7530 lines
223 KiB
C
7530 lines
223 KiB
C
/*************************************************
|
|
* Perl-Compatible Regular Expressions *
|
|
*************************************************/
|
|
|
|
/*
|
|
This is a library of functions to support regular expressions whose syntax
|
|
and semantics are as close as possible to those of the Perl 5 language. See
|
|
the file Tech.Notes for some information on the internals.
|
|
|
|
Written by: Philip Hazel <ph10@cam.ac.uk>
|
|
|
|
Copyright (c) 1997-2003 University of Cambridge
|
|
|
|
-----------------------------------------------------------------------------
|
|
Permission is granted to anyone to use this software for any purpose on any
|
|
computer system, and to redistribute it freely, subject to the following
|
|
restrictions:
|
|
|
|
1. This software is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
2. The origin of this software must not be misrepresented, either by
|
|
explicit claim or by omission.
|
|
|
|
3. Altered versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
|
|
4. If PCRE is embedded in any software that is released under the GNU
|
|
General Purpose Licence (GPL), then the terms of that licence shall
|
|
supersede any condition above with which it is incompatible.
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
/* Define DEBUG to get debugging output on stdout. */
|
|
|
|
/* #define DEBUG */
|
|
|
|
/* Use a macro for debugging printing, 'cause that eliminates the use of #ifdef
|
|
inline, and there are *still* stupid compilers about that don't like indented
|
|
pre-processor statements. I suppose it's only been 10 years... */
|
|
|
|
#ifdef DEBUG
|
|
#define DPRINTF(p) printf p
|
|
#else
|
|
#define DPRINTF(p) /*nothing*/
|
|
#endif
|
|
|
|
/* Include the internals header, which itself includes Standard C headers plus
|
|
the external pcre header. */
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
/* Allow compilation as C++ source code, should anybody want to do that. */
|
|
|
|
#ifdef __cplusplus
|
|
#define class pcre_class
|
|
#endif
|
|
|
|
|
|
/* Maximum number of items on the nested bracket stacks at compile time. This
|
|
applies to the nesting of all kinds of parentheses. It does not limit
|
|
un-nested, non-capturing parentheses. This number can be made bigger if
|
|
necessary - it is used to dimension one int and one unsigned char vector at
|
|
compile time. */
|
|
|
|
#define BRASTACK_SIZE 200
|
|
|
|
|
|
/* Maximum number of ints of offset to save on the stack for recursive calls.
|
|
If the offset vector is bigger, malloc is used. This should be a multiple of 3,
|
|
because the offset vector is always a multiple of 3 long. */
|
|
|
|
#define REC_STACK_SAVE_MAX 30
|
|
|
|
|
|
/* The number of bytes in a literal character string above which we can't add
|
|
any more is set at 250 in order to allow for UTF-8 characters. (In theory it
|
|
could be 255 when UTF-8 support is excluded, but that means that some of the
|
|
test output would be different, which just complicates things.) */
|
|
|
|
#define MAXLIT 250
|
|
|
|
|
|
/* The maximum remaining length of subject we are prepared to search for a
|
|
req_byte match. */
|
|
|
|
#define REQ_BYTE_MAX 1000
|
|
|
|
|
|
/* Table of sizes for the fixed-length opcodes. It's defined in a macro so that
|
|
the definition is next to the definition of the opcodes in internal.h. */
|
|
|
|
static uschar OP_lengths[] = { OP_LENGTHS };
|
|
|
|
/* Min and max values for the common repeats; for the maxima, 0 => infinity */
|
|
|
|
static const char rep_min[] = { 0, 0, 1, 1, 0, 0 };
|
|
static const char rep_max[] = { 0, 0, 0, 0, 1, 1 };
|
|
|
|
/* Table for handling escaped characters in the range '0'-'z'. Positive returns
|
|
are simple data values; negative values are for special things like \d and so
|
|
on. Zero means further processing is needed (for things like \x), or the escape
|
|
is invalid. */
|
|
|
|
static const short int escapes[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
|
|
0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
|
|
'@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
|
|
0, 0, 0, 0, 0, 0, 0, 0, /* H - O */
|
|
0, -ESC_Q, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */
|
|
0, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
|
|
'`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
|
|
0, 0, 0, 0, 0, 0, ESC_n, 0, /* h - o */
|
|
0, 0, ESC_r, -ESC_s, ESC_t, 0, 0, -ESC_w, /* p - w */
|
|
0, 0, -ESC_z /* x - z */
|
|
};
|
|
|
|
/* Tables of names of POSIX character classes and their lengths. The list is
|
|
terminated by a zero length entry. The first three must be alpha, upper, lower,
|
|
as this is assumed for handling case independence. */
|
|
|
|
static const char *posix_names[] = {
|
|
"alpha", "lower", "upper",
|
|
"alnum", "ascii", "blank", "cntrl", "digit", "graph",
|
|
"print", "punct", "space", "word", "xdigit" };
|
|
|
|
static const uschar posix_name_lengths[] = {
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
|
|
|
|
/* Table of class bit maps for each POSIX class; up to three may be combined
|
|
to form the class. The table for [:blank:] is dynamically modified to remove
|
|
the vertical space characters. */
|
|
|
|
static const int posix_class_maps[] = {
|
|
cbit_lower, cbit_upper, -1, /* alpha */
|
|
cbit_lower, -1, -1, /* lower */
|
|
cbit_upper, -1, -1, /* upper */
|
|
cbit_digit, cbit_lower, cbit_upper, /* alnum */
|
|
cbit_print, cbit_cntrl, -1, /* ascii */
|
|
cbit_space, -1, -1, /* blank - a GNU extension */
|
|
cbit_cntrl, -1, -1, /* cntrl */
|
|
cbit_digit, -1, -1, /* digit */
|
|
cbit_graph, -1, -1, /* graph */
|
|
cbit_print, -1, -1, /* print */
|
|
cbit_punct, -1, -1, /* punct */
|
|
cbit_space, -1, -1, /* space */
|
|
cbit_word, -1, -1, /* word - a Perl extension */
|
|
cbit_xdigit,-1, -1 /* xdigit */
|
|
};
|
|
|
|
|
|
/* Definition to allow mutual recursion */
|
|
|
|
static BOOL
|
|
compile_regex(int, int, int *, uschar **, const uschar **, const char **,
|
|
BOOL, int, int *, int *, branch_chain *, compile_data *);
|
|
|
|
/* Structure for building a chain of data that actually lives on the
|
|
stack, for holding the values of the subject pointer at the start of each
|
|
subpattern, so as to detect when an empty string has been matched by a
|
|
subpattern - to break infinite loops. */
|
|
|
|
typedef struct eptrblock {
|
|
struct eptrblock *prev;
|
|
const uschar *saved_eptr;
|
|
} eptrblock;
|
|
|
|
/* Flag bits for the match() function */
|
|
|
|
#define match_condassert 0x01 /* Called to check a condition assertion */
|
|
#define match_isgroup 0x02 /* Set if start of bracketed group */
|
|
|
|
/* Non-error returns from the match() function. Error returns are externally
|
|
defined PCRE_ERROR_xxx codes, which are all negative. */
|
|
|
|
#define MATCH_MATCH 1
|
|
#define MATCH_NOMATCH 0
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Global variables *
|
|
*************************************************/
|
|
|
|
/* PCRE is thread-clean and doesn't use any global variables in the normal
|
|
sense. However, it calls memory allocation and free functions via the two
|
|
indirections below, and it can optionally do callouts. These values can be
|
|
changed by the caller, but are shared between all threads. However, when
|
|
compiling for Virtual Pascal, things are done differently (see pcre.in). */
|
|
|
|
#ifndef VPCOMPAT
|
|
void *(*pcre_malloc)(size_t) = malloc;
|
|
void (*pcre_free)(void *) = free;
|
|
int (*pcre_callout)(pcre_callout_block *) = NULL;
|
|
#endif
|
|
|
|
|
|
/*************************************************
|
|
* Macros and tables for character handling *
|
|
*************************************************/
|
|
|
|
/* When UTF-8 encoding is being used, a character is no longer just a single
|
|
byte. The macros for character handling generate simple sequences when used in
|
|
byte-mode, and more complicated ones for UTF-8 characters. */
|
|
|
|
#ifndef SUPPORT_UTF8
|
|
#define GETCHAR(c, eptr) c = *eptr;
|
|
#define GETCHARINC(c, eptr) c = *eptr++;
|
|
#define GETCHARINCTEST(c, eptr) c = *eptr++;
|
|
#define GETCHARLEN(c, eptr, len) c = *eptr;
|
|
#define BACKCHAR(eptr)
|
|
|
|
#else /* SUPPORT_UTF8 */
|
|
|
|
/* Get the next UTF-8 character, not advancing the pointer. This is called when
|
|
we know we are in UTF-8 mode. */
|
|
|
|
#define GETCHAR(c, eptr) \
|
|
c = *eptr; \
|
|
if ((c & 0xc0) == 0xc0) \
|
|
{ \
|
|
int gcii; \
|
|
int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \
|
|
int gcss = 6*gcaa; \
|
|
c = (c & utf8_table3[gcaa]) << gcss; \
|
|
for (gcii = 1; gcii <= gcaa; gcii++) \
|
|
{ \
|
|
gcss -= 6; \
|
|
c |= (eptr[gcii] & 0x3f) << gcss; \
|
|
} \
|
|
}
|
|
|
|
/* Get the next UTF-8 character, advancing the pointer. This is called when we
|
|
know we are in UTF-8 mode. */
|
|
|
|
#define GETCHARINC(c, eptr) \
|
|
c = *eptr++; \
|
|
if ((c & 0xc0) == 0xc0) \
|
|
{ \
|
|
int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \
|
|
int gcss = 6*gcaa; \
|
|
c = (c & utf8_table3[gcaa]) << gcss; \
|
|
while (gcaa-- > 0) \
|
|
{ \
|
|
gcss -= 6; \
|
|
c |= (*eptr++ & 0x3f) << gcss; \
|
|
} \
|
|
}
|
|
|
|
/* Get the next character, testing for UTF-8 mode, and advancing the pointer */
|
|
|
|
#define GETCHARINCTEST(c, eptr) \
|
|
c = *eptr++; \
|
|
if (md->utf8 && (c & 0xc0) == 0xc0) \
|
|
{ \
|
|
int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \
|
|
int gcss = 6*gcaa; \
|
|
c = (c & utf8_table3[gcaa]) << gcss; \
|
|
while (gcaa-- > 0) \
|
|
{ \
|
|
gcss -= 6; \
|
|
c |= (*eptr++ & 0x3f) << gcss; \
|
|
} \
|
|
}
|
|
|
|
/* Get the next UTF-8 character, not advancing the pointer, incrementing length
|
|
if there are extra bytes. This is called when we know we are in UTF-8 mode. */
|
|
|
|
#define GETCHARLEN(c, eptr, len) \
|
|
c = *eptr; \
|
|
if ((c & 0xc0) == 0xc0) \
|
|
{ \
|
|
int gcii; \
|
|
int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \
|
|
int gcss = 6*gcaa; \
|
|
c = (c & utf8_table3[gcaa]) << gcss; \
|
|
for (gcii = 1; gcii <= gcaa; gcii++) \
|
|
{ \
|
|
gcss -= 6; \
|
|
c |= (eptr[gcii] & 0x3f) << gcss; \
|
|
} \
|
|
len += gcaa; \
|
|
}
|
|
|
|
/* If the pointer is not at the start of a character, move it back until
|
|
it is. Called only in UTF-8 mode. */
|
|
|
|
#define BACKCHAR(eptr) while ((*eptr & 0xc0) == 0x80) eptr--;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Default character tables *
|
|
*************************************************/
|
|
|
|
/* A default set of character tables is included in the PCRE binary. Its source
|
|
is built by the maketables auxiliary program, which uses the default C ctypes
|
|
functions, and put in the file chartables.c. These tables are used by PCRE
|
|
whenever the caller of pcre_compile() does not provide an alternate set of
|
|
tables. */
|
|
|
|
#include "chartables.h"
|
|
|
|
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/*************************************************
|
|
* Tables for UTF-8 support *
|
|
*************************************************/
|
|
|
|
/* These are the breakpoints for different numbers of bytes in a UTF-8
|
|
character. */
|
|
|
|
static int utf8_table1[] = { 0x7f, 0x7ff, 0xffff, 0x1fffff, 0x3ffffff, 0x7fffffff};
|
|
|
|
/* These are the indicator bits and the mask for the data bits to set in the
|
|
first byte of a character, indexed by the number of additional bytes. */
|
|
|
|
static int utf8_table2[] = { 0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc};
|
|
static int utf8_table3[] = { 0xff, 0x1f, 0x0f, 0x07, 0x03, 0x01};
|
|
|
|
/* Table of the number of extra characters, indexed by the first character
|
|
masked with 0x3f. The highest number for a valid UTF-8 character is in fact
|
|
0x3d. */
|
|
|
|
static uschar utf8_table4[] = {
|
|
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
|
|
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
|
|
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
|
|
3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5 };
|
|
|
|
|
|
/*************************************************
|
|
* Convert character value to UTF-8 *
|
|
*************************************************/
|
|
|
|
/* This function takes an integer value in the range 0 - 0x7fffffff
|
|
and encodes it as a UTF-8 character in 0 to 6 bytes.
|
|
|
|
Arguments:
|
|
cvalue the character value
|
|
buffer pointer to buffer for result - at least 6 bytes long
|
|
|
|
Returns: number of characters placed in the buffer
|
|
*/
|
|
|
|
static int
|
|
ord2utf8(int cvalue, uschar *buffer)
|
|
{
|
|
register int i, j;
|
|
for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++)
|
|
if (cvalue <= utf8_table1[i]) break;
|
|
buffer += i;
|
|
for (j = i; j > 0; j--)
|
|
{
|
|
*buffer-- = 0x80 | (cvalue & 0x3f);
|
|
cvalue >>= 6;
|
|
}
|
|
*buffer = utf8_table2[i] | cvalue;
|
|
return i + 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Print compiled regex *
|
|
*************************************************/
|
|
|
|
/* The code for doing this is held in a separate file that is also included in
|
|
pcretest.c. It defines a function called print_internals(). */
|
|
|
|
#ifdef DEBUG
|
|
#include "printint.c"
|
|
#endif
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Return version string *
|
|
*************************************************/
|
|
|
|
#define STRING(a) # a
|
|
#define XSTRING(s) STRING(s)
|
|
|
|
const char *
|
|
pcre_version(void)
|
|
{
|
|
return XSTRING(PCRE_MAJOR) "." XSTRING(PCRE_MINOR) " " XSTRING(PCRE_DATE);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* (Obsolete) Return info about compiled pattern *
|
|
*************************************************/
|
|
|
|
/* This is the original "info" function. It picks potentially useful data out
|
|
of the private structure, but its interface was too rigid. It remains for
|
|
backwards compatibility. The public options are passed back in an int - though
|
|
the re->options field has been expanded to a long int, all the public options
|
|
at the low end of it, and so even on 16-bit systems this will still be OK.
|
|
Therefore, I haven't changed the API for pcre_info().
|
|
|
|
Arguments:
|
|
external_re points to compiled code
|
|
optptr where to pass back the options
|
|
first_byte where to pass back the first character,
|
|
or -1 if multiline and all branches start ^,
|
|
or -2 otherwise
|
|
|
|
Returns: number of capturing subpatterns
|
|
or negative values on error
|
|
*/
|
|
|
|
int
|
|
pcre_info(const pcre *external_re, int *optptr, int *first_byte)
|
|
{
|
|
const real_pcre *re = (const real_pcre *)external_re;
|
|
if (re == NULL) return PCRE_ERROR_NULL;
|
|
if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
|
|
if (optptr != NULL) *optptr = (int)(re->options & PUBLIC_OPTIONS);
|
|
if (first_byte != NULL)
|
|
*first_byte = ((re->options & PCRE_FIRSTSET) != 0)? re->first_byte :
|
|
((re->options & PCRE_STARTLINE) != 0)? -1 : -2;
|
|
return re->top_bracket;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Return info about compiled pattern *
|
|
*************************************************/
|
|
|
|
/* This is a newer "info" function which has an extensible interface so
|
|
that additional items can be added compatibly.
|
|
|
|
Arguments:
|
|
external_re points to compiled code
|
|
extra_data points extra data, or NULL
|
|
what what information is required
|
|
where where to put the information
|
|
|
|
Returns: 0 if data returned, negative on error
|
|
*/
|
|
|
|
int
|
|
pcre_fullinfo(const pcre *external_re, const pcre_extra *extra_data, int what,
|
|
void *where)
|
|
{
|
|
const real_pcre *re = (const real_pcre *)external_re;
|
|
const pcre_study_data *study = NULL;
|
|
|
|
if (re == NULL || where == NULL) return PCRE_ERROR_NULL;
|
|
if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
|
|
|
|
if (extra_data != NULL && (extra_data->flags & PCRE_EXTRA_STUDY_DATA) != 0)
|
|
study = (pcre_study_data *)extra_data->study_data;
|
|
|
|
switch (what)
|
|
{
|
|
case PCRE_INFO_OPTIONS:
|
|
*((unsigned long int *)where) = re->options & PUBLIC_OPTIONS;
|
|
break;
|
|
|
|
case PCRE_INFO_SIZE:
|
|
*((size_t *)where) = re->size;
|
|
break;
|
|
|
|
case PCRE_INFO_STUDYSIZE:
|
|
*((size_t *)where) = (study == NULL)? 0 : study->size;
|
|
break;
|
|
|
|
case PCRE_INFO_CAPTURECOUNT:
|
|
*((int *)where) = re->top_bracket;
|
|
break;
|
|
|
|
case PCRE_INFO_BACKREFMAX:
|
|
*((int *)where) = re->top_backref;
|
|
break;
|
|
|
|
case PCRE_INFO_FIRSTBYTE:
|
|
*((int *)where) =
|
|
((re->options & PCRE_FIRSTSET) != 0)? re->first_byte :
|
|
((re->options & PCRE_STARTLINE) != 0)? -1 : -2;
|
|
break;
|
|
|
|
case PCRE_INFO_FIRSTTABLE:
|
|
*((const uschar **)where) =
|
|
(study != NULL && (study->options & PCRE_STUDY_MAPPED) != 0)?
|
|
study->start_bits : NULL;
|
|
break;
|
|
|
|
case PCRE_INFO_LASTLITERAL:
|
|
*((int *)where) =
|
|
((re->options & PCRE_REQCHSET) != 0)? re->req_byte : -1;
|
|
break;
|
|
|
|
case PCRE_INFO_NAMEENTRYSIZE:
|
|
*((int *)where) = re->name_entry_size;
|
|
break;
|
|
|
|
case PCRE_INFO_NAMECOUNT:
|
|
*((int *)where) = re->name_count;
|
|
break;
|
|
|
|
case PCRE_INFO_NAMETABLE:
|
|
*((const uschar **)where) = (const uschar *)re + sizeof(real_pcre);
|
|
break;
|
|
|
|
default: return PCRE_ERROR_BADOPTION;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Return info about what features are configured *
|
|
*************************************************/
|
|
|
|
/* This is function which has an extensible interface so that additional items
|
|
can be added compatibly.
|
|
|
|
Arguments:
|
|
what what information is required
|
|
where where to put the information
|
|
|
|
Returns: 0 if data returned, negative on error
|
|
*/
|
|
|
|
int
|
|
pcre_config(int what, void *where)
|
|
{
|
|
switch (what)
|
|
{
|
|
case PCRE_CONFIG_UTF8:
|
|
#ifdef SUPPORT_UTF8
|
|
*((int *)where) = 1;
|
|
#else
|
|
*((int *)where) = 0;
|
|
#endif
|
|
break;
|
|
|
|
case PCRE_CONFIG_NEWLINE:
|
|
*((int *)where) = NEWLINE;
|
|
break;
|
|
|
|
case PCRE_CONFIG_LINK_SIZE:
|
|
*((int *)where) = LINK_SIZE;
|
|
break;
|
|
|
|
case PCRE_CONFIG_POSIX_MALLOC_THRESHOLD:
|
|
*((int *)where) = POSIX_MALLOC_THRESHOLD;
|
|
break;
|
|
|
|
case PCRE_CONFIG_MATCH_LIMIT:
|
|
*((unsigned int *)where) = MATCH_LIMIT;
|
|
break;
|
|
|
|
default: return PCRE_ERROR_BADOPTION;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
/*************************************************
|
|
* Debugging function to print chars *
|
|
*************************************************/
|
|
|
|
/* Print a sequence of chars in printable format, stopping at the end of the
|
|
subject if the requested.
|
|
|
|
Arguments:
|
|
p points to characters
|
|
length number to print
|
|
is_subject TRUE if printing from within md->start_subject
|
|
md pointer to matching data block, if is_subject is TRUE
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
pchars(const uschar *p, int length, BOOL is_subject, match_data *md)
|
|
{
|
|
int c;
|
|
if (is_subject && length > md->end_subject - p) length = md->end_subject - p;
|
|
while (length-- > 0)
|
|
if (isprint(c = *(p++))) printf("%c", c); else printf("\\x%02x", c);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Handle escapes *
|
|
*************************************************/
|
|
|
|
/* This function is called when a \ has been encountered. It either returns a
|
|
positive value for a simple escape such as \n, or a negative value which
|
|
encodes one of the more complicated things such as \d. When UTF-8 is enabled,
|
|
a positive value greater than 255 may be returned. On entry, ptr is pointing at
|
|
the \. On exit, it is on the final character of the escape sequence.
|
|
|
|
Arguments:
|
|
ptrptr points to the pattern position pointer
|
|
errorptr points to the pointer to the error message
|
|
bracount number of previous extracting brackets
|
|
options the options bits
|
|
isclass TRUE if inside a character class
|
|
cd pointer to char tables block
|
|
|
|
Returns: zero or positive => a data character
|
|
negative => a special escape sequence
|
|
on error, errorptr is set
|
|
*/
|
|
|
|
static int
|
|
check_escape(const uschar **ptrptr, const char **errorptr, int bracount,
|
|
int options, BOOL isclass, compile_data *cd)
|
|
{
|
|
const uschar *ptr = *ptrptr;
|
|
int c, i;
|
|
|
|
/* If backslash is at the end of the pattern, it's an error. */
|
|
|
|
c = *(++ptr);
|
|
if (c == 0) *errorptr = ERR1;
|
|
|
|
/* Digits or letters may have special meaning; all others are literals. */
|
|
|
|
else if (c < '0' || c > 'z') {}
|
|
|
|
/* Do an initial lookup in a table. A non-zero result is something that can be
|
|
returned immediately. Otherwise further processing may be required. */
|
|
|
|
else if ((i = escapes[c - '0']) != 0) c = i;
|
|
|
|
/* Escapes that need further processing, or are illegal. */
|
|
|
|
else
|
|
{
|
|
const uschar *oldptr;
|
|
switch (c)
|
|
{
|
|
/* A number of Perl escapes are not handled by PCRE. We give an explicit
|
|
error. */
|
|
|
|
case 'l':
|
|
case 'L':
|
|
case 'N':
|
|
case 'p':
|
|
case 'P':
|
|
case 'u':
|
|
case 'U':
|
|
case 'X':
|
|
*errorptr = ERR37;
|
|
break;
|
|
|
|
/* The handling of escape sequences consisting of a string of digits
|
|
starting with one that is not zero is not straightforward. By experiment,
|
|
the way Perl works seems to be as follows:
|
|
|
|
Outside a character class, the digits are read as a decimal number. If the
|
|
number is less than 10, or if there are that many previous extracting
|
|
left brackets, then it is a back reference. Otherwise, up to three octal
|
|
digits are read to form an escaped byte. Thus \123 is likely to be octal
|
|
123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
|
|
value is greater than 377, the least significant 8 bits are taken. Inside a
|
|
character class, \ followed by a digit is always an octal number. */
|
|
|
|
case '1': case '2': case '3': case '4': case '5':
|
|
case '6': case '7': case '8': case '9':
|
|
|
|
if (!isclass)
|
|
{
|
|
oldptr = ptr;
|
|
c -= '0';
|
|
while ((cd->ctypes[ptr[1]] & ctype_digit) != 0)
|
|
c = c * 10 + *(++ptr) - '0';
|
|
if (c < 10 || c <= bracount)
|
|
{
|
|
c = -(ESC_REF + c);
|
|
break;
|
|
}
|
|
ptr = oldptr; /* Put the pointer back and fall through */
|
|
}
|
|
|
|
/* Handle an octal number following \. If the first digit is 8 or 9, Perl
|
|
generates a binary zero byte and treats the digit as a following literal.
|
|
Thus we have to pull back the pointer by one. */
|
|
|
|
if ((c = *ptr) >= '8')
|
|
{
|
|
ptr--;
|
|
c = 0;
|
|
break;
|
|
}
|
|
|
|
/* \0 always starts an octal number, but we may drop through to here with a
|
|
larger first octal digit. */
|
|
|
|
case '0':
|
|
c -= '0';
|
|
while (i++ < 2 && (cd->ctypes[ptr[1]] & ctype_digit) != 0 &&
|
|
ptr[1] != '8' && ptr[1] != '9')
|
|
c = c * 8 + *(++ptr) - '0';
|
|
c &= 255; /* Take least significant 8 bits */
|
|
break;
|
|
|
|
/* \x is complicated when UTF-8 is enabled. \x{ddd} is a character number
|
|
which can be greater than 0xff, but only if the ddd are hex digits. */
|
|
|
|
case 'x':
|
|
#ifdef SUPPORT_UTF8
|
|
if (ptr[1] == '{' && (options & PCRE_UTF8) != 0)
|
|
{
|
|
const uschar *pt = ptr + 2;
|
|
register int count = 0;
|
|
c = 0;
|
|
while ((cd->ctypes[*pt] & ctype_xdigit) != 0)
|
|
{
|
|
count++;
|
|
c = c * 16 + cd->lcc[*pt] -
|
|
(((cd->ctypes[*pt] & ctype_digit) != 0)? '0' : 'W');
|
|
pt++;
|
|
}
|
|
if (*pt == '}')
|
|
{
|
|
if (c < 0 || count > 8) *errorptr = ERR34;
|
|
ptr = pt;
|
|
break;
|
|
}
|
|
/* If the sequence of hex digits does not end with '}', then we don't
|
|
recognize this construct; fall through to the normal \x handling. */
|
|
}
|
|
#endif
|
|
|
|
/* Read just a single hex char */
|
|
|
|
c = 0;
|
|
while (i++ < 2 && (cd->ctypes[ptr[1]] & ctype_xdigit) != 0)
|
|
{
|
|
ptr++;
|
|
c = c * 16 + cd->lcc[*ptr] -
|
|
(((cd->ctypes[*ptr] & ctype_digit) != 0)? '0' : 'W');
|
|
}
|
|
break;
|
|
|
|
/* Other special escapes not starting with a digit are straightforward */
|
|
|
|
case 'c':
|
|
c = *(++ptr);
|
|
if (c == 0)
|
|
{
|
|
*errorptr = ERR2;
|
|
return 0;
|
|
}
|
|
|
|
/* A letter is upper-cased; then the 0x40 bit is flipped */
|
|
|
|
if (c >= 'a' && c <= 'z') c = cd->fcc[c];
|
|
c ^= 0x40;
|
|
break;
|
|
|
|
/* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
|
|
other alphameric following \ is an error if PCRE_EXTRA was set; otherwise,
|
|
for Perl compatibility, it is a literal. This code looks a bit odd, but
|
|
there used to be some cases other than the default, and there may be again
|
|
in future, so I haven't "optimized" it. */
|
|
|
|
default:
|
|
if ((options & PCRE_EXTRA) != 0) switch(c)
|
|
{
|
|
default:
|
|
*errorptr = ERR3;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
*ptrptr = ptr;
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for counted repeat *
|
|
*************************************************/
|
|
|
|
/* This function is called when a '{' is encountered in a place where it might
|
|
start a quantifier. It looks ahead to see if it really is a quantifier or not.
|
|
It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
|
|
where the ddds are digits.
|
|
|
|
Arguments:
|
|
p pointer to the first char after '{'
|
|
cd pointer to char tables block
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_counted_repeat(const uschar *p, compile_data *cd)
|
|
{
|
|
if ((cd->ctypes[*p++] & ctype_digit) == 0) return FALSE;
|
|
while ((cd->ctypes[*p] & ctype_digit) != 0) p++;
|
|
if (*p == '}') return TRUE;
|
|
|
|
if (*p++ != ',') return FALSE;
|
|
if (*p == '}') return TRUE;
|
|
|
|
if ((cd->ctypes[*p++] & ctype_digit) == 0) return FALSE;
|
|
while ((cd->ctypes[*p] & ctype_digit) != 0) p++;
|
|
return (*p == '}');
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Read repeat counts *
|
|
*************************************************/
|
|
|
|
/* Read an item of the form {n,m} and return the values. This is called only
|
|
after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
|
|
so the syntax is guaranteed to be correct, but we need to check the values.
