
||
* constraints, often knowing when you were in the pre state tells you
|
||
* little; it's the next state(s) that are informative. But some of them
|
||
* may have other inarcs, i.e. it may be possible to make actual progress
|
||
* and then return to one of them. We must de-optimize such cases,
|
||
* splitting each such state into progress and no-progress states.
|
||
*/
|
||
|
||
/*
|
||
* First, make a list of the states.
|
||
*/
|
||
|
||
slist = NULL;
|
||
for (a=pre->outs ; a!=NULL ; a=a->outchain) {
|
||
s = a->to;
|
||
for (b=s->ins ; b!=NULL ; b=b->inchain) {
|
||
if (b->from != pre) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* We want to mark states as being in the list already by having non
|
||
* NULL tmp fields, but we can't just store the old slist value in tmp
|
||
* because that doesn't work for the first such state. Instead, the
|
||
* first list entry gets its own address in tmp.
|
||
*/
|
||
if (b != NULL && s->tmp == NULL) {
|
||
s->tmp = (slist != NULL) ? slist : s;
|
||
slist = s;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Do the splits.
|
||
*/
|
||
|
||
for (s=slist ; s!=NULL ; s=s2) {
|
||
s2 = newstate(nfa);
|
||
NOERR();
|
||
copyouts(nfa, s, s2);
|
||
NOERR();
|
||
for (a=s->ins ; a!=NULL ; a=b) {
|
||
b = a->inchain;
|
||
|
||
if (a->from != pre) {
|
||
cparc(nfa, a, a->from, s2);
|
||
freearc(nfa, a);
|
||
}
|
||
}
|
||
s2 = (s->tmp != s) ? s->tmp : NULL;
|
||
s->tmp = NULL; /* clean up while we're at it */
|
||
}
|
||
}
|
||
|
||
/*
|
||
- parse - parse an RE
|
||
* This is actually just the top level, which parses a bunch of branches tied
|
||
* together with '|'. They appear in the tree as the left children of a chain
|
||
* of '|' subres.
|
||
^ static struct subre *parse(struct vars *, int, int, struct state *,
|
||
^ struct state *);
|
||
*/
|
||
static struct subre *
|
||
parse(
|
||
struct vars *v,
|
||
int stopper, /* EOS or ')' */
|
||
int type, /* LACON (lookahead subRE) or PLAIN */
|
||
struct state *init, /* initial state */
|
||
struct state *final) /* final state */
|
||
{
|
||
struct state *left, *right; /* scaffolding for branch */
|
||
struct subre *branches; /* top level */
|
||
struct subre *branch; /* current branch */
|
||
struct subre *t; /* temporary */
|
||
int firstbranch; /* is this the first branch? */
|
||
|
||
assert(stopper == ')' || stopper == EOS);
|
||
|
||
branches = subre(v, '|', LONGER, init, final);
|
||
NOERRN();
|
||
branch = branches;
|
||
firstbranch = 1;
|
||
do { /* a branch */
|
||
if (!firstbranch) {
|
||
/*
|
||
* Need a place to hang the branch.
|
||
*/
|
||
|
||
branch->right = subre(v, '|', LONGER, init, final);
|
||
NOERRN();
|
||
branch = branch->right;
|
||
}
|
||
firstbranch = 0;
|
||
left = newstate(v->nfa);
|
||
right = newstate(v->nfa);
|
||
NOERRN();
|
||
EMPTYARC(init, left);
|
||
EMPTYARC(right, final);
|
||
NOERRN();
|
||
branch->left = parsebranch(v, stopper, type, left, right, 0);
|
||
NOERRN();
|
||
branch->flags |= UP(branch->flags | branch->left->flags);
|
||
if ((branch->flags &~ branches->flags) != 0) { /* new flags */
|
||
for (t = branches; t != branch; t = t->right) {
|
||
t->flags |= branch->flags;
|
||
}
|
||
}
|
||
} while (EAT('|'));
|
||
assert(SEE(stopper) || SEE(EOS));
|
||
|
||
if (!SEE(stopper)) {
|
||
assert(stopper == ')' && SEE(EOS));
|
||
ERR(REG_EPAREN);
|
||
}
|
||
|
||
/*
|
||
* Optimize out simple cases.
|
||
*/
|
||
|
||
if (branch == branches) { /* only one branch */
|
||
assert(branch->right == NULL);
|
||
t = branch->left;
|
||
branch->left = NULL;
|
||
freesubre(v, branches);
|
||
branches = t;
|
||
} else if (!MESSY(branches->flags)) { /* no interesting innards */
|
||
freesubre(v, branches->left);
|
||
branches->left = NULL;
|
||
freesubre(v, branches->right);
|
||
branches->right = NULL;
|
||
branches->op = '=';
|
||
}
|
||
|
||
return branches;
|
||
}
|
||
|
||
/*
|
||
- parsebranch - parse one branch of an RE
|
||
* This mostly manages concatenation, working closely with parseqatom().
|
||
* Concatenated things are bundled up as much as possible, with separate
|
||
* ',' nodes introduced only when necessary due to substructure.
|
||
^ static struct subre *parsebranch(struct vars *, int, int, struct state *,
|
||
^ struct state *, int);
|
||
*/
|
||
static struct subre *
|
||
parsebranch(
|
||
struct vars *v,
|
||
int stopper, /* EOS or ')' */
|
||
int type, /* LACON (lookahead subRE) or PLAIN */
|
||
struct state *left, /* leftmost state */
|
||
struct state *right, /* rightmost state */
|
||
int partial) /* is this only part of a branch? */
|
||
{
|
||
struct state *lp; /* left end of current construct */
|
||
int seencontent; /* is there anything in this branch yet? */
|
||
struct subre *t;
|
||
|
||
lp = left;
|
||
seencontent = 0;
|
||
t = subre(v, '=', 0, left, right); /* op '=' is tentative */
|
||
NOERRN();
|
||
while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) {
|
||
if (seencontent) { /* implicit concat operator */
|
||
lp = newstate(v->nfa);
|
||
NOERRN();
|
||
moveins(v->nfa, right, lp);
|
||
}
|
||
seencontent = 1;
|
||
|
||
/* NB, recursion in parseqatom() may swallow rest of branch */
|
||
parseqatom(v, stopper, type, lp, right, t);
|
||
NOERRN();
|
||
}
|
||
|
||
if (!seencontent) { /* empty branch */
|
||
if (!partial) {
|
||
NOTE(REG_UUNSPEC);
|
||
}
|
||
assert(lp == left);
|
||
EMPTYARC(left, right);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/*
|
||
- parseqatom - parse one quantified atom or constraint of an RE
|
||
* The bookkeeping near the end cooperates very closely with parsebranch(); in
|
||
* particular, it contains a recursion that can involve parsing the rest of
|
||
* the branch, making this function's name somewhat inaccurate.
