OpenFPGA/vpr7_x2p/vpr/ARCH/k6_N10_sram_ptm45nm_TT.xml

1453 lines
82 KiB
XML
Executable File

<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
with optionally registered outputs
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
Height = 6, found on every (8n+2)th column
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
Height = 4, found on every (8n+6)th column
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
The electrical design of the architecture described here is NOT from an
optimized, SPICED architecture. Instead, we attempt to create a reasonable
architecture file by using an existing commercial FPGA to approximate the area,
delay, and power of the underlying components. This is combined with a reasonable 40 nm
model of wiring and circuit design for low-level routing components, where available.
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
has wiring electrical parameters that allow the wire lengths and switch patterns to be
modified and you will still get reasonable delay results for the new architecture.
The following describes, in detail, how we obtained the various electrical values for this
architecture.
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
match the overall target (a 40 nm FPGA).
We obtain delay numbers by measuring delays of routing, soft logic blocks,
memories, and multipliers from test circuits on a Stratix IV GX device
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
take the R and C data from the ITRS roadmap.
For the general purpose logic block, we assume that the area and delays of the Stratix IV
crossbar is close enough to the crossbar modelled here. We use 40 inputs and 20 feedback lines in
the cluster and a full crossbar, leading to 60:1 multiplexers in front of each BLE input.
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
36:1 multiplexers. We require 60 such multiplexers, while Stratix IV requires 88 for its more
complex fracturable BLEs + the extra control signals. We justify this rough approximation as follows:
The Stratix IV crossbar has more inputs (72 vs. 60) and
outputs (88 vs. 60) than our full crossbar which should increase its area and delay, but the
Stratix IV crossbar is also 50% sparse (each mux is 36:1 instead of 60:1) which should reduce its
area and delay. The total number of crossbar switch points is roughly similar between the two
architectures (3160 for SIV and 3600 for the academic architecture below), so we use the area
& delay of the Stratix IV crossbar as a rough approximation of our crossbar.
For LUTs, we include LUT
delays measured from Stratix IV which is dependant on the input used (ie. some
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
not consider differences in LUT input delays.
Logic block area numbers obtained by scaling overall tile area of a 65nm
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
routing area at a channel width of 300. We use a channel width of 300 because it can route
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
choosing a width that provides high routability. The architecture can be routed at different channel
widths, but we estimate the tile size and hence the physical length of routing wires assuming
a channel width of 300.
Sanity checks employed:
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
common electrical design.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!--model name="multiply">
<input_ports>
<port name="a"/>
<port name="b"/>
</input_ports>
<output_ports>
<port name="out"/>
</output_ports>
</model>
<model name="single_port_ram">
<input_ports>
<port name="we"/--> <!-- control -->
<!--port name="addr"/--> <!-- address lines -->
<!--port name="data"/--> <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<!--port name="clk" is_clock="1"/--> <!-- memories are often clocked -->
<!--/input_ports>
<output_ports-->
<!--port name="out"/--> <!-- output can be broken down into smaller bit widths minimum size 1 -->
<!--/output_ports>
</model>
<model name="dual_port_ram">
<input_ports-->
<!--port name="we1"/--> <!-- write enable -->
<!--port name="we2"/--> <!-- write enable -->
<!--port name="addr1"/--> <!-- address lines -->
<!--port name="addr2"/--> <!-- address lines -->
<!--port name="data1"/--> <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<!--port name="data2"/--> <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<!--port name="clk" is_clock="1"/--> <!-- memories are often clocked -->
<!--/input_ports>
<output_ports-->
<!--port name="out1"/--> <!-- output can be broken down into smaller bit widths minimum size 1 -->
<!--port name="out2"/--> <!-- output can be broken down into smaller bit widths minimum size 1 -->
<!--/output_ports>
</model-->
</models>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout auto="1.0"/>
<!--layout width="2" height="2"/-->
<!--mrFPGA_settings-->
<!-- below is the timing parameters for a single memristor device (or so called RRAM) -->
<!--mrFPGA R="1e3" C="2.24e-17" Tdel="0"-->