|
|
|
|
Arguments:
|
|
p pointer to first char after '{'
|
|
minp pointer to int for min
|
|
maxp pointer to int for max
|
|
returned as -1 if no max
|
|
errorptr points to pointer to error message
|
|
cd pointer to character tables clock
|
|
|
|
Returns: pointer to '}' on success;
|
|
current ptr on error, with errorptr set
|
|
*/
|
|
|
|
static const uschar *
|
|
read_repeat_counts(const uschar *p, int *minp, int *maxp,
|
|
const char **errorptr, compile_data *cd)
|
|
{
|
|
int min = 0;
|
|
int max = -1;
|
|
|
|
while ((cd->ctypes[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
|
|
|
|
if (*p == '}') max = min; else
|
|
{
|
|
if (*(++p) != '}')
|
|
{
|
|
max = 0;
|
|
while ((cd->ctypes[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
|
|
if (max < min)
|
|
{
|
|
*errorptr = ERR4;
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do paranoid checks, then fill in the required variables, and pass back the
|
|
pointer to the terminating '}'. */
|
|
|
|
if (min > 65535 || max > 65535)
|
|
*errorptr = ERR5;
|
|
else
|
|
{
|
|
*minp = min;
|
|
*maxp = max;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find first significant op code *
|
|
*************************************************/
|
|
|
|
/* This is called by several functions that scan a compiled expression looking
|
|
for a fixed first character, or an anchoring op code etc. It skips over things
|
|
that do not influence this. For some calls, a change of option is important.
|
|
|
|
Arguments:
|
|
code pointer to the start of the group
|
|
options pointer to external options
|
|
optbit the option bit whose changing is significant, or
|
|
zero if none are
|
|
|
|
Returns: pointer to the first significant opcode
|
|
*/
|
|
|
|
static const uschar*
|
|
first_significant_code(const uschar *code, int *options, int optbit)
|
|
{
|
|
for (;;)
|
|
{
|
|
switch ((int)*code)
|
|
{
|
|
case OP_OPT:
|
|
if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
|
|
*options = (int)code[1];
|
|
code += 2;
|
|
break;
|
|
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
/* Fall through */
|
|
|
|
case OP_CALLOUT:
|
|
case OP_CREF:
|
|
case OP_BRANUMBER:
|
|
case OP_WORD_BOUNDARY:
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
code += OP_lengths[*code];
|
|
break;
|
|
|
|
default:
|
|
return code;
|
|
}
|
|
}
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find the fixed length of a pattern *
|
|
*************************************************/
|
|
|
|
/* Scan a pattern and compute the fixed length of subject that will match it,
|
|
if the length is fixed. This is needed for dealing with backward assertions.
|
|
In UTF8 mode, the result is in characters rather than bytes.
|
|
|
|
Arguments:
|
|
code points to the start of the pattern (the bracket)
|
|
options the compiling options
|
|
|
|
Returns: the fixed length, or -1 if there is no fixed length,
|
|
or -2 if \C was encountered
|
|
*/
|
|
|
|
static int
|
|
find_fixedlength(uschar *code, int options)
|
|
{
|
|
int length = -1;
|
|
|
|
register int branchlength = 0;
|
|
register uschar *cc = code + 1 + LINK_SIZE;
|
|
|
|
/* Scan along the opcodes for this branch. If we get to the end of the
|
|
branch, check the length against that of the other branches. */
|
|
|
|
for (;;)
|
|
{
|
|
int d;
|
|
register int op = *cc;
|
|
if (op >= OP_BRA) op = OP_BRA;
|
|
|
|
switch (op)
|
|
{
|
|
case OP_BRA:
|
|
case OP_ONCE:
|
|
case OP_COND:
|
|
d = find_fixedlength(cc, options);
|
|
if (d < 0) return d;
|
|
branchlength += d;
|
|
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
|
cc += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* Reached end of a branch; if it's a ket it is the end of a nested
|
|
call. If it's ALT it is an alternation in a nested call. If it is
|
|
END it's the end of the outer call. All can be handled by the same code. */
|
|
|
|
case OP_ALT:
|
|
case OP_KET:
|
|
case OP_KETRMAX:
|
|
case OP_KETRMIN:
|
|
case OP_END:
|
|
if (length < 0) length = branchlength;
|
|
else if (length != branchlength) return -1;
|
|
if (*cc != OP_ALT) return length;
|
|
cc += 1 + LINK_SIZE;
|
|
branchlength = 0;
|
|
break;
|
|
|
|
/* Skip over assertive subpatterns */
|
|
|
|
case OP_ASSERT:
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
|
/* Fall through */
|
|
|
|
/* Skip over things that don't match chars */
|
|
|
|
case OP_REVERSE:
|
|
case OP_BRANUMBER:
|
|
case OP_CREF:
|
|
case OP_OPT:
|
|
case OP_CALLOUT:
|
|
case OP_SOD:
|
|
case OP_SOM:
|
|
case OP_EOD:
|
|
case OP_EODN:
|
|
case OP_CIRC:
|
|
case OP_DOLL:
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
case OP_WORD_BOUNDARY:
|
|
cc += OP_lengths[*cc];
|
|
break;
|
|
|
|
/* Handle char strings. In UTF-8 mode we must count characters, not bytes.
|
|
This requires a scan of the string, unfortunately. We assume valid UTF-8
|
|
strings, so all we do is reduce the length by one for every byte whose bits
|
|
are 10xxxxxx. */
|
|
|
|
case OP_CHARS:
|
|
branchlength += *(++cc);
|
|
#ifdef SUPPORT_UTF8
|
|
if ((options & PCRE_UTF8) != 0)
|
|
for (d = 1; d <= *cc; d++)
|
|
if ((cc[d] & 0xc0) == 0x80) branchlength--;
|
|
#endif
|
|
cc += *cc + 1;
|
|
break;
|
|
|
|
/* Handle exact repetitions. The count is already in characters, but we
|
|
need to skip over a multibyte character in UTF8 mode. */
|
|
|
|
case OP_EXACT:
|
|
branchlength += GET2(cc,1);
|
|
cc += 4;
|
|
#ifdef SUPPORT_UTF8
|
|
if ((options & PCRE_UTF8) != 0)
|
|
{
|
|
while ((*cc & 0x80) == 0x80) cc++;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case OP_TYPEEXACT:
|
|
branchlength += GET2(cc,1);
|
|
cc += 4;
|
|
break;
|
|
|
|
/* Handle single-char matchers */
|
|
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
case OP_ANY:
|
|
branchlength++;
|
|
cc++;
|
|
break;
|
|
|
|
/* The single-byte matcher isn't allowed */
|
|
|
|
case OP_ANYBYTE:
|
|
return -2;
|
|
|
|
/* Check a class for variable quantification */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
case OP_XCLASS:
|
|
cc += GET(cc, 1) - 33;
|
|
/* Fall through */
|
|
#endif
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
cc += 33;
|
|
|
|
switch (*cc)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
return -1;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
if (GET2(cc,1) != GET2(cc,3)) return -1;
|
|
branchlength += GET2(cc,1);
|
|
cc += 5;
|
|
break;
|
|
|
|
default:
|
|
branchlength++;
|
|
}
|
|
break;
|
|
|
|
/* Anything else is variable length */
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for numbered bracket *
|
|
*************************************************/
|
|
|
|
/* This little function scans through a compiled pattern until it finds a
|
|
capturing bracket with the given number.
|
|
|
|
Arguments:
|
|
code points to start of expression
|
|
utf8 TRUE in UTF-8 mode
|
|
number the required bracket number
|
|
|
|
Returns: pointer to the opcode for the bracket, or NULL if not found
|
|
*/
|
|
|
|
static const uschar *
|
|
find_bracket(const uschar *code, BOOL utf8, int number)
|
|
{
|
|
#ifndef SUPPORT_UTF8
|
|
utf8 = utf8; /* Stop pedantic compilers complaining */
|
|
#endif
|
|
|
|
for (;;)
|
|
{
|
|
register int c = *code;
|
|
if (c == OP_END) return NULL;
|
|
else if (c == OP_CHARS) code += code[1] + OP_lengths[c];
|
|
else if (c > OP_BRA)
|
|
{
|
|
int n = c - OP_BRA;
|
|
if (n > EXTRACT_BASIC_MAX) n = GET2(code, 2+LINK_SIZE);
|
|
if (n == number) return (const uschar *)code;
|
|
code += OP_lengths[OP_BRA];
|
|
}
|
|
else
|
|
{
|
|
code += OP_lengths[c];
|
|
|
|
/* In UTF-8 mode, opcodes that are followed by a character may be followed
|
|
by a multi-byte character. The length in the table is a minimum, so we have
|
|
to scan along to skip the extra characters. All opcodes are less than 128,
|
|
so we can use relatively efficient code. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8) switch(c)
|
|
{
|
|
case OP_EXACT:
|
|
case OP_UPTO:
|
|
case OP_MINUPTO:
|
|
case OP_STAR:
|
|
case OP_MINSTAR:
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
case OP_QUERY:
|
|
case OP_MINQUERY:
|
|
while ((*code & 0xc0) == 0x80) code++;
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled branch for non-emptiness *
|
|
*************************************************/
|
|
|
|
/* This function scans through a branch of a compiled pattern to see whether it
|
|
can match the empty string or not. It is called only from could_be_empty()
|
|
below. Note that first_significant_code() skips over assertions. If we hit an
|
|
unclosed bracket, we return "empty" - this means we've struck an inner bracket
|
|
whose current branch will already have been scanned.
|
|
|
|
Arguments:
|
|
code points to start of search
|
|
endcode points to where to stop
|
|
utf8 TRUE if in UTF8 mode
|
|
|
|
Returns: TRUE if what is matched could be empty
|
|
*/
|
|
|
|
static BOOL
|
|
could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
|
|
{
|
|
register int c;
|
|
for (code = first_significant_code(code + 1 + LINK_SIZE, NULL, 0);
|
|
code < endcode;
|
|
code = first_significant_code(code + OP_lengths[c], NULL, 0))
|
|
{
|
|
const uschar *ccode;
|
|
|
|
c = *code;
|
|
|
|
if (c >= OP_BRA)
|
|
{
|
|
BOOL empty_branch;
|
|
if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
|
|
|
|
/* Scan a closed bracket */
|
|
|
|
empty_branch = FALSE;
|
|
do
|
|
{
|
|
if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
|
|
empty_branch = TRUE;
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT);
|
|
if (!empty_branch) return FALSE; /* All branches are non-empty */
|
|
code += 1 + LINK_SIZE;
|
|
c = *code;
|
|
}
|
|
|
|
else switch (c)
|
|
{
|
|
/* Check for quantifiers after a class */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
case OP_XCLASS:
|
|
ccode = code + GET(code, 1);
|
|
goto CHECK_CLASS_REPEAT;
|
|
#endif
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
ccode = code + 33;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
CHECK_CLASS_REPEAT:
|
|
#endif
|
|
|
|
switch (*ccode)
|
|
{
|
|
case OP_CRSTAR: /* These could be empty; continue */
|
|
case OP_CRMINSTAR:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
break;
|
|
|
|
default: /* Non-repeat => class must match */
|
|
case OP_CRPLUS: /* These repeats aren't empty */
|
|
case OP_CRMINPLUS:
|
|
return FALSE;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* Opcodes that must match a character */
|
|
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
case OP_ANY:
|
|
case OP_ANYBYTE:
|
|
case OP_CHARS:
|
|
case OP_NOT:
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
case OP_EXACT:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTEXACT:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEEXACT:
|
|
return FALSE;
|
|
|
|
/* End of branch */
|
|
|
|
case OP_KET:
|
|
case OP_KETRMAX:
|
|
case OP_KETRMIN:
|
|
case OP_ALT:
|
|
return TRUE;
|
|
|
|
/* In UTF-8 mode, STAR, MINSTAR, QUERY, MINQUERY, UPTO, and MINUPTO may be
|
|
followed by a multibyte character */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
case OP_STAR:
|
|
case OP_MINSTAR:
|
|
case OP_QUERY:
|
|
case OP_MINQUERY:
|
|
case OP_UPTO:
|
|
case OP_MINUPTO:
|
|
if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for non-emptiness *
|
|
*************************************************/
|
|
|
|
/* This function is called to check for left recursive calls. We want to check
|
|
the current branch of the current pattern to see if it could match the empty
|
|
string. If it could, we must look outwards for branches at other levels,
|
|
stopping when we pass beyond the bracket which is the subject of the recursion.
|
|
|
|
Arguments:
|
|
code points to start of the recursion
|
|
endcode points to where to stop (current RECURSE item)
|
|
bcptr points to the chain of current (unclosed) branch starts
|
|
utf8 TRUE if in UTF-8 mode
|
|
|
|
Returns: TRUE if what is matched could be empty
|
|
*/
|
|
|
|
static BOOL
|
|
could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
|
|
BOOL utf8)
|
|
{
|
|
while (bcptr != NULL && bcptr->current >= code)
|
|
{
|
|
if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
|
|
bcptr = bcptr->outer;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for POSIX class syntax *
|
|
*************************************************/
|
|
|
|
/* This function is called when the sequence "[:" or "[." or "[=" is
|
|
encountered in a character class. It checks whether this is followed by an
|
|
optional ^ and then a sequence of letters, terminated by a matching ":]" or
|
|
".]" or "=]".
|
|
|
|
Argument:
|
|
ptr pointer to the initial [
|
|
endptr where to return the end pointer
|
|
cd pointer to compile data
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
check_posix_syntax(const uschar *ptr, const uschar **endptr, compile_data *cd)
|
|
{
|
|
int terminator; /* Don't combine these lines; the Solaris cc */
|
|
terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
|
|
if (*(++ptr) == '^') ptr++;
|
|
while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
|
|
if (*ptr == terminator && ptr[1] == ']')
|
|
{
|
|
*endptr = ptr;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check POSIX class name *
|
|
*************************************************/
|
|
|
|
/* This function is called to check the name given in a POSIX-style class entry
|
|
such as [:alnum:].
|
|
|
|
Arguments:
|
|
ptr points to the first letter
|
|
len the length of the name
|
|
|
|
Returns: a value representing the name, or -1 if unknown
|
|
*/
|
|
|
|
static int
|
|
check_posix_name(const uschar *ptr, int len)
|
|
{
|
|
register int yield = 0;
|
|
while (posix_name_lengths[yield] != 0)
|
|
{
|
|
if (len == posix_name_lengths[yield] &&
|
|
strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield;
|
|
yield++;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile one branch *
|
|
*************************************************/
|
|
|
|
/* Scan the pattern, compiling it into the code vector. If the options are
|
|
changed during the branch, the pointer is used to change the external options
|
|
bits.
|
|
|
|
Arguments:
|
|
optionsptr pointer to the option bits
|
|
brackets points to number of extracting brackets used
|
|
code points to the pointer to the current code point
|
|
ptrptr points to the current pattern pointer
|
|
errorptr points to pointer to error message
|
|
firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
|
|
reqbyteptr set to the last literal character required, else < 0
|
|
bcptr points to current branch chain
|
|
cd contains pointers to tables etc.
|
|
|
|
Returns: TRUE on success
|
|
FALSE, with *errorptr set on error
|
|
*/
|
|
|
|
static BOOL
|
|
compile_branch(int *optionsptr, int *brackets, uschar **codeptr,
|
|
const uschar **ptrptr, const char **errorptr, int *firstbyteptr,
|
|
int *reqbyteptr, branch_chain *bcptr, compile_data *cd)
|
|
{
|
|
int repeat_type, op_type;
|
|
int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
|
|
int bravalue = 0;
|
|
int length;
|
|
int greedy_default, greedy_non_default;
|
|
int firstbyte, reqbyte;
|
|
int zeroreqbyte, zerofirstbyte;
|
|
int req_caseopt, reqvary, tempreqvary;
|
|
int condcount = 0;
|
|
int options = *optionsptr;
|
|
register int c;
|
|
register uschar *code = *codeptr;
|
|
uschar *tempcode;
|
|
BOOL inescq = FALSE;
|
|
BOOL groupsetfirstbyte = FALSE;
|
|
const uschar *ptr = *ptrptr;
|
|
const uschar *tempptr;
|
|
uschar *previous = NULL;
|
|
uschar class[32];
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
BOOL class_utf8;
|
|
BOOL utf8 = (options & PCRE_UTF8) != 0;
|
|
uschar *class_utf8data;
|
|
uschar utf8_char[6];
|
|
#else
|
|
BOOL utf8 = FALSE;
|
|
#endif
|
|
|
|
/* Set up the default and non-default settings for greediness */
|
|
|
|
greedy_default = ((options & PCRE_UNGREEDY) != 0);
|
|
greedy_non_default = greedy_default ^ 1;
|
|
|
|
/* Initialize no first char, no required char. REQ_UNSET means "no char
|
|
matching encountered yet". It gets changed to REQ_NONE if we hit something that
|
|
matches a non-fixed char first char; reqbyte just remains unset if we never
|
|
find one.
|
|
|
|
When we hit a repeat whose minimum is zero, we may have to adjust these values
|
|
to take the zero repeat into account. This is implemented by setting them to
|
|
zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
|
|
item types that can be repeated set these backoff variables appropriately. */
|
|
|
|
firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
|
|
|
|
/* The variable req_caseopt contains either the REQ_CASELESS value or zero,
|
|
according to the current setting of the caseless flag. REQ_CASELESS is a bit
|
|
value > 255. It is added into the firstbyte or reqbyte variables to record the
|
|
case status of the value. */
|
|
|
|
req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
|
|
|
|
/* Switch on next character until the end of the branch */
|
|
|
|
for (;; ptr++)
|
|
{
|
|
BOOL negate_class;
|
|
BOOL possessive_quantifier;
|
|
int class_charcount;
|
|
int class_lastchar;
|
|
int newoptions;
|
|
int recno;
|
|
int skipbytes;
|
|
int subreqbyte;
|
|
int subfirstbyte;
|
|
|
|
c = *ptr;
|
|
if (inescq && c != 0) goto NORMAL_CHAR;
|
|
|
|
if ((options & PCRE_EXTENDED) != 0)
|
|
{
|
|
if ((cd->ctypes[c] & ctype_space) != 0) continue;
|
|
if (c == '#')
|
|
{
|
|
/* The space before the ; is to avoid a warning on a silly compiler
|
|
on the Macintosh. */
|
|
while ((c = *(++ptr)) != 0 && c != NEWLINE) ;
|
|
if (c != 0) continue; /* Else fall through to handle end of string */
|
|
}
|
|
}
|
|
|
|
switch(c)
|
|
{
|
|
/* The branch terminates at end of string, |, or ). */
|
|
|
|
case 0:
|
|
case '|':
|
|
case ')':
|
|
*firstbyteptr = firstbyte;
|
|
*reqbyteptr = reqbyte;
|
|
*codeptr = code;
|
|
*ptrptr = ptr;
|
|
return TRUE;
|
|
|
|
/* Handle single-character metacharacters. In multiline mode, ^ disables
|
|
the setting of any following char as a first character. */
|
|
|
|
case '^':
|
|
if ((options & PCRE_MULTILINE) != 0)
|
|
{
|
|
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
|
}
|
|
previous = NULL;
|
|
*code++ = OP_CIRC;
|
|
break;
|
|
|
|
case '$':
|
|
previous = NULL;
|
|
*code++ = OP_DOLL;
|
|
break;
|
|
|
|
/* There can never be a first char if '.' is first, whatever happens about
|
|
repeats. The value of reqbyte doesn't change either. */
|
|
|
|
case '.':
|
|
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
|
zerofirstbyte = firstbyte;
|
|
zeroreqbyte = reqbyte;
|
|
previous = code;
|
|
*code++ = OP_ANY;
|
|
break;
|
|
|
|
/* Character classes. If the included characters are all < 255 in value, we
|
|
build a 32-byte bitmap of the permitted characters, except in the special
|
|
case where there is only one such character. For negated classes, we build
|
|
the map as usual, then invert it at the end. However, we use a different
|
|
opcode so that data characters > 255 can be handled correctly.
|
|
|
|
If the class contains characters outside the 0-255 range, a different
|
|
opcode is compiled. It may optionally have a bit map for characters < 256,
|
|
but those above are are explicitly listed afterwards. A flag byte tells
|
|
whether the bitmap is present, and whether this is a negated class or not.
|
|
*/
|
|
|
|
case '[':
|
|
previous = code;
|
|
|
|
/* PCRE supports POSIX class stuff inside a class. Perl gives an error if
|
|
they are encountered at the top level, so we'll do that too. */
|
|
|
|
if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
|
|
check_posix_syntax(ptr, &tempptr, cd))
|
|
{
|
|
*errorptr = (ptr[1] == ':')? ERR13 : ERR31;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the first character is '^', set the negation flag and skip it. */
|
|
|
|
if ((c = *(++ptr)) == '^')
|
|
{
|
|
negate_class = TRUE;
|
|
c = *(++ptr);
|
|
}
|
|
else
|
|
{
|
|
negate_class = FALSE;
|
|
}
|
|
|
|
/* Keep a count of chars with values < 256 so that we can optimize the case
|
|
of just a single character (as long as it's < 256). For higher valued UTF-8
|
|
characters, we don't yet do any optimization. */
|
|
|
|
class_charcount = 0;
|
|
class_lastchar = -1;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
class_utf8 = FALSE; /* No chars >= 256 */
|
|
class_utf8data = code + LINK_SIZE + 34; /* For UTF-8 items */
|
|
#endif
|
|
|
|
/* Initialize the 32-char bit map to all zeros. We have to build the
|
|
map in a temporary bit of store, in case the class contains only 1
|
|
character (< 256), because in that case the compiled code doesn't use the
|
|
bit map. */
|
|
|
|
memset(class, 0, 32 * sizeof(uschar));
|
|
|
|
/* Process characters until ] is reached. By writing this as a "do" it
|
|
means that an initial ] is taken as a data character. The first pass
|
|
through the regex checked the overall syntax, so we don't need to be very
|
|
strict here. At the start of the loop, c contains the first byte of the
|
|
character. */
|
|
|
|
do
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c > 127)
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
#endif
|
|
|
|
/* Inside \Q...\E everything is literal except \E */
|
|
|
|
if (inescq)
|
|
{
|
|
if (c == '\\' && ptr[1] == 'E')
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;
|
|
continue;
|
|
}
|
|
else goto LONE_SINGLE_CHARACTER;
|
|
}
|
|
|
|
/* Handle POSIX class names. Perl allows a negation extension of the
|
|
form [:^name:]. A square bracket that doesn't match the syntax is
|
|
treated as a literal. We also recognize the POSIX constructions
|
|
[.ch.] and [=ch=] ("collating elements") and fault them, as Perl
|
|
5.6 and 5.8 do. */
|
|
|
|
if (c == '[' &&
|
|
(ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
|
|
check_posix_syntax(ptr, &tempptr, cd))
|
|
{
|
|
BOOL local_negate = FALSE;
|
|
int posix_class, i;
|
|
register const uschar *cbits = cd->cbits;
|
|
|
|
if (ptr[1] != ':')
|
|
{
|
|
*errorptr = ERR31;
|
|
goto FAILED;
|
|
}
|
|
|
|
ptr += 2;
|
|
if (*ptr == '^')
|
|
{
|
|
local_negate = TRUE;
|
|
ptr++;
|
|
}
|
|
|
|
posix_class = check_posix_name(ptr, tempptr - ptr);
|
|
if (posix_class < 0)
|
|
{
|
|
*errorptr = ERR30;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If matching is caseless, upper and lower are converted to
|
|
alpha. This relies on the fact that the class table starts with
|
|
alpha, lower, upper as the first 3 entries. */
|
|
|
|
if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
|
|
posix_class = 0;
|
|
|
|
/* Or into the map we are building up to 3 of the static class
|
|
tables, or their negations. The [:blank:] class sets up the same
|
|
chars as the [:space:] class (all white space). We remove the vertical
|
|
white space chars afterwards. */
|
|
|
|
posix_class *= 3;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
BOOL isblank = strncmp((const char *)ptr, "blank", 5) == 0;
|
|
int taboffset = posix_class_maps[posix_class + i];
|
|
if (taboffset < 0) break;
|
|
if (local_negate)
|
|
{
|
|
for (c = 0; c < 32; c++) class[c] |= ~cbits[c+taboffset];
|
|
if (isblank) class[1] |= 0x3c;
|
|
}
|
|
else
|
|
{
|
|
for (c = 0; c < 32; c++) class[c] |= cbits[c+taboffset];
|
|
if (isblank) class[1] &= ~0x3c;
|
|
}
|
|
}
|
|
|
|
ptr = tempptr + 1;
|
|
class_charcount = 10; /* Set > 1; assumes more than 1 per class */
|
|
continue; /* End of POSIX syntax handling */
|
|
}
|
|
|
|
/* Backslash may introduce a single character, or it may introduce one
|
|
of the specials, which just set a flag. Escaped items are checked for
|
|
validity in the pre-compiling pass. The sequence \b is a special case.
|
|
Inside a class (and only there) it is treated as backspace. Elsewhere
|
|
it marks a word boundary. Other escapes have preset maps ready to
|
|
or into the one we are building. We assume they have more than one
|
|
character in them, so set class_charcount bigger than one. */
|
|
|
|
if (c == '\\')
|
|
{
|
|
c = check_escape(&ptr, errorptr, *brackets, options, TRUE, cd);
|
|
if (-c == ESC_b) c = '\b'; /* \b is backslash in a class */
|
|
|
|
if (-c == ESC_Q) /* Handle start of quoted string */
|
|
{
|
|
if (ptr[1] == '\\' && ptr[2] == 'E')
|
|
{
|
|
ptr += 2; /* avoid empty string */
|
|
}
|
|
else inescq = TRUE;
|
|
continue;
|
|
}
|
|
|
|
else if (c < 0)
|
|
{
|
|
register const uschar *cbits = cd->cbits;
|
|
class_charcount = 10; /* Greater than 1 is what matters */
|
|
switch (-c)
|
|
{
|
|
case ESC_d:
|
|
for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_digit];
|
|
continue;
|
|
|
|
case ESC_D:
|
|
for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_digit];
|
|
continue;
|
|
|
|
case ESC_w:
|
|
for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_word];
|
|
continue;
|
|
|
|
case ESC_W:
|
|
for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_word];
|
|
continue;
|
|
|
|
case ESC_s:
|
|
for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_space];
|
|
class[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
|
|
continue;
|
|
|
|
case ESC_S:
|
|
for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_space];
|
|
class[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
|
|
continue;
|
|
|
|
/* Unrecognized escapes are faulted if PCRE is running in its
|
|
strict mode. By default, for compatibility with Perl, they are
|
|
treated as literals. */
|
|
|
|
default:
|
|
if ((options & PCRE_EXTRA) != 0)
|
|
{
|
|
*errorptr = ERR7;
|
|
goto FAILED;
|
|
}
|
|
c = *ptr; /* The final character */
|
|
}
|
|
}
|
|
|
|
/* Fall through if we have a single character (c >= 0). This may be
|
|
> 256 in UTF-8 mode. */
|
|
|
|
} /* End of backslash handling */
|
|
|
|
/* A single character may be followed by '-' to form a range. However,
|
|
Perl does not permit ']' to be the end of the range. A '-' character
|
|
here is treated as a literal. */
|
|
|
|
if (ptr[1] == '-' && ptr[2] != ']')
|
|
{
|
|
int d;
|
|
ptr += 2;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8)
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
else
|
|
#endif
|
|
d = *ptr;
|
|
|
|
/* The second part of a range can be a single-character escape, but
|
|
not any of the other escapes. Perl 5.6 treats a hyphen as a literal
|
|
in such circumstances. */
|
|
|
|
if (d == '\\')
|
|
{
|
|
const uschar *oldptr = ptr;
|
|
d = check_escape(&ptr, errorptr, *brackets, options, TRUE, cd);
|
|
|
|
/* \b is backslash; any other special means the '-' was literal */
|
|
|
|
if (d < 0)
|
|
{
|
|
if (d == -ESC_b) d = '\b'; else
|
|
{
|
|
ptr = oldptr - 2;
|
|
goto LONE_SINGLE_CHARACTER; /* A few lines below */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check that the two values are in the correct order */
|
|
|
|
if (d < c)
|
|
{
|
|
*errorptr = ERR8;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If d is greater than 255, we can't just use the bit map, so set up
|
|
for the UTF-8 supporting class type. If we are not caseless, we can
|
|
just set up a single range. If we are caseless, the characters < 256
|
|
are handled with a bitmap, in order to get the case-insensitive
|
|
handling. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (d > 255)
|
|
{
|
|
class_utf8 = TRUE;
|
|
*class_utf8data++ = XCL_RANGE;
|
|
if ((options & PCRE_CASELESS) == 0)
|
|
{
|
|
class_utf8data += ord2utf8(c, class_utf8data);
|
|
class_utf8data += ord2utf8(d, class_utf8data);
|
|
continue; /* Go get the next char in the class */
|
|
}
|
|
class_utf8data += ord2utf8(256, class_utf8data);
|
|
class_utf8data += ord2utf8(d, class_utf8data);
|
|
d = 255;
|
|
/* Fall through */
|
|
}
|
|
#endif
|
|
/* We use the bit map if the range is entirely < 255, or if part of it
|
|
is < 255 and matching is caseless. */
|
|
|
|
for (; c <= d; c++)
|
|
{
|
|
class[c/8] |= (1 << (c&7));
|
|
if ((options & PCRE_CASELESS) != 0)
|
|
{
|
|
int uc = cd->fcc[c]; /* flip case */
|
|
class[uc/8] |= (1 << (uc&7));
|
|
}
|
|
class_charcount++; /* in case a one-char range */
|
|
class_lastchar = c;
|
|
}
|
|
|
|
continue; /* Go get the next char in the class */
|
|
}
|
|
|
|
/* Handle a lone single character - we can get here for a normal
|
|
non-escape char, or after \ that introduces a single character. */
|
|
|
|
LONE_SINGLE_CHARACTER:
|
|
|
|
/* Handle a multibyte character */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c > 255)
|
|
{
|
|
class_utf8 = TRUE;
|
|
*class_utf8data++ = XCL_SINGLE;
|
|
class_utf8data += ord2utf8(c, class_utf8data);
|
|
}
|
|
else
|
|
#endif
|
|
/* Handle a single-byte character */
|
|
{
|
|
class [c/8] |= (1 << (c&7));
|
|
if ((options & PCRE_CASELESS) != 0)
|
|
{
|
|
c = cd->fcc[c]; /* flip case */
|
|
class[c/8] |= (1 << (c&7));
|
|
}
|
|
class_charcount++;
|
|
class_lastchar = c;
|
|
}
|
|
}
|
|
|
|
/* Loop until ']' reached; the check for end of string happens inside the
|
|
loop. This "while" is the end of the "do" above. */
|
|
|
|
while ((c = *(++ptr)) != ']' || inescq);
|
|
|
|
/* If class_charcount is 1, we saw precisely one character with a value <
|
|
256. In UTF-8 mode, we can optimize if there were no characters >= 256 and
|
|
the one character is < 128. In non-UTF-8 mode we can always optimize.