|
||
^ static void parseqatom(struct vars *, int, int, struct state *,
|
||
^ struct state *, struct subre *);
|
||
*/
|
||
static void
|
||
parseqatom(
|
||
struct vars *v,
|
||
int stopper, /* EOS or ')' */
|
||
int type, /* LACON (lookahead subRE) or PLAIN */
|
||
struct state *lp, /* left state to hang it on */
|
||
struct state *rp, /* right state to hang it on */
|
||
struct subre *top) /* subtree top */
|
||
{
|
||
struct state *s; /* temporaries for new states */
|
||
struct state *s2;
|
||
#define ARCV(t, val) newarc(v->nfa, t, val, lp, rp)
|
||
int m, n;
|
||
struct subre *atom; /* atom's subtree */
|
||
struct subre *t;
|
||
int cap; /* capturing parens? */
|
||
int pos; /* positive lookahead? */
|
||
int subno; /* capturing-parens or backref number */
|
||
int atomtype;
|
||
int qprefer; /* quantifier short/long preference */
|
||
int f;
|
||
struct subre **atomp; /* where the pointer to atom is */
|
||
|
||
/*
|
||
* Initial bookkeeping.
|
||
*/
|
||
|
||
atom = NULL;
|
||
assert(lp->nouts == 0); /* must string new code */
|
||
assert(rp->nins == 0); /* between lp and rp */
|
||
subno = 0; /* just to shut lint up */
|
||
|
||
/*
|
||
* An atom or constraint...
|
||
*/
|
||
|
||
atomtype = v->nexttype;
|
||
switch (atomtype) {
|
||
/* first, constraints, which end by returning */
|
||
case '^':
|
||
ARCV('^', 1);
|
||
if (v->cflags®_NLANCH) {
|
||
ARCV(BEHIND, v->nlcolor);
|
||
}
|
||
NEXT();
|
||
return;
|
||
case '$':
|
||
ARCV('$', 1);
|
||
if (v->cflags®_NLANCH) {
|
||
ARCV(AHEAD, v->nlcolor);
|
||
}
|
||
NEXT();
|
||
return;
|
||
case SBEGIN:
|
||
ARCV('^', 1); /* BOL */
|
||
ARCV('^', 0); /* or BOS */
|
||
NEXT();
|
||
return;
|
||
case SEND:
|
||
ARCV('$', 1); /* EOL */
|
||
ARCV('$', 0); /* or EOS */
|
||
NEXT();
|
||
return;
|
||
case '<':
|
||
wordchrs(v); /* does NEXT() */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
nonword(v, BEHIND, lp, s);
|
||
word(v, AHEAD, s, rp);
|
||
return;
|
||
case '>':
|
||
wordchrs(v); /* does NEXT() */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
word(v, BEHIND, lp, s);
|
||
nonword(v, AHEAD, s, rp);
|
||
return;
|
||
case WBDRY:
|
||
wordchrs(v); /* does NEXT() */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
nonword(v, BEHIND, lp, s);
|
||
word(v, AHEAD, s, rp);
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
word(v, BEHIND, lp, s);
|
||
nonword(v, AHEAD, s, rp);
|
||
return;
|
||
case NWBDRY:
|
||
wordchrs(v); /* does NEXT() */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
word(v, BEHIND, lp, s);
|
||
word(v, AHEAD, s, rp);
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
nonword(v, BEHIND, lp, s);
|
||
nonword(v, AHEAD, s, rp);
|
||
return;
|
||
case LACON: /* lookahead constraint */
|
||
pos = v->nextvalue;
|
||
NEXT();
|
||
s = newstate(v->nfa);
|
||
s2 = newstate(v->nfa);
|
||
NOERR();
|
||
t = parse(v, ')', LACON, s, s2);
|
||
freesubre(v, t); /* internal structure irrelevant */
|
||
assert(SEE(')') || ISERR());
|
||
NEXT();
|
||
n = newlacon(v, s, s2, pos);
|
||
NOERR();
|
||
ARCV(LACON, n);
|
||
return;
|
||
|
||
/*
|
||
* Then errors, to get them out of the way.
|
||
*/
|
||
|
||
case '*':
|
||
case '+':
|
||
case '?':
|
||
case '{':
|
||
ERR(REG_BADRPT);
|
||
return;
|
||
default:
|
||
ERR(REG_ASSERT);
|
||
return;
|
||
|
||
/*
|
||
* Then plain characters, and minor variants on that theme.
|
||
*/
|
||
|
||
case ')': /* unbalanced paren */
|
||
if ((v->cflags®_ADVANCED) != REG_EXTENDED) {
|
||
ERR(REG_EPAREN);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Legal in EREs due to specification botch.
|
||
*/
|
||
|
||
NOTE(REG_UPBOTCH);
|
||
/* FALLTHRU */
|
||
case PLAIN:
|
||
onechr(v, v->nextvalue, lp, rp);
|
||
okcolors(v->nfa, v->cm);
|
||
NOERR();
|
||
NEXT();
|
||
break;
|
||
case '[':
|
||
if (v->nextvalue == 1) {
|
||
bracket(v, lp, rp);
|
||
} else {
|
||
cbracket(v, lp, rp);
|
||
}
|
||
assert(SEE(']') || ISERR());
|
||
NEXT();
|
||
break;
|
||
case '.':
|
||
rainbow(v->nfa, v->cm, PLAIN,
|
||
(v->cflags®_NLSTOP) ? v->nlcolor : COLORLESS, lp, rp);
|
||
NEXT();
|
||
break;
|
||
|
||
/*
|
||
* And finally the ugly stuff.
|
||
*/
|
||
|
||
case '(': /* value flags as capturing or non */
|
||
cap = (type == LACON) ? 0 : v->nextvalue;
|
||
if (cap) {
|
||
v->nsubexp++;
|
||
subno = v->nsubexp;
|
||
if ((size_t)subno >= v->nsubs) {
|
||
moresubs(v, subno);
|
||
}
|
||
assert((size_t)subno < v->nsubs);
|
||
} else {
|
||
atomtype = PLAIN; /* something that's not '(' */
|
||
}
|
||
NEXT();
|
||
|
||
/*
|
||
* Need new endpoints because tree will contain pointers.