<!-- below is the timing parameters for the buffers to insert in channels -->
<!--buffer R="193.5" Cin="3.66e-15" Cout="3.56e-15" Tdel="6.14e-12"/-->
<!--cblock R_opin_cblock="193.5" T_opin_cblock="6.14e-12"/-->
<!--/mrFPGA-->
<!--/mrFPGA_settings-->
<spice_settings>
<parameters>
<options sim_temp="25" post="off" captab="off" fast="on"/>
<monte_carlo mc_sim="off" num_mc_points="2" cmos_variation="off" rram_variation="off">
<cmos abs_variation="0.1" num_sigma="3"/>
<rram abs_variation="0.1" num_sigma="3"/>
</monte_carlo>
<measure sim_num_clock_cycle="auto" accuracy="1e-13" accuracy_type="abs">
<slew>
<rise upper_thres_pct="0.95" lower_thres_pct="0.05"/>
<fall upper_thres_pct="0.05" lower_thres_pct="0.95"/>
</slew>
<delay>
<rise input_thres_pct="0.5" output_thres_pct="0.5"/>
<fall input_thres_pct="0.5" output_thres_pct="0.5"/>
</delay>
</measure>
<stimulate>
<clock op_freq="auto" sim_slack="0.2" prog_freq="2.5e6">
<rise slew_time="20e-12" slew_type="abs"/>
<fall slew_time="20e-12" slew_type="abs"/>
</clock>
<input>
<rise slew_time="25e-12" slew_type="abs"/>
<fall slew_time="25e-12" slew_type="abs"/>
</input>
</stimulate>
</parameters>
<tech_lib lib_type="academia" transistor_type="TOP_TT" lib_path="/home/u6017869/Documents/newer_OpenFPGA/OpenFPGA/vpr7_x2p/tech/PTM_45nm/45nm.pm" nominal_vdd="1.0" io_vdd="2.5"/>
<transistors pn_ratio="2" model_ref="M">
<nmos model_name="nmos" chan_length="45e-9" min_width="140e-9"/>
<pmos model_name="pmos" chan_length="45e-9" min_width="140e-9"/>
<io_nmos model_name="nch_25" chan_length="270e-9" min_width="320e-9"/>
<io_pmos model_name="pch_25" chan_length="270e-9" min_width="320e-9"/>
</transistors>
<module_circuit_models>
<circuit_model type="inv_buf" name="INVTX1" prefix="INVTX1" is_default="1">
<design_technology type="cmos" topology="inverter" size="1" tapered="off"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="buf4" prefix="buf4" is_default="0">
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_drive_level="2" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="inv_buf" name="tap_buf4" prefix="tap_buf4" is_default="0">
<design_technology type="cmos" topology="buffer" size="1" tapered="on" tap_drive_level="3" f_per_stage="4"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in" out_port="out">
10e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in" out_port="out">
10e-12
</delay_matrix>
</circuit_model>
<circuit_model type="pass_gate" name="TGATE" prefix="TGATE" is_default="1">
<design_technology type="cmos" topology="transmission_gate" nmos_size="1" pmos_size="2"/>
<input_buffer exist="off"/>
<output_buffer exist="off"/>
<port type="input" prefix="in" size="1"/>
<port type="input" prefix="sel" size="1"/>
<port type="input" prefix="selb" size="1"/>
<port type="output" prefix="out" size="1"/>
<delay_matrix type="rise" in_port="in sel selb" out_port="out">
10e-12 0e-12 0e-12
</delay_matrix>
<delay_matrix type="fall" in_port="in sel selb" out_port="out">
10e-12 0e-12 0e-12
</delay_matrix>
</circuit_model>
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="1">
<design_technology type="cmos"/>
<input_buffer exist="off"/>
<output_buffer exist="off"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pie" res_val="101" cap_val="22.5e-15" level="1"/> <!-- model_type could be T, res_val and cap_val DON'T CARE -->
</circuit_model>
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="1">
<design_technology type="cmos"/>
<input_buffer exist="off"/>
<output_buffer exist="off"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<wire_param model_type="pie" res_val="0" cap_val="0" level="1"/> <!-- model_type could be T, res_val cap_val should be defined -->
</circuit_model>
<circuit_model type="mux" name="mux_2level" prefix="mux_2level" is_default="1" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi-level" num_level="2"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<!--mux2to1 subckt_name="mux2to1"/-->
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_2level_tapbuf" prefix="mux_2level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="multi-level" num_level="2"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="tap_buf4"/>
<!--mux2to1 subckt_name="mux2to1"/-->
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<circuit_model type="mux" name="mux_1level_tapbuf" prefix="mux_1level_tapbuf" dump_structural_verilog="true">
<design_technology type="cmos" structure="one-level"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="tap_buf4"/>
<!--mux2to1 subckt_name="mux2to1"/-->
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="1"/>
</circuit_model>
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
<circuit_model type="ff" name="static_dff" prefix="dff" spice_netlist="/home/u6017869/Documents/newer_OpenFPGA/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="Set" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="Reset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="1"/>