|
|
|
|
The optimization throws away the bit map. We turn the item into a
|
|
1-character OP_CHARS if it's positive, or OP_NOT if it's negative. Note
|
|
that OP_NOT does not support multibyte characters. In the positive case, it
|
|
can cause firstbyte to be set. Otherwise, there can be no first char if
|
|
this item is first, whatever repeat count may follow. In the case of
|
|
reqbyte, save the previous value for reinstating. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (class_charcount == 1 &&
|
|
(!utf8 ||
|
|
(!class_utf8 && class_lastchar < 128)))
|
|
#else
|
|
if (class_charcount == 1)
|
|
#endif
|
|
{
|
|
zeroreqbyte = reqbyte;
|
|
if (negate_class)
|
|
{
|
|
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
|
zerofirstbyte = firstbyte;
|
|
*code++ = OP_NOT;
|
|
}
|
|
else
|
|
{
|
|
if (firstbyte == REQ_UNSET)
|
|
{
|
|
zerofirstbyte = REQ_NONE;
|
|
firstbyte = class_lastchar | req_caseopt;
|
|
}
|
|
else
|
|
{
|
|
zerofirstbyte = firstbyte;
|
|
reqbyte = class_lastchar | req_caseopt | cd->req_varyopt;
|
|
}
|
|
*code++ = OP_CHARS;
|
|
*code++ = 1;
|
|
}
|
|
*code++ = class_lastchar;
|
|
break; /* End of class handling */
|
|
} /* End of 1-byte optimization */
|
|
|
|
/* Otherwise, if this is the first thing in the branch, there can be no
|
|
first char setting, whatever the repeat count. Any reqbyte setting must
|
|
remain unchanged after any kind of repeat. */
|
|
|
|
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
|
zerofirstbyte = firstbyte;
|
|
zeroreqbyte = reqbyte;
|
|
|
|
/* If there are characters with values > 255, we have to compile an
|
|
extended class, with its own opcode. If there are no characters < 256,
|
|
we can omit the bitmap. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (class_utf8)
|
|
{
|
|
*class_utf8data++ = XCL_END; /* Marks the end of extra data */
|
|
*code++ = OP_XCLASS;
|
|
code += LINK_SIZE;
|
|
*code = negate_class? XCL_NOT : 0;
|
|
|
|
/* If the map is required, install it, and move on to the end of
|
|
the extra data */
|
|
|
|
if (class_charcount > 0)
|
|
{
|
|
*code++ |= XCL_MAP;
|
|
memcpy(code, class, 32);
|
|
code = class_utf8data;
|
|
}
|
|
|
|
/* If the map is not required, slide down the extra data. */
|
|
|
|
else
|
|
{
|
|
int len = class_utf8data - (code + 33);
|
|
memmove(code + 1, code + 33, len);
|
|
code += len + 1;
|
|
}
|
|
|
|
/* Now fill in the complete length of the item */
|
|
|
|
PUT(previous, 1, code - previous);
|
|
break; /* End of class handling */
|
|
}
|
|
#endif
|
|
|
|
/* If there are no characters > 255, negate the 32-byte map if necessary,
|
|
and copy it into the code vector. If this is the first thing in the branch,
|
|
there can be no first char setting, whatever the repeat count. Any reqbyte
|
|
setting must remain unchanged after any kind of repeat. */
|
|
|
|
if (negate_class)
|
|
{
|
|
*code++ = OP_NCLASS;
|
|
for (c = 0; c < 32; c++) code[c] = ~class[c];
|
|
}
|
|
else
|
|
{
|
|
*code++ = OP_CLASS;
|
|
memcpy(code, class, 32);
|
|
}
|
|
code += 32;
|
|
break;
|
|
|
|
/* Various kinds of repeat */
|
|
|
|
case '{':
|
|
if (!is_counted_repeat(ptr+1, cd)) goto NORMAL_CHAR;
|
|
ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorptr, cd);
|
|
if (*errorptr != NULL) goto FAILED;
|
|
goto REPEAT;
|
|
|
|
case '*':
|
|
repeat_min = 0;
|
|
repeat_max = -1;
|
|
goto REPEAT;
|
|
|
|
case '+':
|
|
repeat_min = 1;
|
|
repeat_max = -1;
|
|
goto REPEAT;
|
|
|
|
case '?':
|
|
repeat_min = 0;
|
|
repeat_max = 1;
|
|
|
|
REPEAT:
|
|
if (previous == NULL)
|
|
{
|
|
*errorptr = ERR9;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
firstbyte = zerofirstbyte; /* Adjust for zero repeat */
|
|
reqbyte = zeroreqbyte; /* Ditto */
|
|
}
|
|
|
|
/* Remember whether this is a variable length repeat */
|
|
|
|
reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
|
|
|
|
op_type = 0; /* Default single-char op codes */
|
|
possessive_quantifier = FALSE; /* Default not possessive quantifier */
|
|
|
|
/* Save start of previous item, in case we have to move it up to make space
|
|
for an inserted OP_ONCE for the additional '+' extension. */
|
|
|
|
tempcode = previous;
|
|
|
|
/* If the next character is '+', we have a possessive quantifier. This
|
|
implies greediness, whatever the setting of the PCRE_UNGREEDY option.
|
|
If the next character is '?' this is a minimizing repeat, by default,
|
|
but if PCRE_UNGREEDY is set, it works the other way round. We change the
|
|
repeat type to the non-default. */
|
|
|
|
if (ptr[1] == '+')
|
|
{
|
|
repeat_type = 0; /* Force greedy */
|
|
possessive_quantifier = TRUE;
|
|
ptr++;
|
|
}
|
|
else if (ptr[1] == '?')
|
|
{
|
|
repeat_type = greedy_non_default;
|
|
ptr++;
|
|
}
|
|
else repeat_type = greedy_default;
|
|
|
|
/* If previous was a recursion, we need to wrap it inside brackets so that
|
|
it can be replicated if necessary. */
|
|
|
|
if (*previous == OP_RECURSE)
|
|
{
|
|
memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE);
|
|
code += 1 + LINK_SIZE;
|
|
*previous = OP_BRA;
|
|
PUT(previous, 1, code - previous);
|
|
*code = OP_KET;
|
|
PUT(code, 1, code - previous);
|
|
code += 1 + LINK_SIZE;
|
|
}
|
|
|
|
/* If previous was a string of characters, chop off the last one and use it
|
|
as the subject of the repeat. If there was only one character, we can
|
|
abolish the previous item altogether. If a one-char item has a minumum of
|
|
more than one, ensure that it is set in reqbyte - it might not be if a
|
|
sequence such as x{3} is the first thing in a branch because the x will
|
|
have gone into firstbyte instead. */
|
|
|
|
if (*previous == OP_CHARS)
|
|
{
|
|
/* Deal with UTF-8 characters that take up more than one byte. It's
|
|
easier to write this out separately than try to macrify it. Use c to
|
|
hold the length of the character in bytes, plus 0x80 to flag that it's a
|
|
length rather than a small character. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && (code[-1] & 0x80) != 0)
|
|
{
|
|
uschar *lastchar = code - 1;
|
|
while ((*lastchar & 0xc0) == 0x80) lastchar--;
|
|
c = code - lastchar; /* Length of UTF-8 character */
|
|
memcpy(utf8_char, lastchar, c); /* Save the char */
|
|
if (lastchar == previous + 2) /* There was only one character */
|
|
{
|
|
code = previous; /* Abolish the previous item */
|
|
}
|
|
else
|
|
{
|
|
previous[1] -= c; /* Adjust length of previous */
|
|
code = lastchar; /* Lost char off the end */
|
|
tempcode = code; /* Adjust position to be moved for '+' */
|
|
}
|
|
c |= 0x80; /* Flag c as a length */
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* Handle the case of a single byte - either with no UTF8 support, or
|
|
with UTF-8 disabled, or for a UTF-8 character < 128. */
|
|
|
|
{
|
|
c = *(--code);
|
|
if (code == previous + 2) /* There was only one character */
|
|
{
|
|
code = previous; /* Abolish the previous item */
|
|
if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
|
|
}
|
|
else
|
|
{
|
|
previous[1]--; /* adjust length */
|
|
tempcode = code; /* Adjust position to be moved for '+' */
|
|
}
|
|
}
|
|
|
|
goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
|
|
}
|
|
|
|
/* If previous was a single negated character ([^a] or similar), we use
|
|
one of the special opcodes, replacing it. The code is shared with single-
|
|
character repeats by setting opt_type to add a suitable offset into
|
|
repeat_type. OP_NOT is currently used only for single-byte chars. */
|
|
|
|
else if (*previous == OP_NOT)
|
|
{
|
|
op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
|
|
c = previous[1];
|
|
code = previous;
|
|
goto OUTPUT_SINGLE_REPEAT;
|
|
}
|
|
|
|
/* If previous was a character type match (\d or similar), abolish it and
|
|
create a suitable repeat item. The code is shared with single-character
|
|
repeats by setting op_type to add a suitable offset into repeat_type. */
|
|
|
|
else if (*previous < OP_EODN)
|
|
{
|
|
op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
|
|
c = *previous;
|
|
code = previous;
|
|
|
|
OUTPUT_SINGLE_REPEAT:
|
|
|
|
/* If the maximum is zero then the minimum must also be zero; Perl allows
|
|
this case, so we do too - by simply omitting the item altogether. */
|
|
|
|
if (repeat_max == 0) goto END_REPEAT;
|
|
|
|
/* Combine the op_type with the repeat_type */
|
|
|
|
repeat_type += op_type;
|
|
|
|
/* A minimum of zero is handled either as the special case * or ?, or as
|
|
an UPTO, with the maximum given. */
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
|
|
else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
|
|
else
|
|
{
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* The case {1,} is handled as the special case + */
|
|
|
|
else if (repeat_min == 1 && repeat_max == -1)
|
|
*code++ = OP_PLUS + repeat_type;
|
|
|
|
/* The case {n,n} is just an EXACT, while the general case {n,m} is
|
|
handled as an EXACT followed by an UPTO. An EXACT of 1 is optimized. */
|
|
|
|
else
|
|
{
|
|
if (repeat_min != 1)
|
|
{
|
|
*code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
|
|
PUT2INC(code, 0, repeat_min);
|
|
}
|
|
|
|
/* If the mininum is 1 and the previous item was a character string,
|
|
we either have to put back the item that got cancelled if the string
|
|
length was 1, or add the character back onto the end of a longer
|
|
string. For a character type nothing need be done; it will just get
|
|
put back naturally. Note that the final character is always going to
|
|
get added below, so we leave code ready for its insertion. */
|
|
|
|
else if (*previous == OP_CHARS)
|
|
{
|
|
if (code == previous) code += 2; else
|
|
|
|
/* In UTF-8 mode, a multibyte char has its length in c, with the 0x80
|
|
bit set as a flag. The length will always be between 2 and 6. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c >= 128) previous[1] += c & 7; else
|
|
#endif
|
|
previous[1]++;
|
|
}
|
|
|
|
/* For a single negated character we also have to put back the
|
|
item that got cancelled. At present this applies only to single byte
|
|
characters in any mode. */
|
|
|
|
else if (*previous == OP_NOT) code++;
|
|
|
|
/* If the maximum is unlimited, insert an OP_STAR. Before doing so,
|
|
we have to insert the character for the previous code. In UTF-8 mode,
|
|
long characters have their length in c, with the 0x80 bit as a flag. */
|
|
|
|
if (repeat_max < 0)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c >= 128)
|
|
{
|
|
memcpy(code, utf8_char, c & 7);
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif
|
|
*code++ = c;
|
|
*code++ = OP_STAR + repeat_type;
|
|
}
|
|
|
|
/* Else insert an UPTO if the max is greater than the min, again
|
|
preceded by the character, for the previously inserted code. */
|
|
|
|
else if (repeat_max != repeat_min)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c >= 128)
|
|
{
|
|
memcpy(code, utf8_char, c & 7);
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif
|
|
*code++ = c;
|
|
repeat_max -= repeat_min;
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* The character or character type itself comes last in all cases. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c >= 128)
|
|
{
|
|
memcpy(code, utf8_char, c & 7);
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif
|
|
|
|
*code++ = c;
|
|
}
|
|
|
|
/* If previous was a character class or a back reference, we put the repeat
|
|
stuff after it, but just skip the item if the repeat was {0,0}. */
|
|
|
|
else if (*previous == OP_CLASS ||
|
|
*previous == OP_NCLASS ||
|
|
#ifdef SUPPORT_UTF8
|
|
*previous == OP_XCLASS ||
|
|
#endif
|
|
*previous == OP_REF)
|
|
{
|
|
if (repeat_max == 0)
|
|
{
|
|
code = previous;
|
|
goto END_REPEAT;
|
|
}
|
|
if (repeat_min == 0 && repeat_max == -1)
|
|
*code++ = OP_CRSTAR + repeat_type;
|
|
else if (repeat_min == 1 && repeat_max == -1)
|
|
*code++ = OP_CRPLUS + repeat_type;
|
|
else if (repeat_min == 0 && repeat_max == 1)
|
|
*code++ = OP_CRQUERY + repeat_type;
|
|
else
|
|
{
|
|
*code++ = OP_CRRANGE + repeat_type;
|
|
PUT2INC(code, 0, repeat_min);
|
|
if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* If previous was a bracket group, we may have to replicate it in certain
|
|
cases. */
|
|
|
|
else if (*previous >= OP_BRA || *previous == OP_ONCE ||
|
|
*previous == OP_COND)
|
|
{
|
|
register int i;
|
|
int ketoffset = 0;
|
|
int len = code - previous;
|
|
uschar *bralink = NULL;
|
|
|
|
/* If the maximum repeat count is unlimited, find the end of the bracket
|
|
by scanning through from the start, and compute the offset back to it
|
|
from the current code pointer. There may be an OP_OPT setting following
|
|
the final KET, so we can't find the end just by going back from the code
|
|
pointer. */
|
|
|
|
if (repeat_max == -1)
|
|
{
|
|
register uschar *ket = previous;
|
|
do ket += GET(ket, 1); while (*ket != OP_KET);
|
|
ketoffset = code - ket;
|
|
}
|
|
|
|
/* The case of a zero minimum is special because of the need to stick
|
|
OP_BRAZERO in front of it, and because the group appears once in the
|
|
data, whereas in other cases it appears the minimum number of times. For
|
|
this reason, it is simplest to treat this case separately, as otherwise
|
|
the code gets far too messy. There are several special subcases when the
|
|
minimum is zero. */
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
/* If the maximum is also zero, we just omit the group from the output
|
|
altogether. */
|
|
|
|
if (repeat_max == 0)
|
|
{
|
|
code = previous;
|
|
goto END_REPEAT;
|
|
}
|
|
|
|
/* If the maximum is 1 or unlimited, we just have to stick in the
|
|
BRAZERO and do no more at this point. */
|
|
|
|
if (repeat_max <= 1)
|
|
{
|
|
memmove(previous+1, previous, len);
|
|
code++;
|
|
*previous++ = OP_BRAZERO + repeat_type;
|
|
}
|
|
|
|
/* If the maximum is greater than 1 and limited, we have to replicate
|
|
in a nested fashion, sticking OP_BRAZERO before each set of brackets.
|
|
The first one has to be handled carefully because it's the original
|
|
copy, which has to be moved up. The remainder can be handled by code
|
|
that is common with the non-zero minimum case below. We just have to
|
|
adjust the value or repeat_max, since one less copy is required. */
|
|
|
|
else
|
|
{
|
|
int offset;
|
|
memmove(previous + 2 + LINK_SIZE, previous, len);
|
|
code += 2 + LINK_SIZE;
|
|
*previous++ = OP_BRAZERO + repeat_type;
|
|
*previous++ = OP_BRA;
|
|
|
|
/* We chain together the bracket offset fields that have to be
|
|
filled in later when the ends of the brackets are reached. */
|
|
|
|
offset = (bralink == NULL)? 0 : previous - bralink;
|
|
bralink = previous;
|
|
PUTINC(previous, 0, offset);
|
|
}
|
|
|
|
repeat_max--;
|
|
}
|
|
|
|
/* If the minimum is greater than zero, replicate the group as many
|
|
times as necessary, and adjust the maximum to the number of subsequent
|
|
copies that we need. If we set a first char from the group, and didn't
|
|
set a required char, copy the latter from the former. */
|
|
|
|
else
|
|
{
|
|
if (repeat_min > 1)
|
|
{
|
|
if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
|
|
for (i = 1; i < repeat_min; i++)
|
|
{
|
|
memcpy(code, previous, len);
|
|
code += len;
|
|
}
|
|
}
|
|
if (repeat_max > 0) repeat_max -= repeat_min;
|
|
}
|
|
|
|
/* This code is common to both the zero and non-zero minimum cases. If
|
|
the maximum is limited, it replicates the group in a nested fashion,
|
|
remembering the bracket starts on a stack. In the case of a zero minimum,
|
|
the first one was set up above. In all cases the repeat_max now specifies
|
|
the number of additional copies needed. */
|
|
|
|
if (repeat_max >= 0)
|
|
{
|
|
for (i = repeat_max - 1; i >= 0; i--)
|
|
{
|
|
*code++ = OP_BRAZERO + repeat_type;
|
|
|
|
/* All but the final copy start a new nesting, maintaining the
|
|
chain of brackets outstanding. */
|
|
|
|
if (i != 0)
|
|
{
|
|
int offset;
|
|
*code++ = OP_BRA;
|
|
offset = (bralink == NULL)? 0 : code - bralink;
|
|
bralink = code;
|
|
PUTINC(code, 0, offset);
|
|
}
|
|
|
|
memcpy(code, previous, len);
|
|
code += len;
|
|
}
|
|
|
|
/* Now chain through the pending brackets, and fill in their length
|
|
fields (which are holding the chain links pro tem). */
|
|
|
|
while (bralink != NULL)
|
|
{
|
|
int oldlinkoffset;
|
|
int offset = code - bralink + 1;
|
|
uschar *bra = code - offset;
|
|
oldlinkoffset = GET(bra, 1);
|
|
bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, offset);
|
|
PUT(bra, 1, offset);
|
|
}
|
|
}
|
|
|
|
/* If the maximum is unlimited, set a repeater in the final copy. We
|
|
can't just offset backwards from the current code point, because we
|
|
don't know if there's been an options resetting after the ket. The
|
|
correct offset was computed above. */
|
|
|
|
else code[-ketoffset] = OP_KETRMAX + repeat_type;
|
|
}
|
|
|
|
/* Else there's some kind of shambles */
|
|
|
|
else
|
|
{
|
|
*errorptr = ERR11;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the character following a repeat is '+', we wrap the entire repeated
|
|
item inside OP_ONCE brackets. This is just syntactic sugar, taken from
|
|
Sun's Java package. The repeated item starts at tempcode, not at previous,
|
|
which might be the first part of a string whose (former) last char we
|
|
repeated. However, we don't support '+' after a greediness '?'. */
|
|
|
|
if (possessive_quantifier)
|
|
{
|
|
int len = code - tempcode;
|
|
memmove(tempcode + 1+LINK_SIZE, tempcode, len);
|
|
code += 1 + LINK_SIZE;
|
|
len += 1 + LINK_SIZE;
|
|
tempcode[0] = OP_ONCE;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, len);
|
|
PUT(tempcode, 1, len);
|
|
}
|
|
|
|
/* In all case we no longer have a previous item. We also set the
|
|
"follows varying string" flag for subsequently encountered reqbytes if
|
|
it isn't already set and we have just passed a varying length item. */
|
|
|
|
END_REPEAT:
|
|
previous = NULL;
|
|
cd->req_varyopt |= reqvary;
|
|
break;
|
|
|
|
|
|
/* Start of nested bracket sub-expression, or comment or lookahead or
|
|
lookbehind or option setting or condition. First deal with special things
|
|
that can come after a bracket; all are introduced by ?, and the appearance
|
|
of any of them means that this is not a referencing group. They were
|
|
checked for validity in the first pass over the string, so we don't have to
|
|
check for syntax errors here. */
|
|
|
|
case '(':
|
|
newoptions = options;
|
|
skipbytes = 0;
|
|
|
|
if (*(++ptr) == '?')
|
|
{
|
|
int set, unset;
|
|
int *optset;
|
|
|
|
switch (*(++ptr))
|
|
{
|
|
case '#': /* Comment; skip to ket */
|
|
ptr++;
|
|
while (*ptr != ')') ptr++;
|
|
continue;
|
|
|
|
case ':': /* Non-extracting bracket */
|
|
bravalue = OP_BRA;
|
|
ptr++;
|
|
break;
|
|
|
|
case '(':
|
|
bravalue = OP_COND; /* Conditional group */
|
|
|
|
/* Condition to test for recursion */
|
|
|
|
if (ptr[1] == 'R')
|
|
{
|
|
code[1+LINK_SIZE] = OP_CREF;
|
|
PUT2(code, 2+LINK_SIZE, CREF_RECURSE);
|
|
skipbytes = 3;
|
|
ptr += 3;
|
|
}
|
|
|
|
/* Condition to test for a numbered subpattern match */
|
|
|
|
else if ((cd->ctypes[ptr[1]] & ctype_digit) != 0)
|
|
{
|
|
int condref; /* Don't amalgamate; some compilers */
|
|
condref = *(++ptr) - '0'; /* grumble at autoincrement in declaration */
|
|
while (*(++ptr) != ')') condref = condref*10 + *ptr - '0';
|
|
if (condref == 0)
|
|
{
|
|
*errorptr = ERR35;
|
|
goto FAILED;
|
|
}
|
|
ptr++;
|
|
code[1+LINK_SIZE] = OP_CREF;
|
|
PUT2(code, 2+LINK_SIZE, condref);
|
|
skipbytes = 3;
|
|
}
|
|
/* For conditions that are assertions, we just fall through, having
|
|
set bravalue above. */
|
|
break;
|
|
|
|
case '=': /* Positive lookahead */
|
|
bravalue = OP_ASSERT;
|
|
ptr++;
|
|
break;
|
|
|
|
case '!': /* Negative lookahead */
|
|
bravalue = OP_ASSERT_NOT;
|
|
ptr++;
|
|
break;
|
|
|
|
case '<': /* Lookbehinds */
|
|
switch (*(++ptr))
|
|
{
|
|
case '=': /* Positive lookbehind */
|
|
bravalue = OP_ASSERTBACK;
|
|
ptr++;
|
|
break;
|
|
|
|
case '!': /* Negative lookbehind */
|
|
bravalue = OP_ASSERTBACK_NOT;
|
|
ptr++;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case '>': /* One-time brackets */
|
|
bravalue = OP_ONCE;
|
|
ptr++;
|
|
break;
|
|
|
|
case 'C': /* Callout - may be followed by digits */
|
|
*code++ = OP_CALLOUT;
|
|
{
|
|
int n = 0;
|
|
while ((cd->ctypes[*(++ptr)] & ctype_digit) != 0)
|
|
n = n * 10 + *ptr - '0';
|
|
if (n > 255)
|
|
{
|
|
*errorptr = ERR38;
|
|
goto FAILED;
|
|
}
|
|
*code++ = n;
|
|
}
|
|
previous = NULL;
|
|
continue;
|
|
|
|
case 'P': /* Named subpattern handling */
|
|
if (*(++ptr) == '<') /* Definition */
|
|
{
|
|
int i, namelen;
|
|
uschar *slot = cd->name_table;
|
|
const uschar *name; /* Don't amalgamate; some compilers */
|
|
name = ++ptr; /* grumble at autoincrement in declaration */
|
|
|
|
while (*ptr++ != '>');
|
|
namelen = ptr - name - 1;
|
|
|
|
for (i = 0; i < cd->names_found; i++)
|
|
{
|
|
int crc = memcmp(name, slot+2, namelen);
|
|
if (crc == 0)
|
|
{
|
|
if (slot[2+namelen] == 0)
|
|
{
|
|
*errorptr = ERR43;
|
|
goto FAILED;
|
|
}
|
|
crc = -1; /* Current name is substring */
|
|
}
|
|
if (crc < 0)
|
|
{
|
|
memmove(slot + cd->name_entry_size, slot,
|
|
(cd->names_found - i) * cd->name_entry_size);
|
|
break;
|
|
}
|
|
slot += cd->name_entry_size;
|
|
}
|
|
|
|
PUT2(slot, 0, *brackets + 1);
|
|
memcpy(slot + 2, name, namelen);
|
|
slot[2+namelen] = 0;
|
|
cd->names_found++;
|
|
goto NUMBERED_GROUP;
|
|
}
|
|
|
|
if (*ptr == '=' || *ptr == '>') /* Reference or recursion */
|
|
{
|
|
int i, namelen;
|
|
int type = *ptr++;
|
|
const uschar *name = ptr;
|
|
uschar *slot = cd->name_table;
|
|
|
|
while (*ptr != ')') ptr++;
|
|
namelen = ptr - name;
|
|
|
|
for (i = 0; i < cd->names_found; i++)
|
|
{
|
|
if (strncmp((const char *)name, (const char *)slot+2, namelen) == 0) break;
|
|
slot += cd->name_entry_size;
|
|
}
|
|
if (i >= cd->names_found)
|
|
{
|
|
*errorptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
recno = GET2(slot, 0);
|
|
|
|
if (type == '>') goto HANDLE_RECURSION; /* A few lines below */
|
|
|
|
/* Back reference */
|
|
|
|
previous = code;
|
|
*code++ = OP_REF;
|
|
PUT2INC(code, 0, recno);
|
|
cd->backref_map |= (recno < 32)? (1 << recno) : 1;
|
|
if (recno > cd->top_backref) cd->top_backref = recno;
|
|
continue;
|
|
}
|
|
|
|
/* Should never happen */
|
|
break;
|
|
|
|
case 'R': /* Pattern recursion */
|
|
ptr++; /* Same as (?0) */
|
|
/* Fall through */
|
|
|
|
/* Recursion or "subroutine" call */
|
|
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
{
|
|
const uschar *called;
|
|
recno = 0;
|
|
|
|
while ((cd->ctypes[*ptr] & ctype_digit) != 0)
|
|
recno = recno * 10 + *ptr++ - '0';
|
|
|
|
/* Come here from code above that handles a named recursion */
|
|
|
|
HANDLE_RECURSION:
|
|
|
|
previous = code;
|
|
|
|
/* Find the bracket that is being referenced. Temporarily end the
|
|
regex in case it doesn't exist. */
|
|
|
|
*code = OP_END;
|
|
called = (recno == 0)?