|
||
*/
|
||
|
||
s = newstate(v->nfa);
|
||
s2 = newstate(v->nfa);
|
||
NOERR();
|
||
EMPTYARC(lp, s);
|
||
EMPTYARC(s2, rp);
|
||
NOERR();
|
||
atom = parse(v, ')', PLAIN, s, s2);
|
||
assert(SEE(')') || ISERR());
|
||
NEXT();
|
||
NOERR();
|
||
if (cap) {
|
||
v->subs[subno] = atom;
|
||
t = subre(v, '(', atom->flags|CAP, lp, rp);
|
||
NOERR();
|
||
t->subno = subno;
|
||
t->left = atom;
|
||
atom = t;
|
||
}
|
||
|
||
/*
|
||
* Postpone everything else pending possible {0}.
|
||
*/
|
||
|
||
break;
|
||
case BACKREF: /* the Feature From The Black Lagoon */
|
||
INSIST(type != LACON, REG_ESUBREG);
|
||
INSIST(v->nextvalue < v->nsubs, REG_ESUBREG);
|
||
INSIST(v->subs[v->nextvalue] != NULL, REG_ESUBREG);
|
||
NOERR();
|
||
assert(v->nextvalue > 0);
|
||
atom = subre(v, 'b', BACKR, lp, rp);
|
||
NOERR();
|
||
subno = v->nextvalue;
|
||
atom->subno = subno;
|
||
EMPTYARC(lp, rp); /* temporarily, so there's something */
|
||
NEXT();
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* ...and an atom may be followed by a quantifier.
|
||
*/
|
||
|
||
switch (v->nexttype) {
|
||
case '*':
|
||
m = 0;
|
||
n = DUPINF;
|
||
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
||
NEXT();
|
||
break;
|
||
case '+':
|
||
m = 1;
|
||
n = DUPINF;
|
||
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
||
NEXT();
|
||
break;
|
||
case '?':
|
||
m = 0;
|
||
n = 1;
|
||
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
||
NEXT();
|
||
break;
|
||
case '{':
|
||
NEXT();
|
||
m = scannum(v);
|
||
if (EAT(',')) {
|
||
if (SEE(DIGIT)) {
|
||
n = scannum(v);
|
||
} else {
|
||
n = DUPINF;
|
||
}
|
||
if (m > n) {
|
||
ERR(REG_BADBR);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* {m,n} exercises preference, even if it's {m,m}
|
||
*/
|
||
|
||
qprefer = (v->nextvalue) ? LONGER : SHORTER;
|
||
} else {
|
||
n = m;
|
||
/*
|
||
* {m} passes operand's preference through.
|
||
*/
|
||
|
||
qprefer = 0;
|
||
}
|
||
if (!SEE('}')) { /* catches errors too */
|
||
ERR(REG_BADBR);
|
||
return;
|
||
}
|
||
NEXT();
|
||
break;
|
||
default: /* no quantifier */
|
||
m = n = 1;
|
||
qprefer = 0;
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* Annoying special case: {0} or {0,0} cancels everything.
|
||
*/
|
||
|
||
if (m == 0 && n == 0) {
|
||
if (atom != NULL) {
|
||
freesubre(v, atom);
|
||
}
|
||
if (atomtype == '(') {
|
||
v->subs[subno] = NULL;
|
||
}
|
||
delsub(v->nfa, lp, rp);
|
||
EMPTYARC(lp, rp);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* If not a messy case, avoid hard part.
|
||
*/
|
||
|
||
assert(!MESSY(top->flags));
|
||
f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0);
|
||
if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) {
|
||
if (!(m == 1 && n == 1)) {
|
||
repeat(v, lp, rp, m, n);
|
||
}
|
||
if (atom != NULL) {
|
||
freesubre(v, atom);
|
||
}
|
||
top->flags = f;
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* hard part: something messy
|
||
* That is, capturing parens, back reference, short/long clash, or an atom
|
||
* with substructure containing one of those.
|
||
*/
|
||
|
||
/*
|
||
* Now we'll need a subre for the contents even if they're boring.
|
||
*/
|
||
|
||
if (atom == NULL) {
|
||
atom = subre(v, '=', 0, lp, rp);
|
||
NOERR();
|
||
}
|
||
|
||
/*
|
||
* Prepare a general-purpose state skeleton.
|
||
*
|
||
* In the no-backrefs case, we want this:
|
||
*
|
||
* [lp] ---> [s] ---prefix---> [begin] ---atom---> [end] ---rest---> [rp]
|
||
*
|
||
* where prefix is some repetitions of atom. In the general case we need
|
||
*
|
||
* [lp] ---> [s] ---iterator---> [s2] ---rest---> [rp]
|
||
*
|
||
* where the iterator wraps around [begin] ---atom---> [end]
|
||
*
|
||
* We make the s state here for both cases; s2 is made below if needed
|
||
*/
|
||
|
||
s = newstate(v->nfa); /* first, new endpoints for the atom */
|
||
s2 = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, lp, s);
|
||
moveins(v->nfa, rp, s2);
|
||
NOERR();
|
||
atom->begin = s;
|
||
atom->end = s2;
|
||
s = newstate(v->nfa); /* set up starting state */
|
||
NOERR();
|
||
EMPTYARC(lp, s);
|
||
NOERR();
|
||
|
||
/*
|
||
* Break remaining subRE into x{...} and what follows.
|
||
*/
|
||
|
||
t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp);
|
||
NOERR();
|
||
t->left = atom;
|
||
atomp = &t->left;
|
||
|
||
/*
|
||
* Here we should recurse... but we must postpone that to the end.
|
||
*/
|
||
|
||
/*
|
||
* Split top into prefix and remaining.
|
||
*/
|
||
|
||
assert(top->op == '=' && top->left == NULL && top->right == NULL);
|
||
top->left = subre(v, '=', top->flags, top->begin, lp);
|
||
NOERR();
|
||
top->op = '.';
|
||
top->right = t;
|
||
|
||
/*
|
||
* If it's a backref, now is the time to replicate the subNFA.
|
||
*/
|
||
|
||
if (atomtype == BACKREF) {
|
||
assert(atom->begin->nouts == 1); /* just the EMPTY */
|
||
delsub(v->nfa, atom->begin, atom->end);
|
||
assert(v->subs[subno] != NULL);
|
||
|
||
/*
|
||
* And here's why the recursion got postponed: it must wait until the
|
||
* skeleton is filled in, because it may hit a backref that wants to
|
||
* copy the filled-in skeleton.
|
||
*/
|
||
|
||
dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end,
|
||
atom->begin, atom->end);
|
||
NOERR();
|
||
}
|
||
|
||
/*
|
||
* It's quantifier time. If the atom is just a backref, we'll let it deal
|
||
* with quantifiers internally.
|
||
*/
|
||
|
||
if (atomtype == BACKREF) {
|
||
/*
|
||
* Special case: backrefs have internal quantifiers.