<port type="clock" prefix="clk" size="1" is_global="true" default_val="0" />
</circuit_model>
<circuit_model type="lut" name="lut6" prefix="lut6" dump_structural_verilog="true">
<design_technology type="cmos"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<lut_input_buffer exist="on" circuit_model_name="buf4"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="6"/>
<port type="output" prefix="out" size="1"/>
<port type="sram" prefix="sram" size="64"/>
</circuit_model>
<circuit_model type="sram" name="sram6T" prefix="sram" spice_netlist="/home/u6017869/Documents/newer_OpenFPGA/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/sram.v" >
<design_technology type="cmos"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="2"/>
</circuit_model>
<circuit_model type="sram" name="sram6T_blwl" prefix="sram_blwl" spice_netlist="/home/u6017869/Documents/newer_OpenFPGA/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/sram.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/sram.v">
<design_technology type="cmos"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="in" size="1"/>
<port type="output" prefix="out" size="2"/>
<port type="bl" prefix="bl" size="1" default_val="0" inv_circuit_model_name="INVTX1"/>
<port type="blb" prefix="blb" size="1" default_val="1" inv_circuit_model_name="INVTX1"/>
<port type="wl" prefix="wl" size="1" default_val="0" inv_circuit_model_name="INVTX1"/>
</circuit_model>
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
<circuit_model type="sff" name="sc_ff" prefix="scff" spice_netlist="/home/u6017869/Documents/newer_OpenFPGA/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/ff.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/ff.v">
<design_technology type="cmos"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="input" prefix="D" size="1"/>
<port type="input" prefix="pset" size="1" is_global="true" default_val="0" is_set="true"/>
<port type="input" prefix="preset" size="1" is_global="true" default_val="0" is_reset="true"/>
<port type="output" prefix="Q" size="2"/>
<port type="clock" prefix="prog_clk" size="1" is_global="true" default_val="0" is_prog="true"/>
</circuit_model>
<circuit_model type="iopad" name="iopad" prefix="iopad" spice_netlist="/home/u6017869/Documents/newer_OpenFPGA/OpenFPGA/vpr7_x2p/vpr/SpiceNetlists/io.sp" verilog_netlist="/research/ece/lnis/USERS/alacchi/Current_release/OpenFPGA/vpr7_x2p/vpr/VerilogNetlists/io.v">
<design_technology type="cmos"/>
<input_buffer exist="on" circuit_model_name="INVTX1"/>
<output_buffer exist="on" circuit_model_name="INVTX1"/>
<pass_gate_logic circuit_model_name="TGATE"/>
<port type="inout" prefix="pad" size="1"/>
<port type="sram" prefix="en" size="1" mode_select="true" circuit_model_name="sram6T_blwl" default_val="1"/>
<port type="input" prefix="outpad" size="1"/>
<port type="input" prefix="zin" size="1" is_global="true" default_val="0" />
<port type="output" prefix="inpad" size="1"/>
</circuit_model>
</module_circuit_models>
</spice_settings>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="9"/>
<timing C_ipin_cblock="596e-18" T_ipin_cblock="77.93e-12"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<!--sram area="6" organization="standalone" circuit_model_name="sram6T"-->
<!--sram area="6" organization="scan-chain" circuit_model_name="sc_dff"-->
<sram area="6">
<verilog organization="memory_bank" circuit_model_name="sram6T_blwl"/>
<spice organization="standalone" circuit_model_name="sram6T" />
</sram>
<chan_width_distr>
<io width="1.000000"/>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
</device>
<cblocks>
<switch type="mux" name="cb_mux" R="0" Cin="596e-18" Cout="0" Tdel="77.93e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_2level_tapbuf" structure="multi-level" num_level="2">
</switch>
</cblocks>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="sb_mux_L4" R="105" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_1level_tapbuf" structure="multi-level" num_level="1">
</switch>
<switch type="mux" name="sb_mux_L2" R="115" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_1level_tapbuf" structure="multi-level" num_level="1">
</switch>
<switch type="mux" name="sb_mux_L1" R="128" Cin="596e-18" Cout="0e-15" Tdel="47.2e-12" mux_trans_size="3" buf_size="63" circuit_model_name="mux_1level_tapbuf" structure="multi-level" num_level="1">
</switch>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<segment freq="0.4" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
<mux name="sb_mux_L4"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
<segment freq="0.3" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
<mux name="sb_mux_L4"/>
<sb type="pattern">1 1 1</sb>
<cb type="pattern">1 1 </cb>
</segment>
<segment freq="0.3" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15" circuit_model_name="chan_segment">
<mux name="sb_mux_L4"/>
<sb type="pattern">1 1</sb>
<cb type="pattern">1</cb>
</segment>
</segmentlist>
<!--switch_segment_patterns>