|
|
cd->start_code : find_bracket(cd->start_code, utf8, recno);
|
|
|
|
if (called == NULL)
|
|
{
|
|
*errorptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the subpattern is still open, this is a recursive call. We
|
|
check to see if this is a left recursion that could loop for ever,
|
|
and diagnose that case. */
|
|
|
|
if (GET(called, 1) == 0 && could_be_empty(called, code, bcptr, utf8))
|
|
{
|
|
*errorptr = ERR40;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Insert the recursion/subroutine item */
|
|
|
|
*code = OP_RECURSE;
|
|
PUT(code, 1, called - cd->start_code);
|
|
code += 1 + LINK_SIZE;
|
|
}
|
|
continue;
|
|
|
|
/* Character after (? not specially recognized */
|
|
|
|
default: /* Option setting */
|
|
set = unset = 0;
|
|
optset = &set;
|
|
|
|
while (*ptr != ')' && *ptr != ':')
|
|
{
|
|
switch (*ptr++)
|
|
{
|
|
case '-': optset = &unset; break;
|
|
|
|
case 'i': *optset |= PCRE_CASELESS; break;
|
|
case 'm': *optset |= PCRE_MULTILINE; break;
|
|
case 's': *optset |= PCRE_DOTALL; break;
|
|
case 'x': *optset |= PCRE_EXTENDED; break;
|
|
case 'U': *optset |= PCRE_UNGREEDY; break;
|
|
case 'X': *optset |= PCRE_EXTRA; break;
|
|
}
|
|
}
|
|
|
|
/* Set up the changed option bits, but don't change anything yet. */
|
|
|
|
newoptions = (options | set) & (~unset);
|
|
|
|
/* If the options ended with ')' this is not the start of a nested
|
|
group with option changes, so the options change at this level. Compile
|
|
code to change the ims options if this setting actually changes any of
|
|
them. We also pass the new setting back so that it can be put at the
|
|
start of any following branches, and when this group ends (if we are in
|
|
a group), a resetting item can be compiled.
|
|
|
|
Note that if this item is right at the start of the pattern, the
|
|
options will have been abstracted and made global, so there will be no
|
|
change to compile. */
|
|
|
|
if (*ptr == ')')
|
|
{
|
|
if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
|
|
{
|
|
*code++ = OP_OPT;
|
|
*code++ = newoptions & PCRE_IMS;
|
|
}
|
|
|
|
/* Change options at this level, and pass them back for use
|
|
in subsequent branches. Reset the greedy defaults and the case
|
|
value for firstbyte and reqbyte. */
|
|
|
|
*optionsptr = options = newoptions;
|
|
greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
|
|
greedy_non_default = greedy_default ^ 1;
|
|
req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
|
|
|
|
previous = NULL; /* This item can't be repeated */
|
|
continue; /* It is complete */
|
|
}
|
|
|
|
/* If the options ended with ':' we are heading into a nested group
|
|
with possible change of options. Such groups are non-capturing and are
|
|
not assertions of any kind. All we need to do is skip over the ':';
|
|
the newoptions value is handled below. */
|
|
|
|
bravalue = OP_BRA;
|
|
ptr++;
|
|
}
|
|
}
|
|
|
|
/* If PCRE_NO_AUTO_CAPTURE is set, all unadorned brackets become
|
|
non-capturing and behave like (?:...) brackets */
|
|
|
|
else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
|
|
{
|
|
bravalue = OP_BRA;
|
|
}
|
|
|
|
/* Else we have a referencing group; adjust the opcode. If the bracket
|
|
number is greater than EXTRACT_BASIC_MAX, we set the opcode one higher, and
|
|
arrange for the true number to follow later, in an OP_BRANUMBER item. */
|
|
|
|
else
|
|
{
|
|
NUMBERED_GROUP:
|
|
if (++(*brackets) > EXTRACT_BASIC_MAX)
|
|
{
|
|
bravalue = OP_BRA + EXTRACT_BASIC_MAX + 1;
|
|
code[1+LINK_SIZE] = OP_BRANUMBER;
|
|
PUT2(code, 2+LINK_SIZE, *brackets);
|
|
skipbytes = 3;
|
|
}
|
|
else bravalue = OP_BRA + *brackets;
|
|
}
|
|
|
|
/* Process nested bracketed re. Assertions may not be repeated, but other
|
|
kinds can be. We copy code into a non-register variable in order to be able
|
|
to pass its address because some compilers complain otherwise. Pass in a
|
|
new setting for the ims options if they have changed. */
|
|
|
|
previous = (bravalue >= OP_ONCE)? code : NULL;
|
|
*code = bravalue;
|
|
tempcode = code;
|
|
tempreqvary = cd->req_varyopt; /* Save value before bracket */
|
|
|
|
if (!compile_regex(
|
|
newoptions, /* The complete new option state */
|
|
options & PCRE_IMS, /* The previous ims option state */
|
|
brackets, /* Extracting bracket count */
|
|
&tempcode, /* Where to put code (updated) */
|
|
&ptr, /* Input pointer (updated) */
|
|
errorptr, /* Where to put an error message */
|
|
(bravalue == OP_ASSERTBACK ||
|
|
bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
|
|
skipbytes, /* Skip over OP_COND/OP_BRANUMBER */
|
|
&subfirstbyte, /* For possible first char */
|
|
&subreqbyte, /* For possible last char */
|
|
bcptr, /* Current branch chain */
|
|
cd)) /* Tables block */
|
|
goto FAILED;
|
|
|
|
/* At the end of compiling, code is still pointing to the start of the
|
|
group, while tempcode has been updated to point past the end of the group
|
|
and any option resetting that may follow it. The pattern pointer (ptr)
|
|
is on the bracket. */
|
|
|
|
/* If this is a conditional bracket, check that there are no more than
|
|
two branches in the group. */
|
|
|
|
else if (bravalue == OP_COND)
|
|
{
|
|
uschar *tc = code;
|
|
condcount = 0;
|
|
|
|
do {
|
|
condcount++;
|
|
tc += GET(tc,1);
|
|
}
|
|
while (*tc != OP_KET);
|
|
|
|
if (condcount > 2)
|
|
{
|
|
*errorptr = ERR27;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If there is just one branch, we must not make use of its firstbyte or
|
|
reqbyte, because this is equivalent to an empty second branch. */
|
|
|
|
if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
|
|
}
|
|
|
|
/* Handle updating of the required and first characters. Update for normal
|
|
brackets of all kinds, and conditions with two branches (see code above).
|
|
If the bracket is followed by a quantifier with zero repeat, we have to
|
|
back off. Hence the definition of zeroreqbyte and zerofirstbyte outside the
|
|
main loop so that they can be accessed for the back off. */
|
|
|
|
zeroreqbyte = reqbyte;
|
|
zerofirstbyte = firstbyte;
|
|
groupsetfirstbyte = FALSE;
|
|
|
|
if (bravalue >= OP_BRA || bravalue == OP_ONCE || bravalue == OP_COND)
|
|
{
|
|
/* If we have not yet set a firstbyte in this branch, take it from the
|
|
subpattern, remembering that it was set here so that a repeat of more
|
|
than one can replicate it as reqbyte if necessary. If the subpattern has
|
|
no firstbyte, set "none" for the whole branch. In both cases, a zero
|
|
repeat forces firstbyte to "none". */
|
|
|
|
if (firstbyte == REQ_UNSET)
|
|
{
|
|
if (subfirstbyte >= 0)
|
|
{
|
|
firstbyte = subfirstbyte;
|
|
groupsetfirstbyte = TRUE;
|
|
}
|
|
else firstbyte = REQ_NONE;
|
|
zerofirstbyte = REQ_NONE;
|
|
}
|
|
|
|
/* If firstbyte was previously set, convert the subpattern's firstbyte
|
|
into reqbyte if there wasn't one, using the vary flag that was in
|
|
existence beforehand. */
|
|
|
|
else if (subfirstbyte >= 0 && subreqbyte < 0)
|
|
subreqbyte = subfirstbyte | tempreqvary;
|
|
|
|
/* If the subpattern set a required byte (or set a first byte that isn't
|
|
really the first byte - see above), set it. */
|
|
|
|
if (subreqbyte >= 0) reqbyte = subreqbyte;
|
|
}
|
|
|
|
/* For a forward assertion, we take the reqbyte, if set. This can be
|
|
helpful if the pattern that follows the assertion doesn't set a different
|
|
char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
|
|
for an assertion, however because it leads to incorrect effect for patterns
|
|
such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
|
|
of a firstbyte. This is overcome by a scan at the end if there's no
|
|
firstbyte, looking for an asserted first char. */
|
|
|
|
else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
|
|
|
|
/* Now update the main code pointer to the end of the group. */
|
|
|
|
code = tempcode;
|
|
|
|
/* Error if hit end of pattern */
|
|
|
|
if (*ptr != ')')
|
|
{
|
|
*errorptr = ERR14;
|
|
goto FAILED;
|
|
}
|
|
break;
|
|
|
|
/* Check \ for being a real metacharacter; if not, fall through and handle
|
|
it as a data character at the start of a string. Escape items are checked
|
|
for validity in the pre-compiling pass. */
|
|
|
|
case '\\':
|
|
tempptr = ptr;
|
|
c = check_escape(&ptr, errorptr, *brackets, options, FALSE, cd);
|
|
|
|
/* Handle metacharacters introduced by \. For ones like \d, the ESC_ values
|
|
are arranged to be the negation of the corresponding OP_values. For the
|
|
back references, the values are ESC_REF plus the reference number. Only
|
|
back references and those types that consume a character may be repeated.
|
|
We can test for values between ESC_b and ESC_Z for the latter; this may
|
|
have to change if any new ones are ever created. */
|
|
|
|
if (c < 0)
|
|
{
|
|
if (-c == ESC_Q) /* Handle start of quoted string */
|
|
{
|
|
if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
|
|
else inescq = TRUE;
|
|
continue;
|
|
}
|
|
|
|
/* For metasequences that actually match a character, we disable the
|
|
setting of a first character if it hasn't already been set. */
|
|
|
|
if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
|
|
firstbyte = REQ_NONE;
|
|
|
|
/* Set values to reset to if this is followed by a zero repeat. */
|
|
|
|
zerofirstbyte = firstbyte;
|
|
zeroreqbyte = reqbyte;
|
|
|
|
/* Back references are handled specially */
|
|
|
|
if (-c >= ESC_REF)
|
|
{
|
|
int number = -c - ESC_REF;
|
|
previous = code;
|
|
*code++ = OP_REF;
|
|
PUT2INC(code, 0, number);
|
|
}
|
|
else
|
|
{
|
|
previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
|
|
*code++ = -c;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Data character: reset and fall through */
|
|
|
|
ptr = tempptr;
|
|
c = '\\';
|
|
|
|
/* Handle a run of data characters until a metacharacter is encountered.
|
|
The first character is guaranteed not to be whitespace or # when the
|
|
extended flag is set. */
|
|
|
|
NORMAL_CHAR:
|
|
default:
|
|
previous = code;
|
|
*code = OP_CHARS;
|
|
code += 2;
|
|
length = 0;
|
|
|
|
do
|
|
{
|
|
/* If in \Q...\E, check for the end; if not, we always have a literal */
|
|
|
|
if (inescq)
|
|
{
|
|
if (c == '\\' && ptr[1] == 'E')
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;
|
|
}
|
|
else
|
|
{
|
|
*code++ = c;
|
|
length++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Skip white space and comments for /x patterns */
|
|
|
|
if ((options & PCRE_EXTENDED) != 0)
|
|
{
|
|
if ((cd->ctypes[c] & ctype_space) != 0) continue;
|
|
if (c == '#')
|
|
{
|
|
/* The space before the ; is to avoid a warning on a silly compiler
|
|
on the Macintosh. */
|
|
while ((c = *(++ptr)) != 0 && c != NEWLINE) ;
|
|
if (c == 0) break;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Backslash may introduce a data char or a metacharacter. Escaped items
|
|
are checked for validity in the pre-compiling pass. Stop the string
|
|
before a metaitem. */
|
|
|
|
if (c == '\\')
|
|
{
|
|
tempptr = ptr;
|
|
c = check_escape(&ptr, errorptr, *brackets, options, FALSE, cd);
|
|
if (c < 0) { ptr = tempptr; break; }
|
|
|
|
/* If a character is > 127 in UTF-8 mode, we have to turn it into
|
|
two or more characters in the UTF-8 encoding. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c > 127)
|
|
{
|
|
uschar buffer[8];
|
|
int len = ord2utf8(c, buffer);
|
|
for (c = 0; c < len; c++) *code++ = buffer[c];
|
|
length += len;
|
|
continue;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Ordinary character or single-char escape */
|
|
|
|
*code++ = c;
|
|
length++;
|
|
}
|
|
|
|
/* This "while" is the end of the "do" above. */
|
|
|
|
while (length < MAXLIT && (cd->ctypes[c = *(++ptr)] & ctype_meta) == 0);
|
|
|
|
/* Update the first and last requirements. These are always bytes, even in
|
|
UTF-8 mode. However, there is a special case to be considered when there
|
|
are only one or two characters. Because this gets messy in UTF-8 mode, the
|
|
code is kept separate. When we get here "length" contains the number of
|
|
bytes. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && length > 1)
|
|
{
|
|
uschar *t = previous + 3; /* After this code, t */
|
|
while (t < code && (*t & 0xc0) == 0x80) t++; /* follows the 1st char */
|
|
|
|
/* Handle the case when there is only one multibyte character. It must
|
|
have at least two bytes because of the "length > 1" test above. */
|
|
|
|
if (t == code)
|
|
{
|
|
/* If no previous first byte, set it from this character, but revert to
|
|
none on a zero repeat. */
|
|
|
|
if (firstbyte == REQ_UNSET)
|
|
{
|
|
zerofirstbyte = REQ_NONE;
|
|
firstbyte = previous[2];
|
|
}
|
|
|
|
/* Otherwise, leave the first byte value alone, and don't change it on
|
|
a zero repeat */
|
|
|
|
else zerofirstbyte = firstbyte;
|
|
|
|
/* In both cases, a zero repeat resets the previous required byte */
|
|
|
|
zeroreqbyte = reqbyte;
|
|
}
|
|
|
|
/* Handle the case when there is more than one character. These may be
|
|
single-byte or multibyte characters */
|
|
|
|
else
|
|
{
|
|
t = code - 1; /* After this code, t is at the */
|
|
while ((*t & 0xc0) == 0x80) t--; /* start of the last character */
|
|
|
|
/* If no previous first byte, set it from the first character, and
|
|
retain it on a zero repeat (of the last character). The required byte
|
|
is reset on a zero repeat, either to the byte before the last
|
|
character, unless this is the first byte of the string. In that case,
|
|
it reverts to its previous value. */
|
|
|
|
if (firstbyte == REQ_UNSET)
|
|
{
|
|
zerofirstbyte = firstbyte = previous[2] | req_caseopt;
|
|
zeroreqbyte = (t - 1 == previous + 2)?
|
|
reqbyte : t[-1] | req_caseopt | cd->req_varyopt;
|
|
}
|
|
|
|
/* If there was a previous first byte, leave it alone, and don't change
|
|
it on a zero repeat. The required byte is reset on a zero repeat to the
|
|
byte before the last character. */
|
|
|
|
else
|
|
{
|
|
zerofirstbyte = firstbyte;
|
|
zeroreqbyte = t[-1] | req_caseopt | cd->req_varyopt;
|
|
}
|
|
}
|
|
|
|
/* In all cases (we know length > 1), the new required byte is the last
|
|
byte of the string. */
|
|
|
|
reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
|
|
}
|
|
|
|
else /* End of UTF-8 coding */
|
|
#endif
|
|
|
|
/* This is the code for non-UTF-8 operation, either without UTF-8 support,
|
|
or when UTF-8 is not enabled. */
|
|
|
|
{
|
|
/* firstbyte was not previously set; take it from this string */
|
|
|
|
if (firstbyte == REQ_UNSET)
|
|
{
|
|
if (length == 1)
|
|
{
|
|
zerofirstbyte = REQ_NONE;
|
|
firstbyte = previous[2] | req_caseopt;
|
|
zeroreqbyte = reqbyte;
|
|
}
|
|
else
|
|
{
|
|
zerofirstbyte = firstbyte = previous[2] | req_caseopt;
|
|
zeroreqbyte = (length > 2)?
|
|
(code[-2] | req_caseopt | cd->req_varyopt) : reqbyte;
|
|
reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
|
|
}
|
|
}
|
|
|
|
/* firstbyte was previously set */
|
|
|
|
else
|
|
{
|
|
zerofirstbyte = firstbyte;
|
|
zeroreqbyte = (length == 1)? reqbyte :
|
|
code[-2] | req_caseopt | cd->req_varyopt;
|
|
reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
|
|
}
|
|
}
|
|
|
|
/* Set the length in the data vector, and advance to the next state. */
|
|
|
|
previous[1] = length;
|
|
if (length < MAXLIT) ptr--;
|
|
break;
|
|
}
|
|
} /* end of big loop */
|
|
|
|
/* Control never reaches here by falling through, only by a goto for all the
|
|
error states. Pass back the position in the pattern so that it can be displayed
|
|
to the user for diagnosing the error. */
|
|
|
|
FAILED:
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile sequence of alternatives *
|
|
*************************************************/
|
|
|
|
/* On entry, ptr is pointing past the bracket character, but on return
|
|
it points to the closing bracket, or vertical bar, or end of string.
|
|
The code variable is pointing at the byte into which the BRA operator has been
|
|
stored. If the ims options are changed at the start (for a (?ims: group) or
|
|
during any branch, we need to insert an OP_OPT item at the start of every
|
|
following branch to ensure they get set correctly at run time, and also pass
|
|
the new options into every subsequent branch compile.
|
|
|
|
Argument:
|
|
options option bits, including any changes for this subpattern
|
|
oldims previous settings of ims option bits
|
|
brackets -> int containing the number of extracting brackets used
|
|
codeptr -> the address of the current code pointer
|
|
ptrptr -> the address of the current pattern pointer
|
|
errorptr -> pointer to error message
|
|
lookbehind TRUE if this is a lookbehind assertion
|
|
skipbytes skip this many bytes at start (for OP_COND, OP_BRANUMBER)
|
|
firstbyteptr place to put the first required character, or a negative number
|
|
reqbyteptr place to put the last required character, or a negative number
|
|
bcptr pointer to the chain of currently open branches
|
|
cd points to the data block with tables pointers etc.
|
|
|
|
Returns: TRUE on success
|
|
*/
|
|
|
|
static BOOL
|
|
compile_regex(int options, int oldims, int *brackets, uschar **codeptr,
|
|
const uschar **ptrptr, const char **errorptr, BOOL lookbehind, int skipbytes,
|
|
int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd)
|
|
{
|
|
const uschar *ptr = *ptrptr;
|
|
uschar *code = *codeptr;
|
|
uschar *last_branch = code;
|
|
uschar *start_bracket = code;
|
|
uschar *reverse_count = NULL;
|
|
int firstbyte, reqbyte;
|
|
int branchfirstbyte, branchreqbyte;
|
|
branch_chain bc;
|
|
|
|
bc.outer = bcptr;
|
|
bc.current = code;
|
|
|
|
firstbyte = reqbyte = REQ_UNSET;
|
|
|
|
/* Offset is set zero to mark that this bracket is still open */
|
|
|
|
PUT(code, 1, 0);
|
|
code += 1 + LINK_SIZE + skipbytes;
|
|
|
|
/* Loop for each alternative branch */
|
|
|
|
for (;;)
|
|
{
|
|
/* Handle a change of ims options at the start of the branch */
|
|
|
|
if ((options & PCRE_IMS) != oldims)
|
|
{
|
|
*code++ = OP_OPT;
|
|
*code++ = options & PCRE_IMS;
|
|
}
|
|
|
|
/* Set up dummy OP_REVERSE if lookbehind assertion */
|
|
|
|
if (lookbehind)
|
|
{
|
|
*code++ = OP_REVERSE;
|
|
reverse_count = code;
|
|
PUTINC(code, 0, 0);
|
|
}
|
|
|
|
/* Now compile the branch */
|
|
|
|
if (!compile_branch(&options, brackets, &code, &ptr, errorptr,
|
|
&branchfirstbyte, &branchreqbyte, &bc, cd))
|
|
{
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
|
|
/* If this is the first branch, the firstbyte and reqbyte values for the
|
|
branch become the values for the regex. */
|
|
|
|
if (*last_branch != OP_ALT)
|
|
{
|
|
firstbyte = branchfirstbyte;
|
|
reqbyte = branchreqbyte;
|
|
}
|
|
|
|
/* If this is not the first branch, the first char and reqbyte have to
|
|
match the values from all the previous branches, except that if the previous
|
|
value for reqbyte didn't have REQ_VARY set, it can still match, and we set
|
|
REQ_VARY for the regex. */
|
|
|
|
else
|
|
{
|
|
/* If we previously had a firstbyte, but it doesn't match the new branch,
|
|
we have to abandon the firstbyte for the regex, but if there was previously
|
|
no reqbyte, it takes on the value of the old firstbyte. */
|
|
|
|
if (firstbyte >= 0 && firstbyte != branchfirstbyte)
|
|
{
|
|
if (reqbyte < 0) reqbyte = firstbyte;
|
|
firstbyte = REQ_NONE;
|
|
}
|
|
|
|
/* If we (now or from before) have no firstbyte, a firstbyte from the
|
|
branch becomes a reqbyte if there isn't a branch reqbyte. */
|
|
|
|
if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
|
|
branchreqbyte = branchfirstbyte;
|
|
|
|
/* Now ensure that the reqbytes match */
|
|
|
|
if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
|
|
reqbyte = REQ_NONE;
|
|
else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
|
|
}
|
|
|
|
/* If lookbehind, check that this branch matches a fixed-length string,
|
|
and put the length into the OP_REVERSE item. Temporarily mark the end of
|
|
the branch with OP_END. */
|
|
|
|
if (lookbehind)
|
|
{
|
|
int length;
|
|
*code = OP_END;
|
|
length = find_fixedlength(last_branch, options);
|
|
DPRINTF(("fixed length = %d\n", length));
|
|
if (length < 0)
|
|
{
|
|
*errorptr = (length == -2)? ERR36 : ERR25;
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
PUT(reverse_count, 0, length);
|
|
}
|
|
|
|
/* Reached end of expression, either ')' or end of pattern. Go back through
|
|
the alternative branches and reverse the chain of offsets, with the field in
|
|
the BRA item now becoming an offset to the first alternative. If there are
|
|
no alternatives, it points to the end of the group. The length in the
|
|
terminating ket is always the length of the whole bracketed item. If any of
|
|
the ims options were changed inside the group, compile a resetting op-code
|
|
following, except at the very end of the pattern. Return leaving the pointer
|
|
at the terminating char. */
|
|
|
|
if (*ptr != '|')
|
|
{
|
|
int length = code - last_branch;
|
|
do
|
|
{
|
|
int prev_length = GET(last_branch, 1);
|
|
PUT(last_branch, 1, length);
|
|
length = prev_length;
|
|
last_branch -= length;
|
|
}
|
|
while (length > 0);
|
|
|
|
/* Fill in the ket */
|
|
|
|
*code = OP_KET;
|
|
PUT(code, 1, code - start_bracket);
|
|
code += 1 + LINK_SIZE;
|
|
|
|
/* Resetting option if needed */
|
|
|
|
if ((options & PCRE_IMS) != oldims && *ptr == ')')
|
|
{
|
|
*code++ = OP_OPT;
|
|
*code++ = oldims;
|
|
}
|
|
|
|
/* Set values to pass back */
|
|
|
|
*codeptr = code;
|
|
*ptrptr = ptr;
|
|
*firstbyteptr = firstbyte;
|
|
*reqbyteptr = reqbyte;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Another branch follows; insert an "or" node. Its length field points back
|
|
to the previous branch while the bracket remains open. At the end the chain
|
|
is reversed. It's done like this so that the start of the bracket has a
|
|
zero offset until it is closed, making it possible to detect recursion. */
|
|
|
|
*code = OP_ALT;
|
|
PUT(code, 1, code - last_branch);
|
|
bc.current = last_branch = code;
|
|
code += 1 + LINK_SIZE;
|
|
ptr++;
|
|
}
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for anchored expression *
|
|
*************************************************/
|
|
|
|
/* Try to find out if this is an anchored regular expression. Consider each
|
|
alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
|
|
all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
|
|
it's anchored. However, if this is a multiline pattern, then only OP_SOD
|
|
counts, since OP_CIRC can match in the middle.
|
|
|
|
We can also consider a regex to be anchored if OP_SOM starts all its branches.
|
|
This is the code for \G, which means "match at start of match position, taking
|
|
into account the match offset".
|
|
|
|
A branch is also implicitly anchored if it starts with .* and DOTALL is set,
|
|
because that will try the rest of the pattern at all possible matching points,
|
|
so there is no point trying again.... er ....
|
|
|
|
.... except when the .* appears inside capturing parentheses, and there is a
|
|
subsequent back reference to those parentheses. We haven't enough information
|
|
to catch that case precisely.
|
|
|
|
At first, the best we could do was to detect when .* was in capturing brackets
|
|
and the highest back reference was greater than or equal to that level.
|
|
However, by keeping a bitmap of the first 31 back references, we can catch some
|
|
of the more common cases more precisely.
|
|
|
|
Arguments:
|
|
code points to start of expression (the bracket)
|
|
options points to the options setting
|
|
bracket_map a bitmap of which brackets we are inside while testing; this
|
|
handles up to substring 31; after that we just have to take
|
|
the less precise approach
|
|
backref_map the back reference bitmap
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
|
|
unsigned int backref_map)
|
|
{
|
|
do {
|
|
const uschar *scode =
|
|
first_significant_code(code + 1+LINK_SIZE, options, PCRE_MULTILINE);
|
|
register int op = *scode;
|
|
|
|
/* Capturing brackets */
|
|
|
|
if (op > OP_BRA)
|
|
{
|
|
int new_map;
|
|
op -= OP_BRA;
|
|
if (op > EXTRACT_BASIC_MAX) op = GET2(scode, 2+LINK_SIZE);
|
|
new_map = bracket_map | ((op < 32)? (1 << op) : 1);
|
|
if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
|
|
}
|
|
|
|
/* Other brackets */
|
|
|
|
else if (op == OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
|
|
{
|
|
if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
|
|
}
|
|
|
|
/* .* is not anchored unless DOTALL is set and it isn't in brackets that
|
|
are or may be referenced. */
|
|
|
|
else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR) &&
|
|
(*options & PCRE_DOTALL) != 0)
|
|
{
|
|
if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
|
|
}
|
|
|
|
/* Check for explicit anchoring */
|
|
|
|
else if (op != OP_SOD && op != OP_SOM &&
|
|
((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
|
|
return FALSE;
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT); /* Loop for each alternative */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for starting with ^ or .* *
|
|
*************************************************/
|
|
|
|
/* This is called to find out if every branch starts with ^ or .* so that
|
|
"first char" processing can be done to speed things up in multiline
|
|
matching and for non-DOTALL patterns that start with .* (which must start at
|
|
the beginning or after \n). As in the case of is_anchored() (see above), we
|
|
have to take account of back references to capturing brackets that contain .*
|
|
because in that case we can't make the assumption.