|
||
*/
|
||
|
||
EMPTYARC(s, atom->begin); /* empty prefix */
|
||
|
||
/*
|
||
* Just stuff everything into atom.
|
||
*/
|
||
|
||
repeat(v, atom->begin, atom->end, m, n);
|
||
atom->min = (short) m;
|
||
atom->max = (short) n;
|
||
atom->flags |= COMBINE(qprefer, atom->flags);
|
||
/* rest of branch can be strung starting from atom->end */
|
||
s2 = atom->end;
|
||
} else if (m == 1 && n == 1) {
|
||
/*
|
||
* No/vacuous quantifier: done.
|
||
*/
|
||
|
||
EMPTYARC(s, atom->begin); /* empty prefix */
|
||
/* rest of branch can be strung starting from atom->end */
|
||
s2 = atom->end;
|
||
} else if (m > 0 && !(atom->flags & BACKR)) {
|
||
/*
|
||
* If there's no backrefs involved, we can turn x{m,n} into
|
||
* x{m-1,n-1}x, with capturing parens in only the second x. This
|
||
* is valid because we only care about capturing matches from the
|
||
* final iteration of the quantifier. It's a win because we can
|
||
* implement the backref-free left side as a plain DFA node, since
|
||
* we don't really care where its submatches are.
|
||
*/
|
||
|
||
dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin);
|
||
assert(m >= 1 && m != DUPINF && n >= 1);
|
||
repeat(v, s, atom->begin, m-1, (n == DUPINF) ? n : n-1);
|
||
f = COMBINE(qprefer, atom->flags);
|
||
t = subre(v, '.', f, s, atom->end); /* prefix and atom */
|
||
NOERR();
|
||
t->left = subre(v, '=', PREF(f), s, atom->begin);
|
||
NOERR();
|
||
t->right = atom;
|
||
*atomp = t;
|
||
/* rest of branch can be strung starting from atom->end */
|
||
s2 = atom->end;
|
||
} else {
|
||
/* general case: need an iteration node */
|
||
s2 = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, atom->end, s2);
|
||
NOERR();
|
||
dupnfa(v->nfa, atom->begin, atom->end, s, s2);
|
||
repeat(v, s, s2, m, n);
|
||
f = COMBINE(qprefer, atom->flags);
|
||
t = subre(v, '*', f, s, s2);
|
||
NOERR();
|
||
t->min = (short) m;
|
||
t->max = (short) n;
|
||
t->left = atom;
|
||
*atomp = t;
|
||
/* rest of branch is to be strung from iteration's end state */
|
||
}
|
||
|
||
/*
|
||
* And finally, look after that postponed recursion.
|
||
*/
|
||
|
||
t = top->right;
|
||
if (!(SEE('|') || SEE(stopper) || SEE(EOS))) {
|
||
t->right = parsebranch(v, stopper, type, s2, rp, 1);
|
||
} else {
|
||
EMPTYARC(s2, rp);
|
||
t->right = subre(v, '=', 0, s2, rp);
|
||
}
|
||
NOERR();
|
||
assert(SEE('|') || SEE(stopper) || SEE(EOS));
|
||
t->flags |= COMBINE(t->flags, t->right->flags);
|
||
top->flags |= COMBINE(top->flags, t->flags);
|
||
}
|
||
|
||
/*
|
||
- nonword - generate arcs for non-word-character ahead or behind
|
||
^ static void nonword(struct vars *, int, struct state *, struct state *);
|
||
*/
|
||
static void
|
||
nonword(
|
||
struct vars *v,
|
||
int dir, /* AHEAD or BEHIND */
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
int anchor = (dir == AHEAD) ? '$' : '^';
|
||
|
||
assert(dir == AHEAD || dir == BEHIND);
|
||
newarc(v->nfa, anchor, 1, lp, rp);
|
||
newarc(v->nfa, anchor, 0, lp, rp);
|
||
colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp);
|
||
/* (no need for special attention to \n) */
|
||
}
|
||
|
||
/*
|
||
- word - generate arcs for word character ahead or behind
|
||
^ static void word(struct vars *, int, struct state *, struct state *);
|
||
*/
|
||
static void
|
||
word(
|
||
struct vars *v,
|
||
int dir, /* AHEAD or BEHIND */
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
assert(dir == AHEAD || dir == BEHIND);
|
||
cloneouts(v->nfa, v->wordchrs, lp, rp, dir);
|
||
/* (no need for special attention to \n) */
|
||
}
|
||
|
||
/*
|
||
- scannum - scan a number
|
||
^ static int scannum(struct vars *);
|
||
*/
|
||
static int /* value, <= DUPMAX */
|
||
scannum(
|
||
struct vars *v)
|
||
{
|
||
int n = 0;
|
||
|
||
while (SEE(DIGIT) && n < DUPMAX) {
|
||
n = n*10 + v->nextvalue;
|
||
NEXT();
|
||
}
|
||
if (SEE(DIGIT) || n > DUPMAX) {
|
||
ERR(REG_BADBR);
|
||
return 0;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
/*
|
||
- repeat - replicate subNFA for quantifiers
|
||
* The sub-NFA strung from lp to rp is modified to represent m to n
|
||
* repetitions of its initial contents.
|
||
* The duplication sequences used here are chosen carefully so that any
|
||
* pointers starting out pointing into the subexpression end up pointing into
|
||
* the last occurrence. (Note that it may not be strung between the same left
|
||
* and right end states, however!) This used to be important for the subRE
|
||
* tree, although the important bits are now handled by the in-line code in
|
||
* parse(), and when this is called, it doesn't matter any more.