<pattern type="unbuf_sb" seg_length="1" seg_type="unidir" pattern_length="2">
<unbuf_mux name="1"/>
<sb type ="pattern">0 1</sb>
</pattern>
</switch_segment_patterns-->
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io" capacity="8" area="0" idle_mode_name="inpad" physical_mode_name="io_phy">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- physical design description -->
<mode name="io_phy" disabled_in_packing="false">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1" circuit_model_name="iopad">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="0e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="0e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.§
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1" circuit_model_name="iopad" mode_bits="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="0e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1" circuit_model_name="iopad" mode_bits="0">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="0e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
<!-- Place I/Os on the sides of the FPGA -->
<gridlocations>
<loc type="perimeter" priority="10"/>
</gridlocations>
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb" area="53894" opin_to_cb="false">
<pin_equivalence_auto_detect input_ports ="off" output_ports="off"/>
<input name="I" num_pins="40" equivalent="true"/>
<output name="O" num_pins="10" equivalent="false"/>
<!--input name="I" num_pins="40" equivalent="true"/-->
<!--output name="O" num_pins="20" equivalent="false"/-->
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
For spice modeling: in each primitive pb_type, user should define a circuit_model_name that linkes to the
defined spice models
-->
<pb_type name="fle" num_pb="10" idle_mode_name="n1_lut6" physical_mode_name="n1_lut6">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Define 6-LUT mode -->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" circuit_model_name="lut6">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
127e-12
127e-12
127e-12
127e-12
127e-12
127e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop" circuit_model_name="static_dff">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="29e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="16e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out" circuit_model_name="mux_1level_tapbuf">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="42.06e-12" in_port="lut6.out" out_port="ble6.out" />
<delay_constant max="42.06e-12" in_port="ff.Q" out_port="ble6.out" />
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble6.in"/>
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in" circuit_model_name="mux_2level">
<delay_constant max="53.44e-12" in_port="clb.I" out_port="fle[9:0].in" />
<delay_constant max="53.44e-12" in_port="fle[9:0].out" out_port="fle[9:0].in" />
</complete>
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
<!--direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/-->
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="top">clb.clk </loc>
<loc side="right">clb.I[19:0] clb.O[4:0] </loc>
<loc side="bottom">clb.I[39:20] clb.O[9:5] </loc>
</pinlocations>
<!-- Place this general purpose logic block in any unspecified column -->
<gridlocations>
<loc type="fill" priority="1"/>
</gridlocations>
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define fracturable multiplier begin -->
<!-- This multiplier can operate as a 36x36 multiplier that can fracture to two 18x18 multipliers each of which can further fracture to two 9x9 multipliers
For delay modelling, the 36x36 DSP multiplier in Stratix IV has a delay of 1.523 ns + 1.93 ns
= 3.45 ns. The 18x18 mode doesn't need to sum four 18x18 multipliers, so it is a bit
faster: 1.523 ns for the multiplier, and 1.09 ns for the multiplier output block.
For the input and output interconnect delays, unlike Stratix IV, we don't
have any routing/logic flexibility (crossbars) at the inputs. There is some output muxing
in Stratix IV and this architecture to select which multiplier outputs should go out (e.g.
9x9 outputs, 18x18 or 36x36) so those are very close between the two architectures.
We take the conservative (slightly pessimistic)
approach modelling the input as the same as the Stratix IV input delay and the output delay the same as the Stratix IV DSP out delay.
We estimate block area by using the published Stratix III data (which is architecturally identical to Stratix IV)
(H. Wong, V. Betz and J. Rose, "Comparing FPGA vs. Custom CMOS and the Impact on Processor Microarchitecture", FPGA 2011) of 0.2623
mm^2 and scaling from 65 to 40 nm to obtain 0.0993 mm^2. That area is for a DSP block with approximately 2x the functionality of
the block we use (can implement two 36x36 multiplies instead of our 1, eight 18x18 multiplies instead of our 4, etc.). Hence we
divide the area by 2 to obtain 0.0497 mm^2. One minimum-width transistor units = 60 L^2 (where L = 40 nm), so is 518,000 MWTUS.