|
|
|
|
Arguments:
|
|
code points to start of expression (the bracket)
|
|
bracket_map a bitmap of which brackets we are inside while testing; this
|
|
handles up to substring 31; after that we just have to take
|
|
the less precise approach
|
|
backref_map the back reference bitmap
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_startline(const uschar *code, unsigned int bracket_map,
|
|
unsigned int backref_map)
|
|
{
|
|
do {
|
|
const uschar *scode = first_significant_code(code + 1+LINK_SIZE, NULL, 0);
|
|
register int op = *scode;
|
|
|
|
/* Capturing brackets */
|
|
|
|
if (op > OP_BRA)
|
|
{
|
|
int new_map;
|
|
op -= OP_BRA;
|
|
if (op > EXTRACT_BASIC_MAX) op = GET2(scode, 2+LINK_SIZE);
|
|
new_map = bracket_map | ((op < 32)? (1 << op) : 1);
|
|
if (!is_startline(scode, new_map, backref_map)) return FALSE;
|
|
}
|
|
|
|
/* Other brackets */
|
|
|
|
else if (op == OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
|
|
{ if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
|
|
|
|
/* .* is not anchored unless DOTALL is set and it isn't in brackets that
|
|
may be referenced. */
|
|
|
|
else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR)
|
|
{
|
|
if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
|
|
}
|
|
|
|
/* Check for explicit circumflex */
|
|
|
|
else if (op != OP_CIRC) return FALSE;
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT); /* Loop for each alternative */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for asserted fixed first char *
|
|
*************************************************/
|
|
|
|
/* During compilation, the "first char" settings from forward assertions are
|
|
discarded, because they can cause conflicts with actual literals that follow.
|
|
However, if we end up without a first char setting for an unanchored pattern,
|
|
it is worth scanning the regex to see if there is an initial asserted first
|
|
char. If all branches start with the same asserted char, or with a bracket all
|
|
of whose alternatives start with the same asserted char (recurse ad lib), then
|
|
we return that char, otherwise -1.
|
|
|
|
Arguments:
|
|
code points to start of expression (the bracket)
|
|
options pointer to the options (used to check casing changes)
|
|
inassert TRUE if in an assertion
|
|
|
|
Returns: -1 or the fixed first char
|
|
*/
|
|
|
|
static int
|
|
find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
|
|
{
|
|
register int c = -1;
|
|
do {
|
|
int d;
|
|
const uschar *scode =
|
|
first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS);
|
|
register int op = *scode;
|
|
|
|
if (op >= OP_BRA) op = OP_BRA;
|
|
|
|
switch(op)
|
|
{
|
|
default:
|
|
return -1;
|
|
|
|
case OP_BRA:
|
|
case OP_ASSERT:
|
|
case OP_ONCE:
|
|
case OP_COND:
|
|
if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
|
|
return -1;
|
|
if (c < 0) c = d; else if (c != d) return -1;
|
|
break;
|
|
|
|
case OP_EXACT: /* Fall through */
|
|
scode++;
|
|
|
|
case OP_CHARS: /* Fall through */
|
|
scode++;
|
|
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
if (!inassert) return -1;
|
|
if (c < 0)
|
|
{
|
|
c = scode[1];
|
|
if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
|
|
}
|
|
else if (c != scode[1]) return -1;
|
|
break;
|
|
}
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT);
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile a Regular Expression *
|
|
*************************************************/
|
|
|
|
/* This function takes a string and returns a pointer to a block of store
|
|
holding a compiled version of the expression.
|
|
|
|
Arguments:
|
|
pattern the regular expression
|
|
options various option bits
|
|
errorptr pointer to pointer to error text
|
|
erroroffset ptr offset in pattern where error was detected
|
|
tables pointer to character tables or NULL
|
|
|
|
Returns: pointer to compiled data block, or NULL on error,
|
|
with errorptr and erroroffset set
|
|
*/
|
|
|
|
pcre *
|
|
pcre_compile(const char *pattern, int options, const char **errorptr,
|
|
int *erroroffset, const unsigned char *tables)
|
|
{
|
|
real_pcre *re;
|
|
int length = 1 + LINK_SIZE; /* For initial BRA plus length */
|
|
int runlength;
|
|
int c, firstbyte, reqbyte;
|
|
int bracount = 0;
|
|
int branch_extra = 0;
|
|
int branch_newextra;
|
|
int item_count = -1;
|
|
int name_count = 0;
|
|
int max_name_size = 0;
|
|
#ifdef SUPPORT_UTF8
|
|
int lastcharlength = 0;
|
|
BOOL utf8;
|
|
BOOL class_utf8;
|
|
#endif
|
|
BOOL inescq = FALSE;
|
|
unsigned int brastackptr = 0;
|
|
size_t size;
|
|
uschar *code;
|
|
uschar *codestart;
|
|
const uschar *ptr;
|
|
compile_data compile_block;
|
|
int brastack[BRASTACK_SIZE];
|
|
uschar bralenstack[BRASTACK_SIZE];
|
|
|
|
/* We can't pass back an error message if errorptr is NULL; I guess the best we
|
|
can do is just return NULL. */
|
|
|
|
if (errorptr == NULL) return NULL;
|
|
*errorptr = NULL;
|
|
|
|
/* However, we can give a message for this error */
|
|
|
|
if (erroroffset == NULL)
|
|
{
|
|
*errorptr = ERR16;
|
|
return NULL;
|
|
}
|
|
*erroroffset = 0;
|
|
|
|
/* Can't support UTF8 unless PCRE has been compiled to include the code. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
utf8 = (options & PCRE_UTF8) != 0;
|
|
#else
|
|
if ((options & PCRE_UTF8) != 0)
|
|
{
|
|
*errorptr = ERR32;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if ((options & ~PUBLIC_OPTIONS) != 0)
|
|
{
|
|
*errorptr = ERR17;
|
|
return NULL;
|
|
}
|
|
|
|
/* Set up pointers to the individual character tables */
|
|
|
|
if (tables == NULL) tables = pcre_default_tables;
|
|
compile_block.lcc = tables + lcc_offset;
|
|
compile_block.fcc = tables + fcc_offset;
|
|
compile_block.cbits = tables + cbits_offset;
|
|
compile_block.ctypes = tables + ctypes_offset;
|
|
|
|
/* Maximum back reference and backref bitmap. This is updated for numeric
|
|
references during the first pass, but for named references during the actual
|
|
compile pass. The bitmap records up to 31 back references to help in deciding
|
|
whether (.*) can be treated as anchored or not. */
|
|
|
|
compile_block.top_backref = 0;
|
|
compile_block.backref_map = 0;
|
|
|
|
/* Reflect pattern for debugging output */
|
|
|
|
DPRINTF(("------------------------------------------------------------------\n"));
|
|
DPRINTF(("%s\n", pattern));
|
|
|
|
/* The first thing to do is to make a pass over the pattern to compute the
|
|
amount of store required to hold the compiled code. This does not have to be
|
|
perfect as long as errors are overestimates. At the same time we can detect any
|
|
flag settings right at the start, and extract them. Make an attempt to correct
|
|
for any counted white space if an "extended" flag setting appears late in the
|
|
pattern. We can't be so clever for #-comments. */
|
|
|
|
ptr = (const uschar *)(pattern - 1);
|
|
while ((c = *(++ptr)) != 0)
|
|
{
|
|
int min, max;
|
|
int class_optcount;
|
|
int bracket_length;
|
|
int duplength;
|
|
|
|
/* If we are inside a \Q...\E sequence, all chars are literal */
|
|
|
|
if (inescq) goto NORMAL_CHAR;
|
|
|
|
/* Otherwise, first check for ignored whitespace and comments */
|
|
|
|
if ((options & PCRE_EXTENDED) != 0)
|
|
{
|
|
if ((compile_block.ctypes[c] & ctype_space) != 0) continue;
|
|
if (c == '#')
|
|
{
|
|
/* The space before the ; is to avoid a warning on a silly compiler
|
|
on the Macintosh. */
|
|
while ((c = *(++ptr)) != 0 && c != NEWLINE) ;
|
|
if (c == 0) break;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
item_count++; /* Is zero for the first non-comment item */
|
|
|
|
switch(c)
|
|
{
|
|
/* A backslashed item may be an escaped "normal" character or a
|
|
character type. For a "normal" character, put the pointers and
|
|
character back so that tests for whitespace etc. in the input
|
|
are done correctly. */
|
|
|
|
case '\\':
|
|
{
|
|
const uschar *save_ptr = ptr;
|
|
c = check_escape(&ptr, errorptr, bracount, options, FALSE, &compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
if (c >= 0)
|
|
{
|
|
ptr = save_ptr;
|
|
c = '\\';
|
|
goto NORMAL_CHAR;
|
|
}
|
|
}
|
|
|
|
/* If \Q, enter "literal" mode */
|
|
|
|
if (-c == ESC_Q)
|
|
{
|
|
inescq = TRUE;
|
|
continue;
|
|
}
|
|
|
|
/* Other escapes need one byte, and are of length one for repeats */
|
|
|
|
length++;
|
|
#ifdef SUPPORT_UTF8
|
|
lastcharlength = 1;
|
|
#endif
|
|
|
|
/* A back reference needs an additional 2 bytes, plus either one or 5
|
|
bytes for a repeat. We also need to keep the value of the highest
|
|
back reference. */
|
|
|
|
if (c <= -ESC_REF)
|
|
{
|
|
int refnum = -c - ESC_REF;
|
|
compile_block.backref_map |= (refnum < 32)? (1 << refnum) : 1;
|
|
if (refnum > compile_block.top_backref)
|
|
compile_block.top_backref = refnum;
|
|
length += 2; /* For single back reference */
|
|
if (ptr[1] == '{' && is_counted_repeat(ptr+2, &compile_block))
|
|
{
|
|
ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
if ((min == 0 && (max == 1 || max == -1)) ||
|
|
(min == 1 && max == -1))
|
|
length++;
|
|
else length += 5;
|
|
if (ptr[1] == '?') ptr++;
|
|
}
|
|
}
|
|
continue;
|
|
|
|
case '^': /* Single-byte metacharacters */
|
|
case '.':
|
|
case '$':
|
|
length++;
|
|
#ifdef SUPPORT_UTF8
|
|
lastcharlength = 1;
|
|
#endif
|
|
continue;
|
|
|
|
case '*': /* These repeats won't be after brackets; */
|
|
case '+': /* those are handled separately */
|
|
case '?':
|
|
length++;
|
|
goto POSESSIVE; /* A few lines below */
|
|
|
|
/* This covers the cases of braced repeats after a single char, metachar,
|
|
class, or back reference. */
|
|
|
|
case '{':
|
|
if (!is_counted_repeat(ptr+1, &compile_block)) goto NORMAL_CHAR;
|
|
ptr = read_repeat_counts(ptr+1, &min, &max, errorptr, &compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
|
|
/* These special cases just insert one extra opcode */
|
|
|
|
if ((min == 0 && (max == 1 || max == -1)) ||
|
|
(min == 1 && max == -1))
|
|
length++;
|
|
|
|
/* These cases might insert additional copies of a preceding character. */
|
|
|
|
else
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
/* In UTF-8 mode, we should find the length in lastcharlength */
|
|
if (utf8)
|
|
{
|
|
if (min != 1)
|
|
{
|
|
length -= lastcharlength; /* Uncount the original char or metachar */
|
|
if (min > 0) length += 3 + lastcharlength;
|
|
}
|
|
length += lastcharlength + ((max > 0)? 3 : 1);
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* Not UTF-8 mode: all characters are one byte */
|
|
{
|
|
if (min != 1)
|
|
{
|
|
length--; /* Uncount the original char or metachar */
|
|
if (min > 0) length += 4;
|
|
}
|
|
|
|
length += (max > 0)? 4 : 2;
|
|
}
|
|
}
|
|
|
|
if (ptr[1] == '?') ptr++; /* Needs no extra length */
|
|
|
|
POSESSIVE: /* Test for possessive quantifier */
|
|
if (ptr[1] == '+')
|
|
{
|
|
ptr++;
|
|
length += 2 + 2*LINK_SIZE; /* Allow for atomic brackets */
|
|
}
|
|
continue;
|
|
|
|
/* An alternation contains an offset to the next branch or ket. If any ims
|
|
options changed in the previous branch(es), and/or if we are in a
|
|
lookbehind assertion, extra space will be needed at the start of the
|
|
branch. This is handled by branch_extra. */
|
|
|
|
case '|':
|
|
length += 1 + LINK_SIZE + branch_extra;
|
|
continue;
|
|
|
|
/* A character class uses 33 characters provided that all the character
|
|
values are less than 256. Otherwise, it uses a bit map for low valued
|
|
characters, and individual items for others. Don't worry about character
|
|
types that aren't allowed in classes - they'll get picked up during the
|
|
compile. A character class that contains only one single-byte character
|
|
uses 2 or 3 bytes, depending on whether it is negated or not. Notice this
|
|
where we can. (In UTF-8 mode we can do this only for chars < 128.) */
|
|
|
|
case '[':
|
|
class_optcount = 0;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
class_utf8 = FALSE;
|
|
#endif
|
|
|
|
if (*(++ptr) == '^') ptr++;
|
|
|
|
/* Written as a "do" so that an initial ']' is taken as data */
|
|
|
|
if (*ptr != 0) do
|
|
{
|
|
/* Inside \Q...\E everything is literal except \E */
|
|
|
|
if (inescq)
|
|
{
|
|
if (*ptr != '\\' || ptr[1] != 'E') goto NON_SPECIAL_CHARACTER;
|
|
inescq = FALSE;
|
|
ptr += 1;
|
|
continue;
|
|
}
|
|
|
|
/* Outside \Q...\E, check for escapes */
|
|
|
|
if (*ptr == '\\')
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
int prevchar = ptr[-1];
|
|
#endif
|
|
int ch = check_escape(&ptr, errorptr, bracount, options, TRUE,
|
|
&compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
|
|
/* \b is backspace inside a class */
|
|
|
|
if (-ch == ESC_b) ch = '\b';
|
|
|
|
/* \Q enters quoting mode */
|
|
|
|
if (-ch == ESC_Q)
|
|
{
|
|
inescq = TRUE;
|
|
continue;
|
|
}
|
|
|
|
/* Handle escapes that turn into characters */
|
|
|
|
if (ch >= 0)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8)
|
|
{
|
|
if (ch > 127) class_optcount = 10; /* Ensure > 1 */
|
|
if (ch > 255)
|
|
{
|
|
uschar buffer[6];
|
|
if (!class_utf8)
|
|
{
|
|
class_utf8 = TRUE;
|
|
length += LINK_SIZE + 1 + 1;
|
|
}
|
|
length += 1 + ord2utf8(ch, buffer);
|
|
|
|
/* If this wide character is preceded by '-', add an extra 2 to
|
|
the length in case the previous character was < 128, because in
|
|
this case the whole range will be put into the list. */
|
|
|
|
if (prevchar == '-') length += 2;
|
|
}
|
|
}
|
|
#endif
|
|
class_optcount++; /* for possible optimization */
|
|
}
|
|
else class_optcount = 10; /* \d, \s etc; make sure > 1 */
|
|
}
|
|
|
|
/* Check the syntax for POSIX stuff. The bits we actually handle are
|
|
checked during the real compile phase. */
|
|
|
|
else if (*ptr == '[' && check_posix_syntax(ptr, &ptr, &compile_block))
|
|
{
|
|
ptr++;
|
|
class_optcount = 10; /* Make sure > 1 */
|
|
}
|
|
|
|
/* Anything else just increments the possible optimization count. If
|
|
there are wide characters, we are going to have to use an XCLASS. */
|
|
|
|
else
|
|
{
|
|
NON_SPECIAL_CHARACTER:
|
|
class_optcount++;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8)
|
|
{
|
|
int ch;
|
|
int extra = 0;
|
|
GETCHARLEN(ch, ptr, extra);
|
|
if (ch > 127) class_optcount = 10; /* No optimization possible */
|
|
if (ch > 255)
|
|
{
|
|
if (!class_utf8)
|
|
{
|
|
class_utf8 = TRUE;
|
|
length += LINK_SIZE + 1 + 1;
|
|
}
|
|
length += 2 + extra;
|
|
|
|
/* If this wide character is preceded by '-', add an extra 2 to
|
|
the length in case the previous character was < 128, because in
|
|
this case the whole range will be put into the list. */
|
|
|
|
if (ptr[-1] == '-') length += 2;
|
|
|
|
/* Advance to the end of this character */
|
|
|
|
ptr += extra;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
while (*(++ptr) != 0 && (inescq || *ptr != ']')); /* Concludes "do" above */
|
|
|
|
if (*ptr == 0) /* Missing terminating ']' */
|
|
{
|
|
*errorptr = ERR6;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
|
|
/* We can optimize when there was only one optimizable character. Repeats
|
|
for positive and negated single one-byte chars are handled by the general
|
|
code. Here, we handle repeats for the class opcodes. */
|
|
|
|
if (class_optcount == 1) length += 3; else
|
|
{
|
|
length += 33;
|
|
|
|
/* A repeat needs either 1 or 5 bytes. */
|
|
|
|
if (*ptr != 0 && ptr[1] == '{' && is_counted_repeat(ptr+2, &compile_block))
|
|
{
|
|
ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
if ((min == 0 && (max == 1 || max == -1)) ||
|
|
(min == 1 && max == -1))
|
|
length++;
|
|
else length += 5;
|
|
if (ptr[1] == '?') ptr++;
|
|
}
|
|
}
|
|
continue;
|
|
|
|
/* Brackets may be genuine groups or special things */
|
|
|
|
case '(':
|
|
branch_newextra = 0;
|
|
bracket_length = 1 + LINK_SIZE;
|
|
|
|
/* Handle special forms of bracket, which all start (? */
|
|
|
|
if (ptr[1] == '?')
|
|
{
|
|
int set, unset;
|
|
int *optset;
|
|
|
|
switch (c = ptr[2])
|
|
{
|
|
/* Skip over comments entirely */
|
|
case '#':
|
|
ptr += 3;
|
|
while (*ptr != 0 && *ptr != ')') ptr++;
|
|
if (*ptr == 0)
|
|
{
|
|
*errorptr = ERR18;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
continue;
|
|
|
|
/* Non-referencing groups and lookaheads just move the pointer on, and
|
|
then behave like a non-special bracket, except that they don't increment
|
|
the count of extracting brackets. Ditto for the "once only" bracket,
|
|
which is in Perl from version 5.005. */
|
|
|
|
case ':':
|
|
case '=':
|
|
case '!':
|
|
case '>':
|
|
ptr += 2;
|
|
break;
|
|
|
|
/* (?R) specifies a recursive call to the regex, which is an extension
|
|
to provide the facility which can be obtained by (?p{perl-code}) in
|
|
Perl 5.6. In Perl 5.8 this has become (??{perl-code}).
|
|
|
|
From PCRE 4.00, items such as (?3) specify subroutine-like "calls" to
|
|
the appropriate numbered brackets. This includes both recursive and
|
|
non-recursive calls. (?R) is now synonymous with (?0). */
|
|
|
|
case 'R':
|
|
ptr++;
|
|
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
ptr += 2;
|
|
if (c != 'R')
|
|
while ((compile_block.ctypes[*(++ptr)] & ctype_digit) != 0);
|
|
if (*ptr != ')')
|
|
{
|
|
*errorptr = ERR29;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
length += 1 + LINK_SIZE;
|
|
|
|
/* If this item is quantified, it will get wrapped inside brackets so
|
|
as to use the code for quantified brackets. We jump down and use the
|
|
code that handles this for real brackets. */
|
|
|
|
if (ptr[1] == '+' || ptr[1] == '*' || ptr[1] == '?' || ptr[1] == '{')
|
|
{
|
|
length += 2 + 2 * LINK_SIZE; /* to make bracketed */
|
|
duplength = 5 + 3 * LINK_SIZE;
|
|
goto HANDLE_QUANTIFIED_BRACKETS;
|
|
}
|
|
continue;
|
|
|
|
/* (?C) is an extension which provides "callout" - to provide a bit of
|
|
the functionality of the Perl (?{...}) feature. An optional number may
|
|
follow (default is zero). */
|
|
|
|
case 'C':
|
|
ptr += 2;
|
|
while ((compile_block.ctypes[*(++ptr)] & ctype_digit) != 0);
|
|
if (*ptr != ')')
|
|
{
|
|
*errorptr = ERR39;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
length += 2;
|
|
continue;
|
|
|
|
/* Named subpatterns are an extension copied from Python */
|
|
|
|
case 'P':
|
|
ptr += 3;
|
|
if (*ptr == '<')
|
|
{
|
|
const uschar *p; /* Don't amalgamate; some compilers */
|
|
p = ++ptr; /* grumble at autoincrement in declaration */
|
|
while ((compile_block.ctypes[*ptr] & ctype_word) != 0) ptr++;
|
|
if (*ptr != '>')
|
|
{
|
|
*errorptr = ERR42;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
name_count++;
|
|
if (ptr - p > max_name_size) max_name_size = (ptr - p);
|
|
break;
|
|
}
|
|
|
|
if (*ptr == '=' || *ptr == '>')
|
|
{
|
|
while ((compile_block.ctypes[*(++ptr)] & ctype_word) != 0);
|
|
if (*ptr != ')')
|
|
{
|
|
*errorptr = ERR42;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Unknown character after (?P */
|
|
|
|
*errorptr = ERR41;
|
|
goto PCRE_ERROR_RETURN;
|
|
|
|
/* Lookbehinds are in Perl from version 5.005 */
|
|
|
|
case '<':
|
|
ptr += 3;
|
|
if (*ptr == '=' || *ptr == '!')
|
|
{
|
|
branch_newextra = 1 + LINK_SIZE;
|
|
length += 1 + LINK_SIZE; /* For the first branch */
|
|
break;
|
|
}
|
|
*errorptr = ERR24;
|
|
goto PCRE_ERROR_RETURN;
|
|
|
|
/* Conditionals are in Perl from version 5.005. The bracket must either
|
|
be followed by a number (for bracket reference) or by an assertion
|
|
group, or (a PCRE extension) by 'R' for a recursion test. */
|
|
|
|
case '(':
|
|
if (ptr[3] == 'R' && ptr[4] == ')')
|
|
{
|
|
ptr += 4;
|
|
length += 3;
|
|
}
|
|
else if ((compile_block.ctypes[ptr[3]] & ctype_digit) != 0)
|
|
{
|
|
ptr += 4;
|
|
length += 3;
|
|
while ((compile_block.ctypes[*ptr] & ctype_digit) != 0) ptr++;
|
|
if (*ptr != ')')
|
|
{
|
|
*errorptr = ERR26;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
}
|
|
else /* An assertion must follow */
|
|
{
|
|
ptr++; /* Can treat like ':' as far as spacing is concerned */
|
|
if (ptr[2] != '?' ||
|
|
(ptr[3] != '=' && ptr[3] != '!' && ptr[3] != '<') )
|
|
{
|
|
ptr += 2; /* To get right offset in message */
|
|
*errorptr = ERR28;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Else loop checking valid options until ) is met. Anything else is an
|
|
error. If we are without any brackets, i.e. at top level, the settings
|
|
act as if specified in the options, so massage the options immediately.
|
|
This is for backward compatibility with Perl 5.004. */
|
|
|
|
default:
|
|
set = unset = 0;
|
|
optset = &set;
|
|
ptr += 2;
|
|
|
|
for (;; ptr++)
|
|
{
|
|
c = *ptr;
|
|
switch (c)
|
|
{
|
|
case 'i':
|
|
*optset |= PCRE_CASELESS;
|
|
continue;
|
|
|
|
case 'm':
|
|
*optset |= PCRE_MULTILINE;
|
|
continue;
|
|
|
|
case 's':
|
|
*optset |= PCRE_DOTALL;
|
|
continue;
|
|
|
|
case 'x':
|
|
*optset |= PCRE_EXTENDED;
|
|
continue;
|
|
|
|
case 'X':
|
|
*optset |= PCRE_EXTRA;
|
|
continue;
|
|
|
|
case 'U':
|
|
*optset |= PCRE_UNGREEDY;
|
|
continue;
|
|
|
|
case '-':
|
|
optset = &unset;
|
|
continue;
|
|
|
|
/* A termination by ')' indicates an options-setting-only item; if
|
|
this is at the very start of the pattern (indicated by item_count
|
|
being zero), we use it to set the global options. This is helpful
|
|
when analyzing the pattern for first characters, etc. Otherwise
|
|
nothing is done here and it is handled during the compiling
|
|
process.
|
|
|
|
[Historical note: Up to Perl 5.8, options settings at top level
|
|
were always global settings, wherever they appeared in the pattern.
|
|
That is, they were equivalent to an external setting. From 5.8
|
|
onwards, they apply only to what follows (which is what you might
|
|
expect).] */
|
|
|
|
case ')':
|
|
if (item_count == 0)
|
|
{
|
|
options = (options | set) & (~unset);
|
|
set = unset = 0; /* To save length */
|
|
item_count--; /* To allow for several */
|
|
}
|
|
|
|
/* Fall through */
|
|
|
|
/* A termination by ':' indicates the start of a nested group with
|
|
the given options set. This is again handled at compile time, but
|
|
we must allow for compiled space if any of the ims options are
|
|
set. We also have to allow for resetting space at the end of
|
|
the group, which is why 4 is added to the length and not just 2.
|
|
If there are several changes of options within the same group, this
|
|
will lead to an over-estimate on the length, but this shouldn't
|
|
matter very much. We also have to allow for resetting options at
|
|
the start of any alternations, which we do by setting
|
|
branch_newextra to 2. Finally, we record whether the case-dependent
|
|
flag ever changes within the regex. This is used by the "required
|
|
character" code. */
|
|
|
|
case ':':
|
|
if (((set|unset) & PCRE_IMS) != 0)
|
|
{
|
|
length += 4;
|
|
branch_newextra = 2;
|
|
if (((set|unset) & PCRE_CASELESS) != 0) options |= PCRE_ICHANGED;
|
|
}
|
|
goto END_OPTIONS;
|
|
|
|
/* Unrecognized option character */
|
|
|
|
default:
|
|
*errorptr = ERR12;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
}
|
|
|
|
/* If we hit a closing bracket, that's it - this is a freestanding
|
|
option-setting. We need to ensure that branch_extra is updated if
|
|
necessary. The only values branch_newextra can have here are 0 or 2.