|
||
^ static void repeat(struct vars *, struct state *, struct state *, int, int);
|
||
*/
|
||
static void
|
||
repeat(
|
||
struct vars *v,
|
||
struct state *lp,
|
||
struct state *rp,
|
||
int m,
|
||
int n)
|
||
{
|
||
#define SOME 2
|
||
#define INF 3
|
||
#define PAIR(x, y) ((x)*4 + (y))
|
||
#define REDUCE(x) ( ((x) == DUPINF) ? INF : (((x) > 1) ? SOME : (x)) )
|
||
const int rm = REDUCE(m);
|
||
const int rn = REDUCE(n);
|
||
struct state *s, *s2;
|
||
|
||
switch (PAIR(rm, rn)) {
|
||
case PAIR(0, 0): /* empty string */
|
||
delsub(v->nfa, lp, rp);
|
||
EMPTYARC(lp, rp);
|
||
break;
|
||
case PAIR(0, 1): /* do as x| */
|
||
EMPTYARC(lp, rp);
|
||
break;
|
||
case PAIR(0, SOME): /* do as x{1,n}| */
|
||
repeat(v, lp, rp, 1, n);
|
||
NOERR();
|
||
EMPTYARC(lp, rp);
|
||
break;
|
||
case PAIR(0, INF): /* loop x around */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, lp, s);
|
||
moveins(v->nfa, rp, s);
|
||
EMPTYARC(lp, s);
|
||
EMPTYARC(s, rp);
|
||
break;
|
||
case PAIR(1, 1): /* no action required */
|
||
break;
|
||
case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, lp, s);
|
||
dupnfa(v->nfa, s, rp, lp, s);
|
||
NOERR();
|
||
repeat(v, lp, s, 1, n-1);
|
||
NOERR();
|
||
EMPTYARC(lp, s);
|
||
break;
|
||
case PAIR(1, INF): /* add loopback arc */
|
||
s = newstate(v->nfa);
|
||
s2 = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, lp, s);
|
||
moveins(v->nfa, rp, s2);
|
||
EMPTYARC(lp, s);
|
||
EMPTYARC(s2, rp);
|
||
EMPTYARC(s2, s);
|
||
break;
|
||
case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, lp, s);
|
||
dupnfa(v->nfa, s, rp, lp, s);
|
||
NOERR();
|
||
repeat(v, lp, s, m-1, n-1);
|
||
break;
|
||
case PAIR(SOME, INF): /* do as x{m-1,}x */
|
||
s = newstate(v->nfa);
|
||
NOERR();
|
||
moveouts(v->nfa, lp, s);
|
||
dupnfa(v->nfa, s, rp, lp, s);
|
||
NOERR();
|
||
repeat(v, lp, s, m-1, n);
|
||
break;
|
||
default:
|
||
ERR(REG_ASSERT);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*
|
||
- bracket - handle non-complemented bracket expression
|
||
* Also called from cbracket for complemented bracket expressions.
|
||
^ static void bracket(struct vars *, struct state *, struct state *);
|
||
*/
|
||
static void
|
||
bracket(
|
||
struct vars *v,
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
assert(SEE('['));
|
||
NEXT();
|
||
while (!SEE(']') && !SEE(EOS)) {
|
||
brackpart(v, lp, rp);
|
||
}
|
||
assert(SEE(']') || ISERR());
|
||
okcolors(v->nfa, v->cm);
|
||
}
|
||
|
||
/*
|
||
- cbracket - handle complemented bracket expression
|
||
* We do it by calling bracket() with dummy endpoints, and then complementing
|
||
* the result. The alternative would be to invoke rainbow(), and then delete
|
||
* arcs as the b.e. is seen... but that gets messy.
|
||
^ static void cbracket(struct vars *, struct state *, struct state *);
|
||
*/
|
||
static void
|
||
cbracket(
|
||
struct vars *v,
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
struct state *left = newstate(v->nfa);
|
||
struct state *right = newstate(v->nfa);
|
||
|
||
NOERR();
|
||
bracket(v, left, right);
|
||
if (v->cflags®_NLSTOP) {
|
||
newarc(v->nfa, PLAIN, v->nlcolor, left, right);
|
||
}
|
||
NOERR();
|
||
|
||
assert(lp->nouts == 0); /* all outarcs will be ours */
|
||
|
||
/*
|
||
* Easy part of complementing, and all there is to do since the MCCE code
|
||
* was removed.
|
||
*/
|
||
|
||
colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp);
|
||
NOERR();
|
||
dropstate(v->nfa, left);
|
||
assert(right->nins == 0);
|
||
freestate(v->nfa, right);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
- brackpart - handle one item (or range) within a bracket expression
|
||
^ static void brackpart(struct vars *, struct state *, struct state *);
|
||
*/
|
||
static void
|
||
brackpart(
|
||
struct vars *v,
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
celt startc, endc;
|
||
struct cvec *cv;
|
||
const chr *startp, *endp;
|
||
chr c;
|
||
|
||
/*
|
||
* Parse something, get rid of special cases, take shortcuts.
|
||
*/
|
||
|
||
switch (v->nexttype) {
|
||
case RANGE: /* a-b-c or other botch */
|
||
ERR(REG_ERANGE);
|
||
return;
|
||
break;
|
||
case PLAIN:
|
||
c = v->nextvalue;
|
||
NEXT();
|
||
|
||
/*
|
||
* Shortcut for ordinary chr (not range).
|
||
*/
|
||
|
||
if (!SEE(RANGE)) {
|
||
onechr(v, c, lp, rp);
|
||
return;
|
||
}
|
||
startc = element(v, &c, &c+1);
|
||
NOERR();
|
||
break;
|
||
case COLLEL:
|
||
startp = v->now;
|
||
endp = scanplain(v);
|
||
INSIST(startp < endp, REG_ECOLLATE);
|
||
NOERR();
|
||
startc = element(v, startp, endp);
|
||
NOERR();
|
||
break;
|
||
case ECLASS:
|
||
startp = v->now;
|
||
endp = scanplain(v);
|
||
INSIST(startp < endp, REG_ECOLLATE);
|
||
NOERR();
|
||
startc = element(v, startp, endp);
|
||
NOERR();
|
||
cv = eclass(v, startc, (v->cflags®_ICASE));
|
||
NOERR();
|
||
dovec(v, cv, lp, rp);
|
||
return;
|
||
break;
|
||
case CCLASS:
|
||
startp = v->now;
|
||
endp = scanplain(v);
|
||
INSIST(startp < endp, REG_ECTYPE);
|
||
NOERR();
|
||
cv = cclass(v, startp, endp, (v->cflags®_ICASE));
|
||
NOERR();
|
||
dovec(v, cv, lp, rp);
|
||
return;
|
||
break;
|
||
default:
|
||
ERR(REG_ASSERT);
|
||
return;
|
||
break;
|
||
}
|
||
|
||
if (SEE(RANGE)) {
|
||
NEXT();
|
||
switch (v->nexttype) {
|
||
case PLAIN:
|
||
case RANGE:
|
||
c = v->nextvalue;
|
||
NEXT();
|
||
endc = element(v, &c, &c+1);
|
||
NOERR();
|
||
break;
|
||
case COLLEL:
|
||
startp = v->now;
|
||
endp = scanplain(v);
|
||
INSIST(startp < endp, REG_ECOLLATE);
|
||
NOERR();
|
||
endc = element(v, startp, endp);
|
||
NOERR();
|
||
break;
|
||
default:
|
||
ERR(REG_ERANGE);
|
||
return;
|
||
break;
|
||
}
|
||
} else {
|
||
endc = startc;
|
||
}
|
||
|
||
/*
|
||
* Ranges are unportable. Actually, standard C does guarantee that digits
|
||
* are contiguous, but making that an exception is just too complicated.