That area includes routing and the connection block input muxes. Our DSP block is four
rows high, and hence includes four horizontal routing channel segments and four vertical ones, which is 4x the routing of a logic
block (single tile). It also includes 3.6x the outputs of a logic block, and 1.8x the inputs. Hence a slight overestimate of the routing
area associated with our DSP block is four times that of a logic tile, where the routing area of a logic tile was calculated above (at W = 300)
as 30481 MWTAs. Hence the (core, non-routing) area our DSP block is approximately 518,000 - 4 * 30,481 = 396,000 MWTUs.
-->
<!--pb_type name="mult_36" height="4" area="396000">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="a" num_pins="18"/>
<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/-->
<!-- Model 9x9 delay and 18x18 delay as the same. 9x9 could be faster, but in Stratix IV
isn't, presumably because the multiplier layout is really optimized for 18x18.
-->
<!--mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">
<input name="A_cfg" num_pins="9"/>
<input name="B_cfg" num_pins="9"/>
<output name="OUT_cfg" num_pins="18"/>
<pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1">
<input name="a" num_pins="9"/>
<input name="b" num_pins="9"/>
<output name="out" num_pins="18"/>
<delay_constant max="1.523e-9" in_port="mult_9x9.a" out_port="mult_9x9.out"/>
<delay_constant max="1.523e-9" in_port="mult_9x9.b" out_port="mult_9x9.out"/>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a">
</direct>
<direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b">
</direct>
<direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_cfg">
</direct>
</interconnect>
<power method="pin-toggle">
<port name="A_cfg" energy_per_toggle="1.45e-12"/>
<port name="B_cfg" energy_per_toggle="1.45e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_slice[1:0].A_cfg">
</direct>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_slice[1:0].B_cfg">
</direct>
<direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.out">
</direct>
</interconnect>
</mode>
<mode name="mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<input name="A_cfg" num_pins="18"/>
<input name="B_cfg" num_pins="18"/>
<output name="OUT_cfg" num_pins="36"/>
<pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1" >
<input name="a" num_pins="18"/>
<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/>
<delay_constant max="1.523e-9" in_port="mult_18x18.a" out_port="mult_18x18.out"/>
<delay_constant max="1.523e-9" in_port="mult_18x18.b" out_port="mult_18x18.out"/>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a">
</direct>
<direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b">
</direct>
<direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.OUT_cfg">
</direct>
</interconnect>
<power method="pin-toggle">
<port name="A_cfg" energy_per_toggle="1.09e-12"/>
<port name="B_cfg" energy_per_toggle="1.09e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_slice.A_cfg">
</direct>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_slice.B_cfg">
</direct>
<direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.out">
</direct>
</interconnect>
</mode>
<power method="sum-of-children"/>
</pb_type>
<interconnect-->
<!-- Stratix IV input delay of 207ps is conservative for this architecture because this architecture does not have an input crossbar in the multiplier.
Subtract 72.5 ps delay, which is already in the connection block input mux, leading
-->
<!--direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a">
<delay_constant max="134e-12" in_port="mult_36.a" out_port="divisible_mult_18x18[1:0].a"/>
</direct>
<direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].b">
<delay_constant max="134e-12" in_port="mult_36.b" out_port="divisible_mult_18x18[1:0].b"/>
</direct>
<direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.out">
<delay_constant max="1.09e-9" in_port="divisible_mult_18x18[1:0].out" out_port="mult_36.out"/>
</direct>
</interconnect>
</mode>
<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36"/>
<input name="B_cfg" num_pins="36"/>
<output name="OUT_cfg" num_pins="72"/>
<pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<delay_constant max="1.523e-9" in_port="mult_36x36.a" out_port="mult_36x36.out"/>
<delay_constant max="1.523e-9" in_port="mult_36x36.b" out_port="mult_36x36.out"/>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a">
</direct>
<direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b">
</direct>
<direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_cfg">
</direct>
</interconnect>
<power method="pin-toggle">
<port name="A_cfg" energy_per_toggle="2.13e-12"/>
<port name="B_cfg" energy_per_toggle="2.13e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect-->
<!-- Stratix IV input delay of 207ps is conservative for this architecture because this architecture does not have an input crossbar in the multiplier.
Subtract 72.5 ps delay, which is already in the connection block input mux, leading
to a 134 ps delay.