|
|
If the value is 2, then branch_extra must either be 2 or 5, depending
|
|
on whether this is a lookbehind group or not. */
|
|
|
|
END_OPTIONS:
|
|
if (c == ')')
|
|
{
|
|
if (branch_newextra == 2 &&
|
|
(branch_extra == 0 || branch_extra == 1+LINK_SIZE))
|
|
branch_extra += branch_newextra;
|
|
continue;
|
|
}
|
|
|
|
/* If options were terminated by ':' control comes here. Fall through
|
|
to handle the group below. */
|
|
}
|
|
}
|
|
|
|
/* Extracting brackets must be counted so we can process escapes in a
|
|
Perlish way. If the number exceeds EXTRACT_BASIC_MAX we are going to
|
|
need an additional 3 bytes of store per extracting bracket. However, if
|
|
PCRE_NO_AUTO)CAPTURE is set, unadorned brackets become non-capturing, so we
|
|
must leave the count alone (it will aways be zero). */
|
|
|
|
else if ((options & PCRE_NO_AUTO_CAPTURE) == 0)
|
|
{
|
|
bracount++;
|
|
if (bracount > EXTRACT_BASIC_MAX) bracket_length += 3;
|
|
}
|
|
|
|
/* Save length for computing whole length at end if there's a repeat that
|
|
requires duplication of the group. Also save the current value of
|
|
branch_extra, and start the new group with the new value. If non-zero, this
|
|
will either be 2 for a (?imsx: group, or 3 for a lookbehind assertion. */
|
|
|
|
if (brastackptr >= sizeof(brastack)/sizeof(int))
|
|
{
|
|
*errorptr = ERR19;
|
|
goto PCRE_ERROR_RETURN;
|
|
}
|
|
|
|
bralenstack[brastackptr] = branch_extra;
|
|
branch_extra = branch_newextra;
|
|
|
|
brastack[brastackptr++] = length;
|
|
length += bracket_length;
|
|
continue;
|
|
|
|
/* Handle ket. Look for subsequent max/min; for certain sets of values we
|
|
have to replicate this bracket up to that many times. If brastackptr is
|
|
0 this is an unmatched bracket which will generate an error, but take care
|
|
not to try to access brastack[-1] when computing the length and restoring
|
|
the branch_extra value. */
|
|
|
|
case ')':
|
|
length += 1 + LINK_SIZE;
|
|
if (brastackptr > 0)
|
|
{
|
|
duplength = length - brastack[--brastackptr];
|
|
branch_extra = bralenstack[brastackptr];
|
|
}
|
|
else duplength = 0;
|
|
|
|
/* The following code is also used when a recursion such as (?3) is
|
|
followed by a quantifier, because in that case, it has to be wrapped inside
|
|
brackets so that the quantifier works. The value of duplength must be
|
|
set before arrival. */
|
|
|
|
HANDLE_QUANTIFIED_BRACKETS:
|
|
|
|
/* Leave ptr at the final char; for read_repeat_counts this happens
|
|
automatically; for the others we need an increment. */
|
|
|
|
if ((c = ptr[1]) == '{' && is_counted_repeat(ptr+2, &compile_block))
|
|
{
|
|
ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
}
|
|
else if (c == '*') { min = 0; max = -1; ptr++; }
|
|
else if (c == '+') { min = 1; max = -1; ptr++; }
|
|
else if (c == '?') { min = 0; max = 1; ptr++; }
|
|
else { min = 1; max = 1; }
|
|
|
|
/* If the minimum is zero, we have to allow for an OP_BRAZERO before the
|
|
group, and if the maximum is greater than zero, we have to replicate
|
|
maxval-1 times; each replication acquires an OP_BRAZERO plus a nesting
|
|
bracket set. */
|
|
|
|
if (min == 0)
|
|
{
|
|
length++;
|
|
if (max > 0) length += (max - 1) * (duplength + 3 + 2*LINK_SIZE);
|
|
}
|
|
|
|
/* When the minimum is greater than zero, we have to replicate up to
|
|
minval-1 times, with no additions required in the copies. Then, if there
|
|
is a limited maximum we have to replicate up to maxval-1 times allowing
|
|
for a BRAZERO item before each optional copy and nesting brackets for all
|
|
but one of the optional copies. */
|
|
|
|
else
|
|
{
|
|
length += (min - 1) * duplength;
|
|
if (max > min) /* Need this test as max=-1 means no limit */
|
|
length += (max - min) * (duplength + 3 + 2*LINK_SIZE)
|
|
- (2 + 2*LINK_SIZE);
|
|
}
|
|
|
|
/* Allow space for once brackets for "possessive quantifier" */
|
|
|
|
if (ptr[1] == '+')
|
|
{
|
|
ptr++;
|
|
length += 2 + 2*LINK_SIZE;
|
|
}
|
|
continue;
|
|
|
|
/* Non-special character. For a run of such characters the length required
|
|
is the number of characters + 2, except that the maximum run length is
|
|
MAXLIT. We won't get a skipped space or a non-data escape or the start of a
|
|
# comment as the first character, so the length can't be zero. */
|
|
|
|
NORMAL_CHAR:
|
|
default:
|
|
length += 2;
|
|
runlength = 0;
|
|
do
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
lastcharlength = 1; /* Need length of last char for UTF-8 repeats */
|
|
#endif
|
|
|
|
/* If in a \Q...\E sequence, check for end; otherwise it's a literal */
|
|
if (inescq)
|
|
{
|
|
if (c == '\\' && ptr[1] == 'E')
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;
|
|
}
|
|
else runlength++;
|
|
continue;
|
|
}
|
|
|
|
/* Skip whitespace and comments for /x */
|
|
|
|
if ((options & PCRE_EXTENDED) != 0)
|
|
{
|
|
if ((compile_block.ctypes[c] & ctype_space) != 0) continue;
|
|
if (c == '#')
|
|
{
|
|
/* The space before the ; is to avoid a warning on a silly compiler
|
|
on the Macintosh. */
|
|
while ((c = *(++ptr)) != 0 && c != NEWLINE) ;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Backslash may introduce a data char or a metacharacter; stop the
|
|
string before the latter. */
|
|
|
|
if (c == '\\')
|
|
{
|
|
const uschar *saveptr = ptr;
|
|
c = check_escape(&ptr, errorptr, bracount, options, FALSE,
|
|
&compile_block);
|
|
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
|
if (c < 0) { ptr = saveptr; break; }
|
|
|
|
/* In UTF-8 mode, add on the number of additional bytes needed to
|
|
encode this character, and save the total length in case this is a
|
|
final char that is repeated. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8 && c > 127)
|
|
{
|
|
int i;
|
|
for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++)
|
|
if (c <= utf8_table1[i]) break;
|
|
runlength += i;
|
|
lastcharlength += i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Ordinary character or single-char escape */
|
|
|
|
runlength++;
|
|
}
|
|
|
|
/* This "while" is the end of the "do" above. */
|
|
|
|
while (runlength < MAXLIT &&
|
|
(compile_block.ctypes[c = *(++ptr)] & ctype_meta) == 0);
|
|
|
|
/* If we hit a meta-character, back off to point to it */
|
|
|
|
if (runlength < MAXLIT) ptr--;
|
|
|
|
/* If the last char in the string is a UTF-8 multibyte character, we must
|
|
set lastcharlength correctly. If it was specified as an escape, this will
|
|
already have been done above. However, we also have to support in-line
|
|
UTF-8 characters, so check backwards from where we are. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (utf8)
|
|
{
|
|
const uschar *lastptr = ptr - 1;
|
|
if ((*lastptr & 0x80) != 0)
|
|
{
|
|
while ((*lastptr & 0xc0) == 0x80) lastptr--;
|
|
lastcharlength = ptr - lastptr;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
length += runlength;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
length += 2 + LINK_SIZE; /* For final KET and END */
|
|
|
|
if (length > MAX_PATTERN_SIZE)
|
|
{
|
|
*errorptr = ERR20;
|
|
return NULL;
|
|
}
|
|
|
|
/* Compute the size of data block needed and get it, either from malloc or
|
|
externally provided function. */
|
|
|
|
size = length + sizeof(real_pcre) + name_count * (max_name_size + 3);
|
|
re = (real_pcre *)(pcre_malloc)(size);
|
|
|
|
if (re == NULL)
|
|
{
|
|
*errorptr = ERR21;
|
|
return NULL;
|
|
}
|
|
|
|
/* Put in the magic number, and save the size, options, and table pointer */
|
|
|
|
re->magic_number = MAGIC_NUMBER;
|
|
re->size = size;
|
|
re->options = options;
|
|
re->tables = tables;
|
|
re->name_entry_size = max_name_size + 3;
|
|
re->name_count = name_count;
|
|
|
|
/* The starting points of the name/number translation table and of the code are
|
|
passed around in the compile data block. */
|
|
|
|
compile_block.names_found = 0;
|
|
compile_block.name_entry_size = max_name_size + 3;
|
|
compile_block.name_table = (uschar *)re + sizeof(real_pcre);
|
|
codestart = compile_block.name_table + re->name_entry_size * re->name_count;
|
|
compile_block.start_code = codestart;
|
|
compile_block.req_varyopt = 0;
|
|
|
|
/* Set up a starting, non-extracting bracket, then compile the expression. On
|
|
error, *errorptr will be set non-NULL, so we don't need to look at the result
|
|
of the function here. */
|
|
|
|
ptr = (const uschar *)pattern;
|
|
code = (uschar *)codestart;
|
|
*code = OP_BRA;
|
|
bracount = 0;
|
|
(void)compile_regex(options, options & PCRE_IMS, &bracount, &code, &ptr,
|
|
errorptr, FALSE, 0, &firstbyte, &reqbyte, NULL, &compile_block);
|
|
re->top_bracket = bracount;
|
|
re->top_backref = compile_block.top_backref;
|
|
|
|
/* If not reached end of pattern on success, there's an excess bracket. */
|
|
|
|
if (*errorptr == NULL && *ptr != 0) *errorptr = ERR22;
|
|
|
|
/* Fill in the terminating state and check for disastrous overflow, but
|
|
if debugging, leave the test till after things are printed out. */
|
|
|
|
*code++ = OP_END;
|
|
|
|
#ifndef DEBUG
|
|
if (code - codestart > length) *errorptr = ERR23;
|
|
#endif
|
|
|
|
/* Give an error if there's back reference to a non-existent capturing
|
|
subpattern. */
|
|
|
|
if (re->top_backref > re->top_bracket) *errorptr = ERR15;
|
|
|
|
/* Failed to compile, or error while post-processing */
|
|
|
|
if (*errorptr != NULL)
|
|
{
|
|
(pcre_free)(re);
|
|
PCRE_ERROR_RETURN:
|
|
*erroroffset = ptr - (const uschar *)pattern;
|
|
return NULL;
|
|
}
|
|
|
|
/* If the anchored option was not passed, set the flag if we can determine that
|
|
the pattern is anchored by virtue of ^ characters or \A or anything else (such
|
|
as starting with .* when DOTALL is set).
|
|
|
|
Otherwise, if we know what the first character has to be, save it, because that
|
|
speeds up unanchored matches no end. If not, see if we can set the
|
|
PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
|
|
start with ^. and also when all branches start with .* for non-DOTALL matches.
|
|
*/
|
|
|
|
if ((options & PCRE_ANCHORED) == 0)
|
|
{
|
|
int temp_options = options;
|
|
if (is_anchored(codestart, &temp_options, 0, compile_block.backref_map))
|
|
re->options |= PCRE_ANCHORED;
|
|
else
|
|
{
|
|
if (firstbyte < 0)
|
|
firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
|
|
if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
|
|
{
|
|
int ch = firstbyte & 255;
|
|
re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
|
|
compile_block.fcc[ch] == ch)? ch : firstbyte;
|
|
re->options |= PCRE_FIRSTSET;
|
|
}
|
|
else if (is_startline(codestart, 0, compile_block.backref_map))
|
|
re->options |= PCRE_STARTLINE;
|
|
}
|
|
}
|
|
|
|
/* For an anchored pattern, we use the "required byte" only if it follows a
|
|
variable length item in the regex. Remove the caseless flag for non-caseable
|
|
chars. */
|
|
|
|
if (reqbyte >= 0 &&
|
|
((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
|
|
{
|
|
int ch = reqbyte & 255;
|
|
re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
|
|
compile_block.fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
|
|
re->options |= PCRE_REQCHSET;
|
|
}
|
|
|
|
/* Print out the compiled data for debugging */
|
|
|
|
#ifdef DEBUG
|
|
|
|
printf("Length = %d top_bracket = %d top_backref = %d\n",
|
|
length, re->top_bracket, re->top_backref);
|
|
|
|
if (re->options != 0)
|
|
{
|
|
printf("%s%s%s%s%s%s%s%s%s\n",
|
|
((re->options & PCRE_ANCHORED) != 0)? "anchored " : "",
|
|
((re->options & PCRE_CASELESS) != 0)? "caseless " : "",
|
|
((re->options & PCRE_ICHANGED) != 0)? "case state changed " : "",
|
|
((re->options & PCRE_EXTENDED) != 0)? "extended " : "",
|
|
((re->options & PCRE_MULTILINE) != 0)? "multiline " : "",
|
|
((re->options & PCRE_DOTALL) != 0)? "dotall " : "",
|
|
((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "",
|
|
((re->options & PCRE_EXTRA) != 0)? "extra " : "",
|
|
((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : "");
|
|
}
|
|
|
|
if ((re->options & PCRE_FIRSTSET) != 0)
|
|
{
|
|
int ch = re->first_byte & 255;
|
|
char *caseless = ((re->first_byte & REQ_CASELESS) == 0)? "" : " (caseless)";
|
|
if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
|
|
else printf("First char = \\x%02x%s\n", ch, caseless);
|
|
}
|
|
|
|
if ((re->options & PCRE_REQCHSET) != 0)
|
|
{
|
|
int ch = re->req_byte & 255;
|
|
char *caseless = ((re->req_byte & REQ_CASELESS) == 0)? "" : " (caseless)";
|
|
if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
|
|
else printf("Req char = \\x%02x%s\n", ch, caseless);
|
|
}
|
|
|
|
print_internals(re, stdout);
|
|
|
|
/* This check is done here in the debugging case so that the code that
|
|
was compiled can be seen. */
|
|
|
|
if (code - codestart > length)
|
|
{
|
|
*errorptr = ERR23;
|
|
(pcre_free)(re);
|
|
*erroroffset = ptr - (uschar *)pattern;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
return (pcre *)re;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Match a back-reference *
|
|
*************************************************/
|
|
|
|
/* If a back reference hasn't been set, the length that is passed is greater
|
|
than the number of characters left in the string, so the match fails.
|
|
|
|
Arguments:
|
|
offset index into the offset vector
|
|
eptr points into the subject
|
|
length length to be matched
|
|
md points to match data block
|
|
ims the ims flags
|
|
|
|
Returns: TRUE if matched
|
|
*/
|
|
|
|
static BOOL
|
|
match_ref(int offset, register const uschar *eptr, int length, match_data *md,
|
|
unsigned long int ims)
|
|
{
|
|
const uschar *p = md->start_subject + md->offset_vector[offset];
|
|
|
|
#ifdef DEBUG
|
|
if (eptr >= md->end_subject)
|
|
printf("matching subject <null>");
|
|
else
|
|
{
|
|
printf("matching subject ");
|
|
pchars(eptr, length, TRUE, md);
|
|
}
|
|
printf(" against backref ");
|
|
pchars(p, length, FALSE, md);
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* Always fail if not enough characters left */
|
|
|
|
if (length > md->end_subject - eptr) return FALSE;
|
|
|
|
/* Separate the caselesss case for speed */
|
|
|
|
if ((ims & PCRE_CASELESS) != 0)
|
|
{
|
|
while (length-- > 0)
|
|
if (md->lcc[*p++] != md->lcc[*eptr++]) return FALSE;
|
|
}
|
|
else
|
|
{ while (length-- > 0) if (*p++ != *eptr++) return FALSE; }
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/*************************************************
|
|
* Match character against an XCLASS *
|
|
*************************************************/
|
|
|
|
/* This function is called from within the XCLASS code below, to match a
|
|
character against an extended class which might match values > 255.
|
|
|
|
Arguments:
|
|
c the character
|
|
data points to the flag byte of the XCLASS data
|
|
|
|
Returns: TRUE if character matches, else FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
match_xclass(int c, const uschar *data)
|
|
{
|
|
int t;
|
|
BOOL negated = (*data & XCL_NOT) != 0;
|
|
|
|
/* Character values < 256 are matched against a bitmap, if one is present. If
|
|
not, we still carry on, because there may be ranges that start below 256 in the
|
|
additional data. */
|
|
|
|
if (c < 256)
|
|
{
|
|
if ((*data & XCL_MAP) != 0 && (data[1 + c/8] & (1 << (c&7))) != 0)
|
|
return !negated; /* char found */
|
|
}
|
|
|
|
/* Now match against the list of large chars or ranges that end with a large
|
|
char. First skip the bit map if present. */
|
|
|
|
if ((*data++ & XCL_MAP) != 0) data += 32;
|
|
|
|
while ((t = *data++) != XCL_END)
|
|
{
|
|
int x, y;
|
|
GETCHARINC(x, data);
|
|
if (t == XCL_SINGLE)
|
|
{
|
|
if (c == x) return !negated;
|
|
}
|
|
else
|
|
{
|
|
GETCHARINC(y, data);
|
|
if (c >= x && c <= y) return !negated;
|
|
}
|
|
}
|
|
|
|
return negated; /* char was not found */
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Match from current position *
|
|
*************************************************/
|
|
|
|
/* On entry ecode points to the first opcode, and eptr to the first character
|
|
in the subject string, while eptrb holds the value of eptr at the start of the
|
|
last bracketed group - used for breaking infinite loops matching zero-length
|
|
strings. This function is called recursively in many circumstances. Whenever it
|
|
returns a negative (error) response, the outer incarnation must also return the
|
|
same response.
|
|
|
|
Performance note: It might be tempting to extract commonly used fields from the
|
|
md structure (e.g. utf8, end_subject) into individual variables to improve
|
|
performance. Tests using gcc on a SPARC disproved this; in the first case, it
|
|
made performance worse.
|
|
|
|
Arguments:
|
|
eptr pointer in subject
|
|
ecode position in code
|
|
offset_top current top pointer
|
|
md pointer to "static" info for the match
|
|
ims current /i, /m, and /s options
|
|
eptrb pointer to chain of blocks containing eptr at start of
|
|
brackets - for testing for empty matches
|
|
flags can contain
|
|
match_condassert - this is an assertion condition
|
|
match_isgroup - this is the start of a bracketed group
|
|
|
|
Returns: MATCH_MATCH if matched ) these values are >= 0
|
|
MATCH_NOMATCH if failed to match )
|
|
a negative PCRE_ERROR_xxx value if aborted by an error condition
|
|
(e.g. stopped by recursion limit)
|
|
*/
|
|
|
|
static int
|
|
match(register const uschar *eptr, register const uschar *ecode,
|
|
int offset_top, match_data *md, unsigned long int ims, eptrblock *eptrb,
|
|
int flags)
|
|
{
|
|
unsigned long int original_ims = ims; /* Save for resetting on ')' */
|
|
register int rrc;
|
|
eptrblock newptrb;
|
|
|
|
if (md->match_call_count++ >= md->match_limit) return PCRE_ERROR_MATCHLIMIT;
|
|
|
|
/* At the start of a bracketed group, add the current subject pointer to the
|
|
stack of such pointers, to be re-instated at the end of the group when we hit
|
|
the closing ket. When match() is called in other circumstances, we don't add to
|
|
the stack. */
|
|
|
|
if ((flags & match_isgroup) != 0)
|
|
{
|
|
newptrb.prev = eptrb;
|
|
newptrb.saved_eptr = eptr;
|
|
eptrb = &newptrb;
|
|
}
|
|
|
|
/* Now start processing the operations. */
|
|
|
|
for (;;)
|
|
{
|
|
int op = (int)*ecode;
|
|
int min, max, ctype;
|
|
register int i;
|
|
register int c;
|
|
BOOL minimize = FALSE;
|
|
|
|
/* Opening capturing bracket. If there is space in the offset vector, save
|
|
the current subject position in the working slot at the top of the vector. We
|
|
mustn't change the current values of the data slot, because they may be set
|
|
from a previous iteration of this group, and be referred to by a reference
|
|
inside the group.
|
|
|
|
If the bracket fails to match, we need to restore this value and also the
|
|
values of the final offsets, in case they were set by a previous iteration of
|
|
the same bracket.
|
|
|
|
If there isn't enough space in the offset vector, treat this as if it were a
|
|
non-capturing bracket. Don't worry about setting the flag for the error case
|
|
here; that is handled in the code for KET. */
|
|
|
|
if (op > OP_BRA)
|
|
{
|
|
int offset;
|
|
int number = op - OP_BRA;
|
|
|
|
/* For extended extraction brackets (large number), we have to fish out the
|
|
number from a dummy opcode at the start. */
|
|
|
|
if (number > EXTRACT_BASIC_MAX)
|
|
number = GET2(ecode, 2+LINK_SIZE);
|
|
offset = number << 1;
|
|
|
|
#ifdef DEBUG
|
|
printf("start bracket %d subject=", number);
|
|
pchars(eptr, 16, TRUE, md);
|
|
printf("\n");
|
|
#endif
|
|
|
|
if (offset < md->offset_max)
|
|
{
|
|
int save_offset1 = md->offset_vector[offset];
|
|
int save_offset2 = md->offset_vector[offset+1];
|
|
int save_offset3 = md->offset_vector[md->offset_end - number];
|
|
int save_capture_last = md->capture_last;
|
|
|
|
DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3));
|
|
md->offset_vector[md->offset_end - number] = eptr - md->start_subject;
|
|
|
|
do
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims,
|
|
eptrb, match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
md->capture_last = save_capture_last;
|
|
ecode += GET(ecode, 1);
|
|
}
|
|
while (*ecode == OP_ALT);
|
|
|
|
DPRINTF(("bracket %d failed\n", number));
|
|
|
|
md->offset_vector[offset] = save_offset1;
|
|
md->offset_vector[offset+1] = save_offset2;
|
|
md->offset_vector[md->offset_end - number] = save_offset3;
|
|
|
|
return MATCH_NOMATCH;
|
|
}
|
|
|
|
/* Insufficient room for saving captured contents */
|
|
|
|
else op = OP_BRA;
|
|
}
|
|
|
|
/* Other types of node can be handled by a switch */
|
|
|
|
switch(op)
|
|
{
|
|
case OP_BRA: /* Non-capturing bracket: optimized */
|
|
DPRINTF(("start bracket 0\n"));
|
|
do
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb,
|
|
match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
ecode += GET(ecode, 1);
|
|
}
|
|
while (*ecode == OP_ALT);
|
|
DPRINTF(("bracket 0 failed\n"));
|
|
return MATCH_NOMATCH;
|
|
|
|
/* Conditional group: compilation checked that there are no more than
|
|
two branches. If the condition is false, skipping the first branch takes us
|
|
past the end if there is only one branch, but that's OK because that is
|
|
exactly what going to the ket would do. */
|
|
|
|
case OP_COND:
|
|
if (ecode[LINK_SIZE+1] == OP_CREF) /* Condition extract or recurse test */
|
|
{
|
|
int offset = GET2(ecode, LINK_SIZE+2) << 1; /* Doubled ref number */
|
|
BOOL condition = (offset == CREF_RECURSE * 2)?
|
|
(md->recursive != NULL) :
|
|
(offset < offset_top && md->offset_vector[offset] >= 0);
|
|
return match(eptr, ecode + (condition?
|
|
(LINK_SIZE + 4) : (LINK_SIZE + 1 + GET(ecode, 1))),
|
|
offset_top, md, ims, eptrb, match_isgroup);
|
|
}
|
|
|
|
/* The condition is an assertion. Call match() to evaluate it - setting
|
|
the final argument TRUE causes it to stop at the end of an assertion. */
|
|
|
|
else
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
|
|
match_condassert | match_isgroup)) == MATCH_MATCH)
|
|
{
|
|
ecode += 1 + LINK_SIZE + GET(ecode, LINK_SIZE+2);
|
|
while (*ecode == OP_ALT) ecode += GET(ecode, 1);
|
|
}
|
|
else if (rrc != MATCH_NOMATCH) return rrc;
|
|
else ecode += GET(ecode, 1);
|
|
return match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb,
|
|
match_isgroup);
|
|
}
|
|
/* Control never reaches here */
|
|
|
|
/* Skip over conditional reference or large extraction number data if
|
|
encountered. */
|
|
|
|
case OP_CREF:
|
|
case OP_BRANUMBER:
|
|
ecode += 3;
|
|
break;
|
|
|
|
/* End of the pattern. If we are in a recursion, we should restore the
|
|
offsets appropriately and continue from after the call. */
|
|
|
|
case OP_END:
|
|
if (md->recursive != NULL && md->recursive->group_num == 0)
|
|
{
|
|
recursion_info *rec = md->recursive;
|
|
DPRINTF(("Hit the end in a (?0) recursion\n"));
|
|
md->recursive = rec->prev;
|
|
memmove(md->offset_vector, rec->offset_save,
|
|
rec->saved_max * sizeof(int));
|
|
md->start_match = rec->save_start;
|
|
ims = original_ims;
|
|
ecode = rec->after_call;
|
|
break;
|
|
}
|
|
|
|
/* Otherwise, if PCRE_NOTEMPTY is set, fail if we have matched an empty
|
|
string - backtracking will then try other alternatives, if any. */
|
|
|
|
if (md->notempty && eptr == md->start_match) return MATCH_NOMATCH;
|
|
md->end_match_ptr = eptr; /* Record where we ended */
|
|
md->end_offset_top = offset_top; /* and how many extracts were taken */
|
|
return MATCH_MATCH;
|
|
|
|
/* Change option settings */
|
|
|
|
case OP_OPT:
|
|
ims = ecode[1];
|
|
ecode += 2;
|
|
DPRINTF(("ims set to %02lx\n", ims));
|
|
break;
|
|
|
|
/* Assertion brackets. Check the alternative branches in turn - the
|
|
matching won't pass the KET for an assertion. If any one branch matches,
|
|
the assertion is true. Lookbehind assertions have an OP_REVERSE item at the
|
|
start of each branch to move the current point backwards, so the code at
|
|
this level is identical to the lookahead case. */
|
|
|
|
case OP_ASSERT:
|
|
case OP_ASSERTBACK:
|
|
do
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
|
|
match_isgroup)) == MATCH_MATCH) break;
|
|
if (rrc != MATCH_NOMATCH) return rrc;
|
|
ecode += GET(ecode, 1);
|
|
}
|
|
while (*ecode == OP_ALT);
|
|
if (*ecode == OP_KET) return MATCH_NOMATCH;
|
|
|
|
/* If checking an assertion for a condition, return MATCH_MATCH. */
|
|
|
|
if ((flags & match_condassert) != 0) return MATCH_MATCH;
|
|
|
|
/* Continue from after the assertion, updating the offsets high water
|
|
mark, since extracts may have been taken during the assertion. */
|
|
|
|
do ecode += GET(ecode,1); while (*ecode == OP_ALT);
|
|
ecode += 1 + LINK_SIZE;
|
|
offset_top = md->end_offset_top;
|
|
continue;
|
|
|
|
/* Negative assertion: all branches must fail to match */
|
|
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK_NOT:
|
|
do
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
|
|
match_isgroup)) == MATCH_MATCH) return MATCH_NOMATCH;
|
|
if (rrc != MATCH_NOMATCH) return rrc;
|
|
ecode += GET(ecode,1);
|
|
}
|
|
while (*ecode == OP_ALT);
|
|
|
|
if ((flags & match_condassert) != 0) return MATCH_MATCH;
|
|
|
|
ecode += 1 + LINK_SIZE;
|
|
continue;
|
|
|
|
/* Move the subject pointer back. This occurs only at the start of
|
|
each branch of a lookbehind assertion. If we are too close to the start to
|
|
move back, this match function fails. When working with UTF-8 we move
|
|
back a number of characters, not bytes. */
|
|
|
|
case OP_REVERSE:
|
|
#ifdef SUPPORT_UTF8
|
|
c = GET(ecode,1);
|
|
for (i = 0; i < c; i++)
|
|
{
|
|
eptr--;
|
|
BACKCHAR(eptr)
|
|
}
|
|
#else
|
|
eptr -= GET(ecode,1);
|
|
#endif
|
|
|
|
if (eptr < md->start_subject) return MATCH_NOMATCH;
|
|
ecode += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* The callout item calls an external function, if one is provided, passing
|
|
details of the match so far. This is mainly for debugging, though the
|
|
function is able to force a failure. */
|
|
|
|
case OP_CALLOUT:
|
|
if (pcre_callout != NULL)
|
|
{
|
|
pcre_callout_block cb;
|
|
cb.version = 0; /* Version 0 of the callout block */
|
|
cb.callout_number = ecode[1];
|
|
cb.offset_vector = md->offset_vector;
|
|
cb.subject = (const char *)md->start_subject;
|
|
cb.subject_length = md->end_subject - md->start_subject;
|
|
cb.start_match = md->start_match - md->start_subject;
|
|
cb.current_position = eptr - md->start_subject;
|
|
cb.capture_top = offset_top/2;
|
|
cb.capture_last = md->capture_last;
|
|
cb.callout_data = md->callout_data;
|
|
if ((rrc = (*pcre_callout)(&cb)) > 0) return MATCH_NOMATCH;
|
|
if (rrc < 0) return rrc;
|
|
}
|
|
ecode += 2;
|
|
break;
|
|
|
|
/* Recursion either matches the current regex, or some subexpression. The
|
|
offset data is the offset to the starting bracket from the start of the
|
|
whole pattern. However, it is possible that a BRAZERO was inserted before
|
|
this bracket after we took the offset - we just skip it if encountered.
|
|
|
|
If there are any capturing brackets started but not finished, we have to
|
|
save their starting points and reinstate them after the recursion. However,
|
|
we don't know how many such there are (offset_top records the completed
|
|
total) so we just have to save all the potential data. There may be up to
|
|
65535 such values, which is too large to put on the stack, but using malloc
|
|
for small numbers seems expensive. As a compromise, the stack is used when
|
|
there are no more than REC_STACK_SAVE_MAX values to store; otherwise malloc
|
|
is used. A problem is what to do if the malloc fails ... there is no way of
|
|
returning to the top level with an error. Save the top REC_STACK_SAVE_MAX
|
|
values on the stack, and accept that the rest may be wrong.