|
||
*/
|
||
|
||
if (startc != endc) {
|
||
NOTE(REG_UUNPORT);
|
||
}
|
||
cv = range(v, startc, endc, (v->cflags®_ICASE));
|
||
NOERR();
|
||
dovec(v, cv, lp, rp);
|
||
}
|
||
|
||
/*
|
||
- scanplain - scan PLAIN contents of [. etc.
|
||
* Certain bits of trickery in lex.c know that this code does not try to look
|
||
* past the final bracket of the [. etc.
|
||
^ static const chr *scanplain(struct vars *);
|
||
*/
|
||
static const chr * /* just after end of sequence */
|
||
scanplain(
|
||
struct vars *v)
|
||
{
|
||
const chr *endp;
|
||
|
||
assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS));
|
||
NEXT();
|
||
|
||
endp = v->now;
|
||
while (SEE(PLAIN)) {
|
||
endp = v->now;
|
||
NEXT();
|
||
}
|
||
|
||
assert(SEE(END) || ISERR());
|
||
NEXT();
|
||
|
||
return endp;
|
||
}
|
||
|
||
/*
|
||
- onechr - fill in arcs for a plain character, and possible case complements
|
||
* This is mostly a shortcut for efficient handling of the common case.
|
||
^ static void onechr(struct vars *, pchr, struct state *, struct state *);
|
||
*/
|
||
static void
|
||
onechr(
|
||
struct vars *v,
|
||
pchr c,
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
if (!(v->cflags®_ICASE)) {
|
||
newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp);
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Rats, need general case anyway...
|
||
*/
|
||
|
||
dovec(v, allcases(v, c), lp, rp);
|
||
}
|
||
|
||
/*
|
||
- dovec - fill in arcs for each element of a cvec
|
||
^ static void dovec(struct vars *, struct cvec *, struct state *,
|
||
^ struct state *);
|
||
*/
|
||
static void
|
||
dovec(
|
||
struct vars *v,
|
||
struct cvec *cv,
|
||
struct state *lp,
|
||
struct state *rp)
|
||
{
|
||
chr ch, from, to;
|
||
const chr *p;
|
||
int i;
|
||
|
||
for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) {
|
||
ch = *p;
|
||
newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp);
|
||
}
|
||
|
||
for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) {
|
||
from = *p;
|
||
to = *(p+1);
|
||
if (from <= to) {
|
||
subrange(v, from, to, lp, rp);
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/*
|
||
- wordchrs - set up word-chr list for word-boundary stuff, if needed
|
||
* The list is kept as a bunch of arcs between two dummy states; it's disposed
|
||
* of by the unreachable-states sweep in NFA optimization. Does NEXT(). Must
|
||
* not be called from any unusual lexical context. This should be reconciled
|
||
* with the \w etc. handling in lex.c, and should be cleaned up to reduce
|
||
* dependencies on input scanning.
|
||
^ static void wordchrs(struct vars *);
|
||
*/
|
||
static void
|
||
wordchrs(
|
||
struct vars *v)
|
||
{
|
||
struct state *left, *right;
|
||
|
||
if (v->wordchrs != NULL) {
|
||
NEXT(); /* for consistency */
|
||
return;
|
||
}
|
||
|
||
left = newstate(v->nfa);
|
||
right = newstate(v->nfa);
|
||
NOERR();
|
||
|
||
/*
|
||
* Fine point: implemented with [::], and lexer will set REG_ULOCALE.
|
||
*/
|
||
|
||
lexword(v);
|
||
NEXT();
|
||
assert(v->savenow != NULL && SEE('['));
|
||
bracket(v, left, right);
|
||
assert((v->savenow != NULL && SEE(']')) || ISERR());
|
||
NEXT();
|
||
NOERR();
|
||
v->wordchrs = left;
|
||
}
|
||
|
||
/*
|
||
- subre - allocate a subre
|
||
^ static struct subre *subre(struct vars *, int, int, struct state *,
|
||
^ struct state *);
|
||
*/
|
||
static struct subre *
|
||
subre(
|
||
struct vars *v,
|
||
int op,
|
||
int flags,
|
||
struct state *begin,
|
||
struct state *end)
|
||
{
|
||
struct subre *ret = v->treefree;
|
||
|
||
if (ret != NULL) {
|
||
v->treefree = ret->left;
|
||
} else {
|
||
ret = (struct subre *) MALLOC(sizeof(struct subre));
|
||
if (ret == NULL) {
|
||
ERR(REG_ESPACE);
|
||
return NULL;
|
||
}
|
||
ret->chain = v->treechain;
|
||
v->treechain = ret;
|
||
}
|
||
|
||
assert(strchr("=b|.*(", op) != NULL);
|
||
|
||
ret->op = op;
|
||
ret->flags = flags;
|
||
ret->id = 0; /* will be assigned later */
|
||
ret->subno = 0;
|
||
ret->min = ret->max = 1;
|
||
ret->left = NULL;
|
||
ret->right = NULL;
|
||
ret->begin = begin;
|
||
ret->end = end;
|
||
ZAPCNFA(ret->cnfa);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
- freesubre - free a subRE subtree
|
||
^ static void freesubre(struct vars *, struct subre *);
|
||
*/
|
||
static void
|
||
freesubre(
|
||
struct vars *v, /* might be NULL */
|
||
struct subre *sr)
|
||
{
|
||
if (sr == NULL) {
|
||
return;
|
||
}
|
||
|
||
if (sr->left != NULL) {
|
||
freesubre(v, sr->left);
|
||
}
|
||
if (sr->right != NULL) {
|
||
freesubre(v, sr->right);
|
||
}
|
||
|
||
freesrnode(v, sr);
|
||
}
|
||
|
||
/*
|
||
- freesrnode - free one node in a subRE subtree
|
||
^ static void freesrnode(struct vars *, struct subre *);
|
||
*/
|
||
static void
|
||
freesrnode(
|
||
struct vars *v, /* might be NULL */
|
||
struct subre *sr)
|
||
{
|
||
if (sr == NULL) {
|
||
return;
|
||
}
|
||
|
||
if (!NULLCNFA(sr->cnfa)) {
|
||
freecnfa(&sr->cnfa);
|
||
}
|
||
sr->flags = 0;
|
||
|
||
if (v != NULL && v->treechain != NULL) {
|
||
/* we're still parsing, maybe we can reuse the subre */
|
||
sr->left = v->treefree;
|
||
v->treefree = sr;
|
||
} else {
|
||
FREE(sr);
|
||
}
|
||
}
|
||
|
||
/*
|
||
- numst - number tree nodes (assigning "id" indexes)
|
||
^ static int numst(struct subre *, int);
|
||
*/
|
||
static int /* next number */
|
||
numst(
|
||
struct subre *t,
|
||
int start) /* starting point for subtree numbers */
|
||
{
|
||
int i;
|
||
|
||
assert(t != NULL);
|
||
|
||
i = start;
|
||
t->id = (short) i++;
|
||
if (t->left != NULL) {
|
||
i = numst(t->left, i);
|
||
}
|
||
if (t->right != NULL) {
|
||
i = numst(t->right, i);
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/*
|
||
- markst - mark tree nodes as INUSE
|
||
* Note: this is a great deal more subtle than it looks. During initial
|
||
* parsing of a regex, all subres are linked into the treechain list;
|
||
* discarded ones are also linked into the treefree list for possible reuse.
|
||
* After we are done creating all subres required for a regex, we run markst()
|
||
* then cleanst(), which results in discarding all subres not reachable from
|
||
* v->tree. We then clear v->treechain, indicating that subres must be found
|
||
* by descending from v->tree. This changes the behavior of freesubre(): it
|
||
* will henceforth FREE() unwanted subres rather than sticking them into the
|
||
* treefree list. (Doing that any earlier would result in dangling links in
|
||
* the treechain list.) This all means that freev() will clean up correctly
|
||
* if invoked before or after markst()+cleanst(); but it would not work if
|
||
* called partway through this state conversion, so we mustn't error out
|
||
* in or between these two functions.
|
||
^ static void markst(struct subre *);
|
||
*/
|
||
static void
|
||
markst(
|
||
struct subre *t)
|
||
{
|
||
assert(t != NULL);
|
||
|
||
t->flags |= INUSE;
|
||
if (t->left != NULL) {
|
||
markst(t->left);
|
||
}
|
||
if (t->right != NULL) {
|
||
markst(t->right);
|
||
}
|
||
}
|
||
|
||
/*
|
||
- cleanst - free any tree nodes not marked INUSE
|
||
^ static void cleanst(struct vars *);
|
||
*/
|
||
static void
|
||
cleanst(
|
||
struct vars *v)
|
||
{
|
||
struct subre *t;
|
||
struct subre *next;
|
||
|
||
for (t = v->treechain; t != NULL; t = next) {
|
||
next = t->chain;
|
||
if (!(t->flags&INUSE)) {
|
||
FREE(t);
|
||
}
|
||
}
|
||
v->treechain = NULL;
|
||
v->treefree = NULL; /* just on general principles */
|
||
}
|
||
|
||
/*
|
||
- nfatree - turn a subRE subtree into a tree of compacted NFAs
|
||
^ static long nfatree(struct vars *, struct subre *, FILE *);
|
||
*/
|
||
static long /* optimize results from top node */
|
||
nfatree(
|
||
struct vars *v,
|
||
struct subre *t,
|
||
FILE *f) /* for debug output */
|
||
{
|
||
assert(t != NULL && t->begin != NULL);
|
||
|
||
if (t->left != NULL) {
|
||
(DISCARD) nfatree(v, t->left, f);
|
||
}
|
||
if (t->right != NULL) {
|
||
(DISCARD) nfatree(v, t->right, f);
|
||
}
|
||
|
||
return nfanode(v, t, f);
|
||
}
|
||
|
||
/*
|
||
- nfanode - do one NFA for nfatree
|
||
^ static long nfanode(struct vars *, struct subre *, FILE *);
|
||
*/
|
||
static long /* optimize results */
|
||
nfanode(
|
||
struct vars *v,
|
||
struct subre *t,
|
||
FILE *f) /* for debug output */
|
||
{
|
||
struct nfa *nfa;
|
||
long ret = 0;
|
||
char idbuf[50];
|
||
|
||
assert(t->begin != NULL);
|
||
|
||
if (f != NULL) {
|
||
fprintf(f, "\n\n\n========= TREE NODE %s ==========\n",
|
||
stid(t, idbuf, sizeof(idbuf)));
|
||
}
|
||
nfa = newnfa(v, v->cm, v->nfa);
|
||
NOERRZ();
|
||
dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final);
|
||
if (!ISERR()) {
|
||
specialcolors(nfa);
|
||
ret = optimize(nfa, f);
|
||
}
|
||
if (!ISERR()) {
|
||
compact(nfa, &t->cnfa);
|
||
}
|
||
|
||
freenfa(nfa);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
- newlacon - allocate a lookahead-constraint subRE
|
||
^ static int newlacon(struct vars *, struct state *, struct state *, int);
|
||
*/
|
||
static int /* lacon number */
|
||
newlacon(
|
||
struct vars *v,
|
||
struct state *begin,
|
||
struct state *end,
|
||
int pos)
|
||
{
|
||
int n;
|
||
struct subre *newlacons;
|
||
struct subre *sub;
|
||
|
||
if (v->nlacons == 0) {
|
||
n = 1; /* skip 0th */
|
||
newlacons = (struct subre *) MALLOC(2 * sizeof(struct subre));
|
||
} else {
|
||
n = v->nlacons;
|
||
newlacons = (struct subre *) REALLOC(v->lacons,
|
||
(n + 1) * sizeof(struct subre));
|
||
}
|
||
|
||
if (newlacons == NULL) {
|
||
ERR(REG_ESPACE);
|
||
return 0;
|
||
}
|
||
|
||
v->lacons = newlacons;
|
||
v->nlacons = n + 1;
|
||
sub = &v->lacons[n];
|
||
sub->begin = begin;
|
||
sub->end = end;
|
||
sub->subno = pos;
|
||
ZAPCNFA(sub->cnfa);
|
||
return n;
|
||
}
|
||
|
||
/*
|
||
- freelacons - free lookahead-constraint subRE vector
|
||
^ static void freelacons(struct subre *, int);
|
||
*/
|
||
static void
|
||
freelacons(
|
||
struct subre *subs,
|
||
int n)
|
||
{
|
||
struct subre *sub;
|
||
int i;
|
||
|
||
assert(n > 0);
|
||
for (sub=subs+1, i=n-1; i>0; sub++, i--) { /* no 0th */
|
||
if (!NULLCNFA(sub->cnfa)) {
|
||
freecnfa(&sub->cnfa);
|
||
}
|
||
}
|
||
FREE(subs);
|
||
}
|
||
|
||
/*
|
||
- rfree - free a whole RE (insides of regfree)
|
||
^ static void rfree(regex_t *);
|
||
*/
|
||
static void
|
||
rfree(
|
||
regex_t *re)
|
||
{
|
||
struct guts *g;
|
||
|
||
if (re == NULL || re->re_magic != REMAGIC) {