|
|
|
|
There are also other values that have to be saved. We use a chained
|
|
sequence of blocks that actually live on the stack. Thanks to Robin Houston
|
|
for the original version of this logic. */
|
|
|
|
case OP_RECURSE:
|
|
{
|
|
int stacksave[REC_STACK_SAVE_MAX];
|
|
recursion_info new_recursive;
|
|
const uschar *callpat = md->start_code + GET(ecode, 1);
|
|
|
|
if (*callpat == OP_BRAZERO) callpat++;
|
|
|
|
new_recursive.group_num = *callpat - OP_BRA;
|
|
|
|
/* For extended extraction brackets (large number), we have to fish out
|
|
the number from a dummy opcode at the start. */
|
|
|
|
if (new_recursive.group_num > EXTRACT_BASIC_MAX)
|
|
new_recursive.group_num = GET2(callpat, 2+LINK_SIZE);
|
|
|
|
/* Add to "recursing stack" */
|
|
|
|
new_recursive.prev = md->recursive;
|
|
md->recursive = &new_recursive;
|
|
|
|
/* Find where to continue from afterwards */
|
|
|
|
ecode += 1 + LINK_SIZE;
|
|
new_recursive.after_call = ecode;
|
|
|
|
/* Now save the offset data. */
|
|
|
|
new_recursive.saved_max = md->offset_end;
|
|
if (new_recursive.saved_max <= REC_STACK_SAVE_MAX)
|
|
new_recursive.offset_save = stacksave;
|
|
else
|
|
{
|
|
new_recursive.offset_save =
|
|
(int *)(pcre_malloc)(new_recursive.saved_max * sizeof(int));
|
|
if (new_recursive.offset_save == NULL) return PCRE_ERROR_NOMEMORY;
|
|
}
|
|
|
|
memcpy(new_recursive.offset_save, md->offset_vector,
|
|
new_recursive.saved_max * sizeof(int));
|
|
new_recursive.save_start = md->start_match;
|
|
md->start_match = eptr;
|
|
|
|
/* OK, now we can do the recursion. For each top-level alternative we
|
|
restore the offset and recursion data. */
|
|
|
|
DPRINTF(("Recursing into group %d\n", new_recursive.group_num));
|
|
do
|
|
{
|
|
if ((rrc = match(eptr, callpat + 1 + LINK_SIZE, offset_top, md, ims,
|
|
eptrb, match_isgroup)) == MATCH_MATCH)
|
|
{
|
|
md->recursive = new_recursive.prev;
|
|
if (new_recursive.offset_save != stacksave)
|
|
(pcre_free)(new_recursive.offset_save);
|
|
return MATCH_MATCH;
|
|
}
|
|
else if (rrc != MATCH_NOMATCH) return rrc;
|
|
|
|
md->recursive = &new_recursive;
|
|
memcpy(md->offset_vector, new_recursive.offset_save,
|
|
new_recursive.saved_max * sizeof(int));
|
|
callpat += GET(callpat, 1);
|
|
}
|
|
while (*callpat == OP_ALT);
|
|
|
|
DPRINTF(("Recursion didn't match\n"));
|
|
md->recursive = new_recursive.prev;
|
|
if (new_recursive.offset_save != stacksave)
|
|
(pcre_free)(new_recursive.offset_save);
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never reaches here */
|
|
|
|
/* "Once" brackets are like assertion brackets except that after a match,
|
|
the point in the subject string is not moved back. Thus there can never be
|
|
a move back into the brackets. Friedl calls these "atomic" subpatterns.
|
|
Check the alternative branches in turn - the matching won't pass the KET
|
|
for this kind of subpattern. If any one branch matches, we carry on as at
|
|
the end of a normal bracket, leaving the subject pointer. */
|
|
|
|
case OP_ONCE:
|
|
{
|
|
const uschar *prev = ecode;
|
|
const uschar *saved_eptr = eptr;
|
|
|
|
do
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims,
|
|
eptrb, match_isgroup)) == MATCH_MATCH) break;
|
|
if (rrc != MATCH_NOMATCH) return rrc;
|
|
ecode += GET(ecode,1);
|
|
}
|
|
while (*ecode == OP_ALT);
|
|
|
|
/* If hit the end of the group (which could be repeated), fail */
|
|
|
|
if (*ecode != OP_ONCE && *ecode != OP_ALT) return MATCH_NOMATCH;
|
|
|
|
/* Continue as from after the assertion, updating the offsets high water
|
|
mark, since extracts may have been taken. */
|
|
|
|
do ecode += GET(ecode,1); while (*ecode == OP_ALT);
|
|
|
|
offset_top = md->end_offset_top;
|
|
eptr = md->end_match_ptr;
|
|
|
|
/* For a non-repeating ket, just continue at this level. This also
|
|
happens for a repeating ket if no characters were matched in the group.
|
|
This is the forcible breaking of infinite loops as implemented in Perl
|
|
5.005. If there is an options reset, it will get obeyed in the normal
|
|
course of events. */
|
|
|
|
if (*ecode == OP_KET || eptr == saved_eptr)
|
|
{
|
|
ecode += 1+LINK_SIZE;
|
|
break;
|
|
}
|
|
|
|
/* The repeating kets try the rest of the pattern or restart from the
|
|
preceding bracket, in the appropriate order. We need to reset any options
|
|
that changed within the bracket before re-running it, so check the next
|
|
opcode. */
|
|
|
|
if (ecode[1+LINK_SIZE] == OP_OPT)
|
|
{
|
|
ims = (ims & ~PCRE_IMS) | ecode[4];
|
|
DPRINTF(("ims set to %02lx at group repeat\n", ims));
|
|
}
|
|
|
|
if (*ecode == OP_KETRMIN)
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims,
|
|
eptrb, 0)) != MATCH_NOMATCH) return rrc;
|
|
if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb,
|
|
match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
}
|
|
else /* OP_KETRMAX */
|
|
{
|
|
if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb,
|
|
match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
if ((rrc = match(eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb,
|
|
0)) != MATCH_NOMATCH) return rrc;
|
|
}
|
|
}
|
|
return MATCH_NOMATCH;
|
|
|
|
/* An alternation is the end of a branch; scan along to find the end of the
|
|
bracketed group and go to there. */
|
|
|
|
case OP_ALT:
|
|
do ecode += GET(ecode,1); while (*ecode == OP_ALT);
|
|
break;
|
|
|
|
/* BRAZERO and BRAMINZERO occur just before a bracket group, indicating
|
|
that it may occur zero times. It may repeat infinitely, or not at all -
|
|
i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper
|
|
repeat limits are compiled as a number of copies, with the optional ones
|
|
preceded by BRAZERO or BRAMINZERO. */
|
|
|
|
case OP_BRAZERO:
|
|
{
|
|
const uschar *next = ecode+1;
|
|
if ((rrc = match(eptr, next, offset_top, md, ims, eptrb, match_isgroup))
|
|
!= MATCH_NOMATCH) return rrc;
|
|
do next += GET(next,1); while (*next == OP_ALT);
|
|
ecode = next + 1+LINK_SIZE;
|
|
}
|
|
break;
|
|
|
|
case OP_BRAMINZERO:
|
|
{
|
|
const uschar *next = ecode+1;
|
|
do next += GET(next,1); while (*next == OP_ALT);
|
|
if ((rrc = match(eptr, next + 1+LINK_SIZE, offset_top, md, ims, eptrb,
|
|
match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
ecode++;
|
|
}
|
|
break;
|
|
|
|
/* End of a group, repeated or non-repeating. If we are at the end of
|
|
an assertion "group", stop matching and return MATCH_MATCH, but record the
|
|
current high water mark for use by positive assertions. Do this also
|
|
for the "once" (not-backup up) groups. */
|
|
|
|
case OP_KET:
|
|
case OP_KETRMIN:
|
|
case OP_KETRMAX:
|
|
{
|
|
const uschar *prev = ecode - GET(ecode, 1);
|
|
const uschar *saved_eptr = eptrb->saved_eptr;
|
|
|
|
eptrb = eptrb->prev; /* Back up the stack of bracket start pointers */
|
|
|
|
if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT ||
|
|
*prev == OP_ASSERTBACK || *prev == OP_ASSERTBACK_NOT ||
|
|
*prev == OP_ONCE)
|
|
{
|
|
md->end_match_ptr = eptr; /* For ONCE */
|
|
md->end_offset_top = offset_top;
|
|
return MATCH_MATCH;
|
|
}
|
|
|
|
/* In all other cases except a conditional group we have to check the
|
|
group number back at the start and if necessary complete handling an
|
|
extraction by setting the offsets and bumping the high water mark. */
|
|
|
|
if (*prev != OP_COND)
|
|
{
|
|
int offset;
|
|
int number = *prev - OP_BRA;
|
|
|
|
/* For extended extraction brackets (large number), we have to fish out
|
|
the number from a dummy opcode at the start. */
|
|
|
|
if (number > EXTRACT_BASIC_MAX) number = GET2(prev, 2+LINK_SIZE);
|
|
offset = number << 1;
|
|
|
|
#ifdef DEBUG
|
|
printf("end bracket %d", number);
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* Test for a numbered group. This includes groups called as a result
|
|
of recursion. Note that whole-pattern recursion is coded as a recurse
|
|
into group 0, so it won't be picked up here. Instead, we catch it when
|
|
the OP_END is reached. */
|
|
|
|
if (number > 0)
|
|
{
|
|
md->capture_last = number;
|
|
if (offset >= md->offset_max) md->offset_overflow = TRUE; else
|
|
{
|
|
md->offset_vector[offset] =
|
|
md->offset_vector[md->offset_end - number];
|
|
md->offset_vector[offset+1] = eptr - md->start_subject;
|
|
if (offset_top <= offset) offset_top = offset + 2;
|
|
}
|
|
|
|
/* Handle a recursively called group. Restore the offsets
|
|
appropriately and continue from after the call. */
|
|
|
|
if (md->recursive != NULL && md->recursive->group_num == number)
|
|
{
|
|
recursion_info *rec = md->recursive;
|
|
DPRINTF(("Recursion (%d) succeeded - continuing\n", number));
|
|
md->recursive = rec->prev;
|
|
md->start_match = rec->save_start;
|
|
memcpy(md->offset_vector, rec->offset_save,
|
|
rec->saved_max * sizeof(int));
|
|
ecode = rec->after_call;
|
|
ims = original_ims;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reset the value of the ims flags, in case they got changed during
|
|
the group. */
|
|
|
|
ims = original_ims;
|
|
DPRINTF(("ims reset to %02lx\n", ims));
|
|
|
|
/* For a non-repeating ket, just continue at this level. This also
|
|
happens for a repeating ket if no characters were matched in the group.
|
|
This is the forcible breaking of infinite loops as implemented in Perl
|
|
5.005. If there is an options reset, it will get obeyed in the normal
|
|
course of events. */
|
|
|
|
if (*ecode == OP_KET || eptr == saved_eptr)
|
|
{
|
|
ecode += 1 + LINK_SIZE;
|
|
break;
|
|
}
|
|
|
|
/* The repeating kets try the rest of the pattern or restart from the
|
|
preceding bracket, in the appropriate order. */
|
|
|
|
if (*ecode == OP_KETRMIN)
|
|
{
|
|
if ((rrc = match(eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb,
|
|
0)) != MATCH_NOMATCH) return rrc;
|
|
if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb,
|
|
match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
}
|
|
else /* OP_KETRMAX */
|
|
{
|
|
if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb,
|
|
match_isgroup)) != MATCH_NOMATCH) return rrc;
|
|
if ((rrc = match(eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb,
|
|
0)) != MATCH_NOMATCH) return rrc;
|
|
}
|
|
}
|
|
return MATCH_NOMATCH;
|
|
|
|
/* Start of subject unless notbol, or after internal newline if multiline */
|
|
|
|
case OP_CIRC:
|
|
if (md->notbol && eptr == md->start_subject) return MATCH_NOMATCH;
|
|
if ((ims & PCRE_MULTILINE) != 0)
|
|
{
|
|
if (eptr != md->start_subject && eptr[-1] != NEWLINE)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
}
|
|
/* ... else fall through */
|
|
|
|
/* Start of subject assertion */
|
|
|
|
case OP_SOD:
|
|
if (eptr != md->start_subject) return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
/* Start of match assertion */
|
|
|
|
case OP_SOM:
|
|
if (eptr != md->start_subject + md->start_offset) return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
/* Assert before internal newline if multiline, or before a terminating
|
|
newline unless endonly is set, else end of subject unless noteol is set. */
|
|
|
|
case OP_DOLL:
|
|
if ((ims & PCRE_MULTILINE) != 0)
|
|
{
|
|
if (eptr < md->end_subject)
|
|
{ if (*eptr != NEWLINE) return MATCH_NOMATCH; }
|
|
else
|
|
{ if (md->noteol) return MATCH_NOMATCH; }
|
|
ecode++;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (md->noteol) return MATCH_NOMATCH;
|
|
if (!md->endonly)
|
|
{
|
|
if (eptr < md->end_subject - 1 ||
|
|
(eptr == md->end_subject - 1 && *eptr != NEWLINE))
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
}
|
|
}
|
|
/* ... else fall through */
|
|
|
|
/* End of subject assertion (\z) */
|
|
|
|
case OP_EOD:
|
|
if (eptr < md->end_subject) return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
/* End of subject or ending \n assertion (\Z) */
|
|
|
|
case OP_EODN:
|
|
if (eptr < md->end_subject - 1 ||
|
|
(eptr == md->end_subject - 1 && *eptr != NEWLINE)) return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
/* Word boundary assertions */
|
|
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
case OP_WORD_BOUNDARY:
|
|
{
|
|
BOOL prev_is_word, cur_is_word;
|
|
|
|
/* Find out if the previous and current characters are "word" characters.
|
|
It takes a bit more work in UTF-8 mode. Characters > 255 are assumed to
|
|
be "non-word" characters. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
if (md->utf8)
|
|
{
|
|
if (eptr == md->start_subject) prev_is_word = FALSE; else
|
|
{
|
|
const uschar *lastptr = eptr - 1;
|
|
while ((*lastptr & 0xc0) == 0x80) lastptr--;
|
|
GETCHAR(c, lastptr);
|
|
prev_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0;
|
|
}
|
|
if (eptr >= md->end_subject) cur_is_word = FALSE; else
|
|
{
|
|
GETCHAR(c, eptr);
|
|
cur_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* More streamlined when not in UTF-8 mode */
|
|
|
|
{
|
|
prev_is_word = (eptr != md->start_subject) &&
|
|
((md->ctypes[eptr[-1]] & ctype_word) != 0);
|
|
cur_is_word = (eptr < md->end_subject) &&
|
|
((md->ctypes[*eptr] & ctype_word) != 0);
|
|
}
|
|
|
|
/* Now see if the situation is what we want */
|
|
|
|
if ((*ecode++ == OP_WORD_BOUNDARY)?
|
|
cur_is_word == prev_is_word : cur_is_word != prev_is_word)
|
|
return MATCH_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
/* Match a single character type; inline for speed */
|
|
|
|
case OP_ANY:
|
|
if ((ims & PCRE_DOTALL) == 0 && eptr < md->end_subject && *eptr == NEWLINE)
|
|
return MATCH_NOMATCH;
|
|
if (eptr++ >= md->end_subject) return MATCH_NOMATCH;
|
|
#ifdef SUPPORT_UTF8
|
|
if (md->utf8)
|
|
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
|
|
#endif
|
|
ecode++;
|
|
break;
|
|
|
|
/* Match a single byte, even in UTF-8 mode. This opcode really does match
|
|
any byte, even newline, independent of the setting of PCRE_DOTALL. */
|
|
|
|
case OP_ANYBYTE:
|
|
if (eptr++ >= md->end_subject) return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINCTEST(c, eptr);
|
|
if (
|
|
#ifdef SUPPORT_UTF8
|
|
c < 256 &&
|
|
#endif
|
|
(md->ctypes[c] & ctype_digit) != 0
|
|
)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINCTEST(c, eptr);
|
|
if (
|
|
#ifdef SUPPORT_UTF8
|
|
c >= 256 ||
|
|
#endif
|
|
(md->ctypes[c] & ctype_digit) == 0
|
|
)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINCTEST(c, eptr);
|
|
if (
|
|
#ifdef SUPPORT_UTF8
|
|
c < 256 &&
|
|
#endif
|
|
(md->ctypes[c] & ctype_space) != 0
|
|
)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINCTEST(c, eptr);
|
|
if (
|
|
#ifdef SUPPORT_UTF8
|
|
c >= 256 ||
|
|
#endif
|
|
(md->ctypes[c] & ctype_space) == 0
|
|
)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINCTEST(c, eptr);
|
|
if (
|
|
#ifdef SUPPORT_UTF8
|
|
c < 256 &&
|
|
#endif
|
|
(md->ctypes[c] & ctype_word) != 0
|
|
)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINCTEST(c, eptr);
|
|
if (
|
|
#ifdef SUPPORT_UTF8
|
|
c >= 256 ||
|
|
#endif
|
|
(md->ctypes[c] & ctype_word) == 0
|
|
)
|
|
return MATCH_NOMATCH;
|
|
ecode++;
|
|
break;
|
|
|
|
/* Match a back reference, possibly repeatedly. Look past the end of the
|
|
item to see if there is repeat information following. The code is similar
|
|
to that for character classes, but repeated for efficiency. Then obey
|
|
similar code to character type repeats - written out again for speed.
|
|
However, if the referenced string is the empty string, always treat
|
|
it as matched, any number of times (otherwise there could be infinite
|
|
loops). */
|
|
|
|
case OP_REF:
|
|
{
|
|
int length;
|
|
int offset = GET2(ecode, 1) << 1; /* Doubled ref number */
|
|
ecode += 3; /* Advance past item */
|
|
|
|
/* If the reference is unset, set the length to be longer than the amount
|
|
of subject left; this ensures that every attempt at a match fails. We
|
|
can't just fail here, because of the possibility of quantifiers with zero
|
|
minima. */
|
|
|
|
length = (offset >= offset_top || md->offset_vector[offset] < 0)?
|
|
md->end_subject - eptr + 1 :
|
|
md->offset_vector[offset+1] - md->offset_vector[offset];
|
|
|
|
/* Set up for repetition, or handle the non-repeated case */
|
|
|
|
switch (*ecode)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
c = *ecode++ - OP_CRSTAR;
|
|
minimize = (c & 1) != 0;
|
|
min = rep_min[c]; /* Pick up values from tables; */
|
|
max = rep_max[c]; /* zero for max => infinity */
|
|
if (max == 0) max = INT_MAX;
|
|
break;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
minimize = (*ecode == OP_CRMINRANGE);
|
|
min = GET2(ecode, 1);
|
|
max = GET2(ecode, 3);
|
|
if (max == 0) max = INT_MAX;
|
|
ecode += 5;
|
|
break;
|
|
|
|
default: /* No repeat follows */
|
|
if (!match_ref(offset, eptr, length, md, ims)) return MATCH_NOMATCH;
|
|
eptr += length;
|
|
continue; /* With the main loop */
|
|
}
|
|
|
|
/* If the length of the reference is zero, just continue with the
|
|
main loop. */
|
|
|
|
if (length == 0) continue;
|
|
|
|
/* First, ensure the minimum number of matches are present. We get back
|
|
the length of the reference string explicitly rather than passing the
|
|
address of eptr, so that eptr can be a register variable. */
|
|
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (!match_ref(offset, eptr, length, md, ims)) return MATCH_NOMATCH;
|
|
eptr += length;
|
|
}
|
|
|
|
/* If min = max, continue at the same level without recursion.
|
|
They are not both allowed to be zero. */
|
|
|
|
if (min == max) continue;
|
|
|
|
/* If minimizing, keep trying and advancing the pointer */
|
|
|
|
if (minimize)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || !match_ref(offset, eptr, length, md, ims))
|
|
return MATCH_NOMATCH;
|
|
eptr += length;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* If maximizing, find the longest string and work backwards */
|
|
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (!match_ref(offset, eptr, length, md, ims)) break;
|
|
eptr += length;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
eptr -= length;
|
|
}
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
|
|
|
|
|
|
/* Match a bit-mapped character class, possibly repeatedly. This op code is
|
|
used when all the characters in the class have values in the range 0-255.
|
|
The only difference between OP_CLASS and OP_NCLASS occurs when a data
|
|
character outside the range is encountered.
|
|
|
|
First, look past the end of the item to see if there is repeat information
|
|
following. Then obey similar code to character type repeats - written out
|
|
again for speed. */
|
|
|
|
case OP_NCLASS:
|
|
case OP_CLASS:
|
|
{
|
|
const uschar *data = ecode + 1; /* Save for matching */
|
|
ecode += 33; /* Advance past the item */
|
|
|
|
switch (*ecode)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
c = *ecode++ - OP_CRSTAR;
|
|
minimize = (c & 1) != 0;
|
|
min = rep_min[c]; /* Pick up values from tables; */
|
|
max = rep_max[c]; /* zero for max => infinity */
|
|
if (max == 0) max = INT_MAX;
|
|
break;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
minimize = (*ecode == OP_CRMINRANGE);
|
|
min = GET2(ecode, 1);
|
|
max = GET2(ecode, 3);
|
|
if (max == 0) max = INT_MAX;
|
|
ecode += 5;
|
|
break;
|
|
|
|
default: /* No repeat follows */
|
|
min = max = 1;
|
|
break;
|
|
}
|
|
|
|
/* First, ensure the minimum number of matches are present. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINC(c, eptr);
|
|
if (c > 255)
|
|
{
|
|
if (op == OP_CLASS) return MATCH_NOMATCH;
|
|
}
|
|
else
|
|
{
|
|
if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
c = *eptr++;
|
|
if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
|
|
/* If max == min we can continue with the main loop without the
|
|
need to recurse. */
|
|
|
|
if (min == max) continue;
|
|
|
|
/* If minimizing, keep testing the rest of the expression and advancing
|
|
the pointer while it matches the class. */
|
|
|
|
if (minimize)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINC(c, eptr);
|
|
if (c > 255)
|
|
{
|
|
if (op == OP_CLASS) return MATCH_NOMATCH;
|
|
}
|
|
else
|
|
{
|
|
if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
c = *eptr++;
|
|
if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* If maximizing, find the longest possible run, then work backwards. */
|
|
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c > 255)
|
|
{
|
|
if (op == OP_CLASS) break;
|
|
}
|
|
else
|
|
{
|
|
if ((data[c/8] & (1 << (c&7))) == 0) break;
|
|
}
|
|
eptr += len;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
BACKCHAR(eptr)
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject) break;
|
|
c = *eptr;
|
|
if ((data[c/8] & (1 << (c&7))) == 0) break;
|
|
eptr++;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
}
|
|
}
|
|
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
|
|
|
|
/* Match an extended character class. This opcode is encountered only
|
|
in UTF-8 mode, because that's the only time it is compiled. */
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
case OP_XCLASS:
|
|
{
|
|
const uschar *data = ecode + 1 + LINK_SIZE; /* Save for matching */
|
|
ecode += GET(ecode, 1); /* Advance past the item */
|
|
|
|
switch (*ecode)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
c = *ecode++ - OP_CRSTAR;
|
|
minimize = (c & 1) != 0;
|
|
min = rep_min[c]; /* Pick up values from tables; */
|
|
max = rep_max[c]; /* zero for max => infinity */
|
|
if (max == 0) max = INT_MAX;
|
|
break;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
minimize = (*ecode == OP_CRMINRANGE);
|
|
min = GET2(ecode, 1);
|
|
max = GET2(ecode, 3);
|
|
if (max == 0) max = INT_MAX;
|
|
ecode += 5;
|
|
break;
|
|
|
|
default: /* No repeat follows */
|
|
min = max = 1;
|
|
break;
|
|
}
|
|
|
|
/* First, ensure the minimum number of matches are present. */
|
|
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINC(c, eptr);
|
|
if (!match_xclass(c, data)) return MATCH_NOMATCH;
|
|
}
|
|
|
|
/* If max == min we can continue with the main loop without the
|
|
need to recurse. */
|
|
|
|
if (min == max) continue;
|
|
|
|
/* If minimizing, keep testing the rest of the expression and advancing
|
|
the pointer while it matches the class. */
|
|
|
|
if (minimize)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINC(c, eptr);
|
|
if (!match_xclass(c, data)) return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* If maximizing, find the longest possible run, then work backwards. */
|
|
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (!match_xclass(c, data)) break;
|
|
eptr += len;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
BACKCHAR(eptr)
|
|
}
|
|
return MATCH_NOMATCH;
|
|
}
|
|
|
|
/* Control never gets here */
|
|
}
|
|
#endif /* End of XCLASS */
|
|
|
|
/* Match a run of characters */
|
|
|
|
case OP_CHARS:
|
|
{
|
|
register int length = ecode[1];
|
|
ecode += 2;
|
|
|
|
#ifdef DEBUG /* Sigh. Some compilers never learn. */
|
|
if (eptr >= md->end_subject)
|
|
printf("matching subject <null> against pattern ");
|
|
else
|
|
{
|
|
printf("matching subject ");
|
|
pchars(eptr, length, TRUE, md);
|
|
printf(" against pattern ");
|
|
}
|
|
pchars(ecode, length, FALSE, md);
|
|
printf("\n");
|
|
#endif
|
|
|
|
if (length > md->end_subject - eptr) return MATCH_NOMATCH;
|
|
if ((ims & PCRE_CASELESS) != 0)
|
|
{
|
|
while (length-- > 0)
|
|
if (md->lcc[*ecode++] != md->lcc[*eptr++])
|
|
return MATCH_NOMATCH;
|
|
}
|
|
else
|
|
{
|
|
while (length-- > 0) if (*ecode++ != *eptr++) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Match a single character repeatedly; different opcodes share code. */
|
|
|
|
case OP_EXACT:
|
|
min = max = GET2(ecode, 1);
|
|
ecode += 3;
|
|
goto REPEATCHAR;
|
|
|
|
case OP_UPTO:
|
|
case OP_MINUPTO:
|
|
min = 0;
|
|
max = GET2(ecode, 1);
|
|
minimize = *ecode == OP_MINUPTO;
|
|
ecode += 3;
|
|
goto REPEATCHAR;
|
|
|
|
case OP_STAR:
|
|
case OP_MINSTAR:
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
case OP_QUERY:
|
|
case OP_MINQUERY:
|
|
c = *ecode++ - OP_STAR;
|
|
minimize = (c & 1) != 0;
|
|
min = rep_min[c]; /* Pick up values from tables; */
|
|
max = rep_max[c]; /* zero for max => infinity */
|
|
if (max == 0) max = INT_MAX;
|
|
|
|
/* Common code for all repeated single-character matches. We can give
|
|
up quickly if there are fewer than the minimum number of characters left in
|
|
the subject. */
|
|
|
|
REPEATCHAR:
|
|
#ifdef SUPPORT_UTF8
|
|
if (md->utf8)
|
|
{
|
|
int len = 1;
|
|
const uschar *charptr = ecode;
|
|
GETCHARLEN(c, ecode, len);
|
|
if (min * len > md->end_subject - eptr) return MATCH_NOMATCH;
|
|
ecode += len;
|
|
|
|
/* Handle multibyte character matching specially here. There is no
|
|
support for any kind of casing for multibyte characters. */
|
|
|
|
if (len > 1)
|
|
{
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (memcmp(eptr, charptr, len) != 0) return MATCH_NOMATCH;
|
|
eptr += len;
|
|
}
|
|
|
|
if (min == max) continue;
|
|
|
|
if (minimize)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max ||
|
|
eptr >= md->end_subject ||
|
|
memcmp(eptr, charptr, len) != 0)
|
|
return MATCH_NOMATCH;
|
|
eptr += len;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr > md->end_subject - len ||
|
|
memcmp(eptr, charptr, len) != 0)
|
|
break;
|
|
eptr += len;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
eptr -= len;
|
|
}
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* If the length of a UTF-8 character is 1, we fall through here, and
|
|
obey the code as for non-UTF-8 characters below, though in this case the
|
|
value of c will always be < 128. */
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* When not in UTF-8 mode, load a single-byte character. */
|
|
{
|
|
if (min > md->end_subject - eptr) return MATCH_NOMATCH;
|
|
c = *ecode++;
|
|
}
|
|
|
|
/* The value of c at this point is always less than 256, though we may or
|
|
may not be in UTF-8 mode. The code is duplicated for the caseless and
|
|
caseful cases, for speed, since matching characters is likely to be quite
|
|
common. First, ensure the minimum number of matches are present. If min =
|
|
max, continue at the same level without recursing. Otherwise, if
|
|
minimizing, keep trying the rest of the expression and advancing one
|
|
matching character if failing, up to the maximum. Alternatively, if
|
|
maximizing, find the maximum number of characters and work backwards. */
|
|
|
|
DPRINTF(("matching %c{%d,%d} against subject %.*s\n", c, min, max,
|
|
max, eptr));
|
|
|
|
if ((ims & PCRE_CASELESS) != 0)
|
|
{
|
|
c = md->lcc[c];
|
|
for (i = 1; i <= min; i++)
|
|
if (c != md->lcc[*eptr++]) return MATCH_NOMATCH;
|
|
if (min == max) continue;
|
|
if (minimize)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject ||
|
|
c != md->lcc[*eptr++])
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || c != md->lcc[*eptr]) break;
|
|
eptr++;
|
|
}
|
|
while (eptr >= pp)
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* Caseful comparisons (includes all multi-byte characters) */
|
|
|
|
else
|
|
{
|
|
for (i = 1; i <= min; i++) if (c != *eptr++) return MATCH_NOMATCH;
|
|
if (min == max) continue;
|
|
if (minimize)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject || c != *eptr++)
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || c != *eptr) break;
|
|
eptr++;
|
|
}
|
|
while (eptr >= pp)
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
|
|
/* Match a negated single one-byte character. The character we are
|
|
checking can be multibyte. */
|
|
|
|
case OP_NOT:
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
ecode++;
|
|
GETCHARINCTEST(c, eptr);
|
|
if ((ims & PCRE_CASELESS) != 0)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
if (c < 256)
|
|
#endif
|
|
c = md->lcc[c];
|
|
if (md->lcc[*ecode++] == c) return MATCH_NOMATCH;
|
|
}
|
|
else
|
|
{
|
|
if (*ecode++ == c) return MATCH_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
/* Match a negated single one-byte character repeatedly. This is almost a
|
|
repeat of the code for a repeated single character, but I haven't found a
|
|
nice way of commoning these up that doesn't require a test of the
|
|
positive/negative option for each character match. Maybe that wouldn't add
|
|
very much to the time taken, but character matching *is* what this is all
|
|
about... */
|
|
|
|
case OP_NOTEXACT:
|
|
min = max = GET2(ecode, 1);
|
|
ecode += 3;
|
|
goto REPEATNOTCHAR;
|
|
|
|
case OP_NOTUPTO:
|
|
case OP_NOTMINUPTO:
|
|
min = 0;
|
|
max = GET2(ecode, 1);
|
|
minimize = *ecode == OP_NOTMINUPTO;
|
|
ecode += 3;
|
|
goto REPEATNOTCHAR;
|
|
|
|
case OP_NOTSTAR:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTMINQUERY:
|
|
c = *ecode++ - OP_NOTSTAR;
|
|
minimize = (c & 1) != 0;
|
|
min = rep_min[c]; /* Pick up values from tables; */
|
|
max = rep_max[c]; /* zero for max => infinity */
|
|
if (max == 0) max = INT_MAX;
|
|
|
|
/* Common code for all repeated single-character (less than 255) matches.