|
||
return;
|
||
}
|
||
|
||
re->re_magic = 0; /* invalidate RE */
|
||
g = (struct guts *) re->re_guts;
|
||
re->re_guts = NULL;
|
||
re->re_fns = NULL;
|
||
if (g != NULL) {
|
||
g->magic = 0;
|
||
freecm(&g->cmap);
|
||
if (g->tree != NULL) {
|
||
freesubre(NULL, g->tree);
|
||
}
|
||
if (g->lacons != NULL) {
|
||
freelacons(g->lacons, g->nlacons);
|
||
}
|
||
if (!NULLCNFA(g->search)) {
|
||
freecnfa(&g->search);
|
||
}
|
||
FREE(g);
|
||
}
|
||
}
|
||
|
||
/*
|
||
- dump - dump an RE in human-readable form
|
||
^ static void dump(regex_t *, FILE *);
|
||
*/
|
||
static void
|
||
dump(
|
||
regex_t *re,
|
||
FILE *f)
|
||
{
|
||
#ifdef REG_DEBUG
|
||
struct guts *g;
|
||
int i;
|
||
|
||
if (re->re_magic != REMAGIC) {
|
||
fprintf(f, "bad magic number (0x%x not 0x%x)\n",
|
||
re->re_magic, REMAGIC);
|
||
}
|
||
if (re->re_guts == NULL) {
|
||
fprintf(f, "NULL guts!!!\n");
|
||
return;
|
||
}
|
||
g = (struct guts *) re->re_guts;
|
||
if (g->magic != GUTSMAGIC) {
|
||
fprintf(f, "bad guts magic number (0x%x not 0x%x)\n",
|
||
g->magic, GUTSMAGIC);
|
||
}
|
||
|
||
fprintf(f, "\n\n\n========= DUMP ==========\n");
|
||
fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n",
|
||
(int) re->re_nsub, re->re_info, re->re_csize, g->ntree);
|
||
|
||
dumpcolors(&g->cmap, f);
|
||
if (!NULLCNFA(g->search)) {
|
||
fprintf(f, "\nsearch:\n");
|
||
dumpcnfa(&g->search, f);
|
||
}
|
||
for (i = 1; i < g->nlacons; i++) {
|
||
fprintf(f, "\nla%d (%s):\n", i,
|
||
(g->lacons[i].subno) ? "positive" : "negative");
|
||
dumpcnfa(&g->lacons[i].cnfa, f);
|
||
}
|
||
fprintf(f, "\n");
|
||
dumpst(g->tree, f, 0);
|
||
#else
|
||
(void)re;
|
||
(void)f;
|
||
#endif
|
||
}
|
||
|
||
/*
|
||
- dumpst - dump a subRE tree
|
||
^ static void dumpst(struct subre *, FILE *, int);
|
||
*/
|
||
static void
|
||
dumpst(
|
||
struct subre *t,
|
||
FILE *f,
|
||
int nfapresent) /* is the original NFA still around? */
|
||
{
|
||
if (t == NULL) {
|
||
fprintf(f, "null tree\n");
|
||
} else {
|
||
stdump(t, f, nfapresent);
|
||
}
|
||
fflush(f);
|
||
}
|
||
|
||
/*
|
||
- stdump - recursive guts of dumpst
|
||
^ static void stdump(struct subre *, FILE *, int);
|
||
*/
|
||
static void
|
||
stdump(
|
||
struct subre *t,
|
||
FILE *f,
|
||
int nfapresent) /* is the original NFA still around? */
|
||
{
|
||
char idbuf[50];
|
||
|
||
fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op);
|
||
if (t->flags&LONGER) {
|
||
fprintf(f, " longest");
|
||
}
|
||
if (t->flags&SHORTER) {
|
||
fprintf(f, " shortest");
|
||
}
|
||
if (t->flags&MIXED) {
|
||
fprintf(f, " hasmixed");
|
||
}
|
||
if (t->flags&CAP) {
|
||
fprintf(f, " hascapture");
|
||
}
|
||
if (t->flags&BACKR) {
|
||
fprintf(f, " hasbackref");
|
||
}
|
||
if (!(t->flags&INUSE)) {
|
||
fprintf(f, " UNUSED");
|
||
}
|
||
if (t->subno != 0) {
|
||
fprintf(f, " (#%d)", t->subno);
|
||
}
|
||
if (t->min != 1 || t->max != 1) {
|
||
fprintf(f, " {%d,", t->min);
|
||
if (t->max != DUPINF) {
|
||
fprintf(f, "%d", t->max);
|
||
}
|
||
fprintf(f, "}");
|
||
}
|
||
if (nfapresent) {
|
||
fprintf(f, " %ld-%ld", (long)t->begin->no, (long)t->end->no);
|
||
}
|
||
if (t->left != NULL) {
|
||
fprintf(f, " L:%s", stid(t->left, idbuf, sizeof(idbuf)));
|
||
}
|
||
if (t->right != NULL) {
|
||
fprintf(f, " R:%s", stid(t->right, idbuf, sizeof(idbuf)));
|
||
}
|
||
if (!NULLCNFA(t->cnfa)) {
|
||
fprintf(f, "\n");
|
||
dumpcnfa(&t->cnfa, f);
|
||
}
|
||
fprintf(f, "\n");
|
||
if (t->left != NULL) {
|
||
stdump(t->left, f, nfapresent);
|
||
}
|
||
if (t->right != NULL) {
|
||
stdump(t->right, f, nfapresent);
|
||
}
|
||
}
|
||
|
||
/*
|
||
- stid - identify a subtree node for dumping
|
||
^ static const char *stid(struct subre *, char *, size_t);
|
||
*/
|
||
static const char * /* points to buf or constant string */
|
||
stid(
|
||
struct subre *t,
|
||
char *buf,
|
||
size_t bufsize)
|
||
{
|
||
/*
|
||
* Big enough for hex int or decimal t->id?
|
||
*/
|
||
|
||
if (bufsize < sizeof(void*)*2 + 3 || bufsize < sizeof(t->id)*3 + 1) {
|
||
return "unable";
|
||
}
|
||
if (t->id != 0) {
|
||
sprintf(buf, "%d", t->id);
|
||
} else {
|
||
sprintf(buf, "%p", t);
|
||
}
|
||
return buf;
|
||
}
|
||
|
||
#include "regc_lex.c"
|
||
#include "regc_color.c"
|
||
#include "regc_nfa.c"
|
||
#include "regc_cvec.c"
|
||
#include "regc_locale.c"
|
||
|
||
/*
|
||
* Local Variables:
|
||
* mode: c
|
||
* c-basic-offset: 4
|
||
* fill-column: 78
|
||
* End:
|
||
*/
|