|
|
We can give up quickly if there are fewer than the minimum number of
|
|
characters left in the subject. */
|
|
|
|
REPEATNOTCHAR:
|
|
if (min > md->end_subject - eptr) return MATCH_NOMATCH;
|
|
c = *ecode++;
|
|
|
|
/* The code is duplicated for the caseless and caseful cases, for speed,
|
|
since matching characters is likely to be quite common. First, ensure the
|
|
minimum number of matches are present. If min = max, continue at the same
|
|
level without recursing. Otherwise, if minimizing, keep trying the rest of
|
|
the expression and advancing one matching character if failing, up to the
|
|
maximum. Alternatively, if maximizing, find the maximum number of
|
|
characters and work backwards. */
|
|
|
|
DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", c, min, max,
|
|
max, eptr));
|
|
|
|
if ((ims & PCRE_CASELESS) != 0)
|
|
{
|
|
c = md->lcc[c];
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
register int d;
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
GETCHARINC(d, eptr);
|
|
if (d < 256) d = md->lcc[d];
|
|
if (c == d) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = 1; i <= min; i++)
|
|
if (c == md->lcc[*eptr++]) return MATCH_NOMATCH;
|
|
}
|
|
|
|
if (min == max) continue;
|
|
|
|
if (minimize)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
register int d;
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
GETCHARINC(d, eptr);
|
|
if (d < 256) d = md->lcc[d];
|
|
if (i >= max || eptr >= md->end_subject || c == d)
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject || c == md->lcc[*eptr++])
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* Maximize case */
|
|
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
register int d;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(d, eptr, len);
|
|
if (d < 256) d = md->lcc[d];
|
|
if (c == d) break;
|
|
eptr += len;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
eptr--;
|
|
BACKCHAR(eptr);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || c == md->lcc[*eptr]) break;
|
|
eptr++;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
eptr--;
|
|
}
|
|
}
|
|
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* Caseful comparisons */
|
|
|
|
else
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
register int d;
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
GETCHARINC(d, eptr);
|
|
if (c == d) return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = 1; i <= min; i++)
|
|
if (c == *eptr++) return MATCH_NOMATCH;
|
|
}
|
|
|
|
if (min == max) continue;
|
|
|
|
if (minimize)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
register int d;
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
GETCHARINC(d, eptr);
|
|
if (i >= max || eptr >= md->end_subject || c == d)
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject || c == *eptr++)
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* Maximize case */
|
|
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
register int d;
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(d, eptr, len);
|
|
if (c == d) break;
|
|
eptr += len;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
eptr--;
|
|
BACKCHAR(eptr);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || c == *eptr) break;
|
|
eptr++;
|
|
}
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
eptr--;
|
|
}
|
|
}
|
|
|
|
return MATCH_NOMATCH;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
|
|
/* Match a single character type repeatedly; several different opcodes
|
|
share code. This is very similar to the code for single characters, but we
|
|
repeat it in the interests of efficiency. */
|
|
|
|
case OP_TYPEEXACT:
|
|
min = max = GET2(ecode, 1);
|
|
minimize = TRUE;
|
|
ecode += 3;
|
|
goto REPEATTYPE;
|
|
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
min = 0;
|
|
max = GET2(ecode, 1);
|
|
minimize = *ecode == OP_TYPEMINUPTO;
|
|
ecode += 3;
|
|
goto REPEATTYPE;
|
|
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
c = *ecode++ - OP_TYPESTAR;
|
|
minimize = (c & 1) != 0;
|
|
min = rep_min[c]; /* Pick up values from tables; */
|
|
max = rep_max[c]; /* zero for max => infinity */
|
|
if (max == 0) max = INT_MAX;
|
|
|
|
/* Common code for all repeated single character type matches. Note that
|
|
in UTF-8 mode, '.' matches a character of any length, but for the other
|
|
character types, the valid characters are all one-byte long. */
|
|
|
|
REPEATTYPE:
|
|
ctype = *ecode++; /* Code for the character type */
|
|
|
|
/* First, ensure the minimum number of matches are present. Use inline
|
|
code for maximizing the speed, and do the type test once at the start
|
|
(i.e. keep it out of the loop). Also we can test that there are at least
|
|
the minimum number of bytes before we start. This isn't as effective in
|
|
UTF-8 mode, but it does no harm. Separate the UTF-8 code completely as that
|
|
is tidier. */
|
|
|
|
if (min > md->end_subject - eptr) return MATCH_NOMATCH;
|
|
if (min > 0)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
if (md->utf8) switch(ctype)
|
|
{
|
|
case OP_ANY:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject ||
|
|
(*eptr++ == NEWLINE && (ims & PCRE_DOTALL) == 0))
|
|
return MATCH_NOMATCH;
|
|
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_ANYBYTE:
|
|
eptr += min;
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
GETCHARINC(c, eptr);
|
|
if (c < 256 && (md->ctypes[c] & ctype_digit) != 0)
|
|
return MATCH_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject ||
|
|
*eptr >= 128 || (md->ctypes[*eptr++] & ctype_digit) == 0)
|
|
return MATCH_NOMATCH;
|
|
/* No need to skip more bytes - we know it's a 1-byte character */
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject ||
|
|
(*eptr < 128 && (md->ctypes[*eptr++] & ctype_space) != 0))
|
|
return MATCH_NOMATCH;
|
|
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject ||
|
|
*eptr >= 128 || (md->ctypes[*eptr++] & ctype_space) == 0)
|
|
return MATCH_NOMATCH;
|
|
/* No need to skip more bytes - we know it's a 1-byte character */
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject ||
|
|
(*eptr < 128 && (md->ctypes[*eptr++] & ctype_word) != 0))
|
|
return MATCH_NOMATCH;
|
|
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
for (i = 1; i <= min; i++)
|
|
{
|
|
if (eptr >= md->end_subject ||
|
|
*eptr >= 128 || (md->ctypes[*eptr++] & ctype_word) == 0)
|
|
return MATCH_NOMATCH;
|
|
/* No need to skip more bytes - we know it's a 1-byte character */
|
|
}
|
|
break;
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* Code for the non-UTF-8 case for minimum matching */
|
|
|
|
switch(ctype)
|
|
{
|
|
case OP_ANY:
|
|
if ((ims & PCRE_DOTALL) == 0)
|
|
{
|
|
for (i = 1; i <= min; i++)
|
|
if (*eptr++ == NEWLINE) return MATCH_NOMATCH;
|
|
}
|
|
else eptr += min;
|
|
break;
|
|
|
|
case OP_ANYBYTE:
|
|
eptr += min;
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
for (i = 1; i <= min; i++)
|
|
if ((md->ctypes[*eptr++] & ctype_digit) != 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
for (i = 1; i <= min; i++)
|
|
if ((md->ctypes[*eptr++] & ctype_digit) == 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
for (i = 1; i <= min; i++)
|
|
if ((md->ctypes[*eptr++] & ctype_space) != 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
for (i = 1; i <= min; i++)
|
|
if ((md->ctypes[*eptr++] & ctype_space) == 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
for (i = 1; i <= min; i++)
|
|
if ((md->ctypes[*eptr++] & ctype_word) != 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
for (i = 1; i <= min; i++)
|
|
if ((md->ctypes[*eptr++] & ctype_word) == 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If min = max, continue at the same level without recursing */
|
|
|
|
if (min == max) continue;
|
|
|
|
/* If minimizing, we have to test the rest of the pattern before each
|
|
subsequent match. Again, separate the UTF-8 case for speed. */
|
|
|
|
if (minimize)
|
|
{
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
if (md->utf8)
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
|
|
GETCHARINC(c, eptr);
|
|
switch(ctype)
|
|
{
|
|
case OP_ANY:
|
|
if ((ims & PCRE_DOTALL) == 0 && c == NEWLINE) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_ANYBYTE:
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
if (c < 256 && (md->ctypes[c] & ctype_digit) != 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
if (c >= 256 || (md->ctypes[c] & ctype_digit) == 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
if (c < 256 && (md->ctypes[c] & ctype_space) != 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
if (c >= 256 || (md->ctypes[c] & ctype_space) == 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
if (c < 256 && (md->ctypes[c] & ctype_word) != 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
if (c >= 256 && (md->ctypes[c] & ctype_word) == 0)
|
|
return MATCH_NOMATCH;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
/* Not UTF-8 mode */
|
|
{
|
|
for (i = min;; i++)
|
|
{
|
|
if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH;
|
|
c = *eptr++;
|
|
switch(ctype)
|
|
{
|
|
case OP_ANY:
|
|
if ((ims & PCRE_DOTALL) == 0 && c == NEWLINE) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_ANYBYTE:
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
if ((md->ctypes[c] & ctype_digit) != 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
if ((md->ctypes[c] & ctype_digit) == 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
if ((md->ctypes[c] & ctype_space) != 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
if ((md->ctypes[c] & ctype_space) == 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
if ((md->ctypes[c] & ctype_word) != 0) return MATCH_NOMATCH;
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
if ((md->ctypes[c] & ctype_word) == 0) return MATCH_NOMATCH;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
/* If maximizing it is worth using inline code for speed, doing the type
|
|
test once at the start (i.e. keep it out of the loop). Again, keep the
|
|
UTF-8 stuff separate. */
|
|
|
|
else
|
|
{
|
|
const uschar *pp = eptr;
|
|
|
|
#ifdef SUPPORT_UTF8
|
|
/* UTF-8 mode */
|
|
|
|
if (md->utf8)
|
|
{
|
|
switch(ctype)
|
|
{
|
|
case OP_ANY:
|
|
|
|
/* Special code is required for UTF8, but when the maximum is unlimited
|
|
we don't need it, so we repeat the non-UTF8 code. This is probably
|
|
worth it, because .* is quite a common idiom. */
|
|
|
|
if (max < INT_MAX)
|
|
{
|
|
if ((ims & PCRE_DOTALL) == 0)
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || *eptr == NEWLINE) break;
|
|
eptr++;
|
|
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
eptr++;
|
|
while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Handle unlimited UTF-8 repeat */
|
|
|
|
else
|
|
{
|
|
if ((ims & PCRE_DOTALL) == 0)
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || *eptr == NEWLINE) break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
c = max - min;
|
|
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
|
|
eptr += c;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* The byte case is the same as non-UTF8 */
|
|
|
|
case OP_ANYBYTE:
|
|
c = max - min;
|
|
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
|
|
eptr += c;
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c < 256 && (md->ctypes[c] & ctype_digit) != 0) break;
|
|
eptr+= len;
|
|
}
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c >= 256 ||(md->ctypes[c] & ctype_digit) == 0) break;
|
|
eptr+= len;
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c < 256 && (md->ctypes[c] & ctype_space) != 0) break;
|
|
eptr+= len;
|
|
}
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c >= 256 ||(md->ctypes[c] & ctype_space) == 0) break;
|
|
eptr+= len;
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c < 256 && (md->ctypes[c] & ctype_word) != 0) break;
|
|
eptr+= len;
|
|
}
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
int len = 1;
|
|
if (eptr >= md->end_subject) break;
|
|
GETCHARLEN(c, eptr, len);
|
|
if (c >= 256 || (md->ctypes[c] & ctype_word) == 0) break;
|
|
eptr+= len;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* eptr is now past the end of the maximum run */
|
|
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
BACKCHAR(eptr);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
|
|
/* Not UTF-8 mode */
|
|
{
|
|
switch(ctype)
|
|
{
|
|
case OP_ANY:
|
|
if ((ims & PCRE_DOTALL) == 0)
|
|
{
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || *eptr == NEWLINE) break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
}
|
|
/* For DOTALL case, fall through and treat as \C */
|
|
|
|
case OP_ANYBYTE:
|
|
c = max - min;
|
|
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
|
|
eptr += c;
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) != 0)
|
|
break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_DIGIT:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) == 0)
|
|
break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) != 0)
|
|
break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) == 0)
|
|
break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) != 0)
|
|
break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
for (i = min; i < max; i++)
|
|
{
|
|
if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) == 0)
|
|
break;
|
|
eptr++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* eptr is now past the end of the maximum run */
|
|
|
|
while (eptr >= pp)
|
|
{
|
|
if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) !=
|
|
MATCH_NOMATCH) return rrc;
|
|
}
|
|
}
|
|
|
|
/* Get here if we can't make it match with any permitted repetitions */
|
|
|
|
return MATCH_NOMATCH;
|
|
}
|
|
/* Control never gets here */
|
|
|
|
/* There's been some horrible disaster. Since all codes > OP_BRA are
|
|
for capturing brackets, and there shouldn't be any gaps between 0 and
|
|
OP_BRA, arrival here can only mean there is something seriously wrong
|
|
in the code above or the OP_xxx definitions. */
|
|
|
|
default:
|
|
DPRINTF(("Unknown opcode %d\n", *ecode));
|
|
return PCRE_ERROR_UNKNOWN_NODE;
|
|
}
|
|
|
|
/* Do not stick any code in here without much thought; it is assumed
|
|
that "continue" in the code above comes out to here to repeat the main
|
|
loop. */
|
|
|
|
} /* End of main loop */
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Execute a Regular Expression *
|
|
*************************************************/
|
|
|
|
/* This function applies a compiled re to a subject string and picks out
|
|
portions of the string if it matches. Two elements in the vector are set for
|
|
each substring: the offsets to the start and end of the substring.
|
|
|
|
Arguments:
|
|
external_re points to the compiled expression
|
|
extra_data points to extra data or is NULL
|
|
subject points to the subject string
|
|
length length of subject string (may contain binary zeros)
|
|
start_offset where to start in the subject string
|
|
options option bits
|
|
offsets points to a vector of ints to be filled in with offsets
|
|
offsetcount the number of elements in the vector
|
|
|
|
Returns: > 0 => success; value is the number of elements filled in
|
|
= 0 => success, but offsets is not big enough
|
|
-1 => failed to match
|
|
< -1 => some kind of unexpected problem
|
|
*/
|
|
|
|
int
|
|
pcre_exec(const pcre *external_re, const pcre_extra *extra_data,
|
|
const char *subject, int length, int start_offset, int options, int *offsets,
|
|
int offsetcount)
|
|
{
|
|
int rc, resetcount, ocount;
|
|
int first_byte = -1;
|
|
int req_byte = -1;
|
|
int req_byte2 = -1;
|
|
unsigned long int ims = 0;
|
|
BOOL using_temporary_offsets = FALSE;
|
|
BOOL anchored;
|
|
BOOL startline;
|
|
BOOL first_byte_caseless = FALSE;
|
|
BOOL req_byte_caseless = FALSE;
|
|
match_data match_block;
|
|
const uschar *start_bits = NULL;
|
|
const uschar *start_match = (const uschar *)subject + start_offset;
|
|
const uschar *end_subject;
|
|
const uschar *req_byte_ptr = start_match - 1;
|
|
const pcre_study_data *study;
|
|
const real_pcre *re = (const real_pcre *)external_re;
|
|
|
|
/* Plausibility checks */
|
|
|
|
if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION;
|
|
if (re == NULL || subject == NULL ||
|
|
(offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL;
|
|
|
|
/* Fish out the optional data from the extra_data structure, first setting
|
|
the default values. */
|
|
|
|
study = NULL;
|
|
match_block.match_limit = MATCH_LIMIT;
|
|
match_block.callout_data = NULL;
|
|
|
|
if (extra_data != NULL)
|
|
{
|
|
register unsigned int flags = extra_data->flags;
|
|
if ((flags & PCRE_EXTRA_STUDY_DATA) != 0)
|
|
study = (pcre_study_data*)extra_data->study_data;
|
|
if ((flags & PCRE_EXTRA_MATCH_LIMIT) != 0)
|
|
match_block.match_limit = extra_data->match_limit;
|
|
if ((flags & PCRE_EXTRA_CALLOUT_DATA) != 0)
|
|
match_block.callout_data = extra_data->callout_data;
|
|
}
|
|
|
|
/* Now we have re supposedly pointing to the regex */
|
|
|
|
if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
|
|
|
|
anchored = ((re->options | options) & PCRE_ANCHORED) != 0;
|
|
startline = (re->options & PCRE_STARTLINE) != 0;
|
|
|
|
match_block.start_code =
|
|
(const uschar *)re + sizeof(real_pcre) + re->name_count * re->name_entry_size;
|
|
match_block.start_subject = (const uschar *)subject;
|
|
match_block.start_offset = start_offset;
|
|
match_block.end_subject = match_block.start_subject + length;
|
|
end_subject = match_block.end_subject;
|
|
|
|
match_block.endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0;
|
|
match_block.utf8 = (re->options & PCRE_UTF8) != 0;
|
|
|
|
match_block.notbol = (options & PCRE_NOTBOL) != 0;
|
|
match_block.noteol = (options & PCRE_NOTEOL) != 0;
|
|
match_block.notempty = (options & PCRE_NOTEMPTY) != 0;
|
|
|
|
match_block.recursive = NULL; /* No recursion at top level */
|
|
|
|
match_block.lcc = re->tables + lcc_offset;
|
|
match_block.ctypes = re->tables + ctypes_offset;
|
|
|
|
/* The ims options can vary during the matching as a result of the presence
|
|
of (?ims) items in the pattern. They are kept in a local variable so that
|
|
restoring at the exit of a group is easy. */
|
|
|
|
ims = re->options & (PCRE_CASELESS|PCRE_MULTILINE|PCRE_DOTALL);
|
|
|
|
/* If the expression has got more back references than the offsets supplied can
|
|
hold, we get a temporary bit of working store to use during the matching.
|
|
Otherwise, we can use the vector supplied, rounding down its size to a multiple
|
|
of 3. */
|
|
|
|
ocount = offsetcount - (offsetcount % 3);
|
|
|
|
if (re->top_backref > 0 && re->top_backref >= ocount/3)
|
|
{
|
|
ocount = re->top_backref * 3 + 3;
|
|
match_block.offset_vector = (int *)(pcre_malloc)(ocount * sizeof(int));
|
|
if (match_block.offset_vector == NULL) return PCRE_ERROR_NOMEMORY;
|
|
using_temporary_offsets = TRUE;
|
|
DPRINTF(("Got memory to hold back references\n"));
|
|
}
|
|
else match_block.offset_vector = offsets;
|
|
|
|
match_block.offset_end = ocount;
|
|
match_block.offset_max = (2*ocount)/3;
|
|
match_block.offset_overflow = FALSE;
|
|
match_block.capture_last = -1;
|
|
|
|
/* Compute the minimum number of offsets that we need to reset each time. Doing
|
|
this makes a huge difference to execution time when there aren't many brackets
|
|
in the pattern. */
|
|
|
|
resetcount = 2 + re->top_bracket * 2;
|
|
if (resetcount > offsetcount) resetcount = ocount;
|
|
|
|
/* Reset the working variable associated with each extraction. These should
|
|
never be used unless previously set, but they get saved and restored, and so we
|
|
initialize them to avoid reading uninitialized locations. */
|
|
|
|
if (match_block.offset_vector != NULL)
|
|
{
|
|
register int *iptr = match_block.offset_vector + ocount;
|
|
register int *iend = iptr - resetcount/2 + 1;
|
|
while (--iptr >= iend) *iptr = -1;
|
|
}
|
|
|
|
/* Set up the first character to match, if available. The first_byte value is
|
|
never set for an anchored regular expression, but the anchoring may be forced
|
|
at run time, so we have to test for anchoring. The first char may be unset for
|
|
an unanchored pattern, of course. If there's no first char and the pattern was
|
|
studied, there may be a bitmap of possible first characters. */
|
|
|
|
if (!anchored)
|
|
{
|
|
if ((re->options & PCRE_FIRSTSET) != 0)
|
|
{
|
|
first_byte = re->first_byte & 255;
|
|
if ((first_byte_caseless = ((re->first_byte & REQ_CASELESS) != 0)) == TRUE)
|
|
first_byte = match_block.lcc[first_byte];
|
|
}
|
|
else
|
|
if (!startline && study != NULL &&
|
|
(study->options & PCRE_STUDY_MAPPED) != 0)
|
|
start_bits = study->start_bits;
|
|
}
|
|
|
|
/* For anchored or unanchored matches, there may be a "last known required
|
|
character" set. */
|
|
|
|
if ((re->options & PCRE_REQCHSET) != 0)
|
|
{
|
|
req_byte = re->req_byte & 255;
|
|
req_byte_caseless = (re->req_byte & REQ_CASELESS) != 0;
|
|
req_byte2 = (re->tables + fcc_offset)[req_byte]; /* case flipped */
|
|
}
|
|
|
|
/* Loop for handling unanchored repeated matching attempts; for anchored regexs
|
|
the loop runs just once. */
|
|
|
|
do
|
|
{
|
|
register int *iptr = match_block.offset_vector;
|
|
register int *iend = iptr + resetcount;
|
|
|
|
/* Reset the maximum number of extractions we might see. */
|
|
|
|
while (iptr < iend) *iptr++ = -1;
|
|
|
|
/* Advance to a unique first char if possible */
|
|
|
|
if (first_byte >= 0)
|
|
{
|
|
if (first_byte_caseless)
|
|
while (start_match < end_subject &&
|
|
match_block.lcc[*start_match] != first_byte)
|
|
start_match++;
|
|
else
|
|
while (start_match < end_subject && *start_match != first_byte)
|
|
start_match++;
|
|
}
|
|
|
|
/* Or to just after \n for a multiline match if possible */
|
|
|
|
else if (startline)
|
|
{
|
|
if (start_match > match_block.start_subject + start_offset)
|
|
{
|
|
while (start_match < end_subject && start_match[-1] != NEWLINE)
|
|
start_match++;
|
|
}
|
|
}
|
|
|
|
/* Or to a non-unique first char after study */
|
|
|
|
else if (start_bits != NULL)
|
|
{
|
|
while (start_match < end_subject)
|
|
{
|
|
register int c = *start_match;
|
|
if ((start_bits[c/8] & (1 << (c&7))) == 0) start_match++; else break;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG /* Sigh. Some compilers never learn. */
|
|
printf(">>>> Match against: ");
|
|
pchars(start_match, end_subject - start_match, TRUE, &match_block);
|
|
printf("\n");
|
|
#endif
|
|
|
|
/* If req_byte is set, we know that that character must appear in the subject
|
|
for the match to succeed. If the first character is set, req_byte must be
|
|
later in the subject; otherwise the test starts at the match point. This
|
|
optimization can save a huge amount of backtracking in patterns with nested
|
|
unlimited repeats that aren't going to match. Writing separate code for
|
|
cased/caseless versions makes it go faster, as does using an autoincrement
|
|
and backing off on a match.
|
|
|
|
HOWEVER: when the subject string is very, very long, searching to its end can
|
|
take a long time, and give bad performance on quite ordinary patterns. This
|
|
showed up when somebody was matching /^C/ on a 32-megabyte string... so we
|
|
don't do this when the string is sufficiently long. */
|
|
|
|
if (req_byte >= 0 && end_subject - start_match < REQ_BYTE_MAX)
|
|
{
|
|
register const uschar *p = start_match + ((first_byte >= 0)? 1 : 0);
|
|
|
|
/* We don't need to repeat the search if we haven't yet reached the
|
|
place we found it at last time. */
|
|
|
|
if (p > req_byte_ptr)
|
|
{
|
|
if (req_byte_caseless)
|
|
{
|
|
while (p < end_subject)
|
|
{
|
|
register int pp = *p++;
|
|
if (pp == req_byte || pp == req_byte2) { p--; break; }
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (p < end_subject)
|
|
{
|
|
if (*p++ == req_byte) { p--; break; }
|
|
}
|
|
}
|
|
|
|
/* If we can't find the required character, break the matching loop */
|
|
|
|
if (p >= end_subject) break;
|
|
|
|
/* If we have found the required character, save the point where we
|
|
found it, so that we don't search again next time round the loop if
|
|
the start hasn't passed this character yet. */
|
|
|
|
req_byte_ptr = p;
|
|
}
|
|
}
|
|
|
|
/* When a match occurs, substrings will be set for all internal extractions;
|
|
we just need to set up the whole thing as substring 0 before returning. If
|
|
there were too many extractions, set the return code to zero. In the case
|
|
where we had to get some local store to hold offsets for backreferences, copy
|
|
those back references that we can. In this case there need not be overflow
|
|
if certain parts of the pattern were not used. */
|
|
|
|
match_block.start_match = start_match;
|
|
match_block.match_call_count = 0;
|
|
|
|
rc = match(start_match, match_block.start_code, 2, &match_block, ims, NULL,
|
|
match_isgroup);
|
|
|
|
if (rc == MATCH_NOMATCH)
|
|
{
|
|
start_match++;
|
|
#ifdef SUPPORT_UTF8
|
|
if (match_block.utf8)
|
|
while ((*start_match & 0xc0) == 0x80) start_match++;
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
if (rc != MATCH_MATCH)
|
|
{
|
|
DPRINTF((">>>> error: returning %d\n", rc));
|
|
return rc;
|
|
}
|
|
|
|
/* We have a match! Copy the offset information from temporary store if
|
|
necessary */
|
|
|
|
if (using_temporary_offsets)
|
|
{
|
|
if (offsetcount >= 4)
|
|
{
|
|
memcpy(offsets + 2, match_block.offset_vector + 2,
|
|
(offsetcount - 2) * sizeof(int));
|
|
DPRINTF(("Copied offsets from temporary memory\n"));
|
|
}
|
|
if (match_block.end_offset_top > offsetcount)
|
|
match_block.offset_overflow = TRUE;
|
|
|
|
DPRINTF(("Freeing temporary memory\n"));
|
|
(pcre_free)(match_block.offset_vector);
|
|
}
|
|
|
|
rc = match_block.offset_overflow? 0 : match_block.end_offset_top/2;
|
|
|
|
if (offsetcount < 2) rc = 0; else
|
|
{
|
|
offsets[0] = start_match - match_block.start_subject;
|
|
offsets[1] = match_block.end_match_ptr - match_block.start_subject;
|
|
}
|
|
|
|
DPRINTF((">>>> returning %d\n", rc));
|
|
return rc;
|
|
}
|
|
|
|
/* This "while" is the end of the "do" above */
|
|
|
|
while (!anchored && start_match <= end_subject);
|
|
|
|
if (using_temporary_offsets)
|
|
{
|
|
DPRINTF(("Freeing temporary memory\n"));
|
|
(pcre_free)(match_block.offset_vector);
|
|
}
|
|
|
|
DPRINTF((">>>> returning PCRE_ERROR_NOMATCH\n"));
|
|
|
|
return PCRE_ERROR_NOMATCH;
|
|
}
|
|
|
|
/* End of pcre.c */
|