-->
<!--direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg">
<delay_constant max="134e-12" in_port="mult_36.a" out_port="mult_36x36_slice.A_cfg"/>
</direct>
<direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg">
<delay_constant max="134e-12" in_port="mult_36.b" out_port="mult_36x36_slice.B_cfg"/>
</direct>
<direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out">
<delay_constant max="1.93e-9" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_36.out"/>
</direct>
</interconnect>
</mode>
<fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
<pinlocations pattern="spread"/-->
<!-- Place this multiplier block every 8 columns from (and including) the sixth column -->
<!--gridlocations>
<loc type="col" start="6" repeat="8" priority="2"/>
</gridlocations>
<power method="sum-of-children"/>
</pb_type-->
<!-- Define fracturable multiplier end -->
<!-- Define fracturable memory begin -->
<!-- 32 Kb Memory that can operate from 512x64 to 32Kx1 for single-port mode and 1024x32 to 32Kx1 for dual-port mode.
Area and delay based off Stratix IV 9K and 144K memories (delay from linear interpolation, Tsu(483 ps, 636 ps) Tco(1084ps, 1969ps)).
Input delay = 204ps (from Stratix IV LAB line) - 72ps (this architecture does not lump connection box delay in internal delay)
Output delay = M4K buffer 50ps
Area is obtained by appropriately scaling and adjusting the published Stratix III (which is architecturally identical to Stratix IV)
data from H. Wong, V. Betz and J. Rose, "Comparing FPGA vs. Custom CMOS and the Impact on Processor Microarchitecture", FPGA 2011.
Linearly interpolating (by bit count) between the M9k and M144k areas to obtain an M32k (our RAM size) point yields a 65 nm area of
of 0.153 mm^2. Interpolating based on port count between the RAMs would instead yield an area of 0.209 mm^2 for our 32 kB RAM; since
bit count accounts for more area than ports for a RAM this size we choose the bit count interpolation; however, since the port interpolation
is not radically different this also gives us confidence that interpolating based on bits is OK, but slightly underpredicts area.
Scaling to 40 nm^2 yields .0579 mm^2, and converting to MWTUs at 60 L^2 / MWTU yields 604,000 MWTUs. This includes routing. A Stratix IV
M9K RAM is one row high and hence has one routing tile (one horizonal and one vertical routing segment area). An M144k RAM has 8 such tiles.
Linearly interpolating on
bits to 32 kb yields 2.2 routing tiles incorporated in the area number above. The inter-block routing represents 30% of the area of a logic
tile according to D. Lewis et al, "Architectural Enhancements in Stratix V," FPGA 2013. Hence we should subtract 0.3 * 2.2 * 84,375 MWTUs to
obtain a RAM core area (not including inter-block routing) of 548,000 MWTU areas for our 32 kb RAM in a 40 nm process.
-->
<!--pb_type name="memory" height="6" area="548000">
<input name="addr1" num_pins="15"/>
<input name="addr2" num_pins="15"/>
<input name="data" num_pins="64"/>
<input name="we1" num_pins="1"/>
<input name="we2" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/-->
<!-- Specify single port mode first -->
<!--mode name="mem_512x64_sp">
<pb_type name="mem_512x64_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="9" port_class="address"/>
<input name="data" num_pins="64" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="64" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_512x64_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_512x64_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_512x64_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_512x64_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[8:0]" output="mem_512x64_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[8:0]" out_port="mem_512x64_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[63:0]" output="mem_512x64_sp.data">
<delay_constant max="132e-12" in_port="memory.data[63:0]" out_port="mem_512x64_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_512x64_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_512x64_sp.we"/>
</direct>
<direct name="dataout1" input="mem_512x64_sp.out" output="memory.out[63:0]">
<delay_constant max="40e-12" in_port="mem_512x64_sp.out" out_port="memory.out[63:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_512x64_sp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_1024x32_sp">
<pb_type name="mem_1024x32_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="10" port_class="address"/>
<input name="data" num_pins="32" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="32" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_1024x32_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_1024x32_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[9:0]" output="mem_1024x32_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[9:0]" out_port="mem_1024x32_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[31:0]" output="mem_1024x32_sp.data">
<delay_constant max="132e-12" in_port="memory.data[31:0]" out_port="mem_1024x32_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_1024x32_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_1024x32_sp.we"/>
</direct>
<direct name="dataout1" input="mem_1024x32_sp.out" output="memory.out[31:0]">
<delay_constant max="40e-12" in_port="mem_1024x32_sp.out" out_port="memory.out[31:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_1024x32_sp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_2048x16_sp">
<pb_type name="mem_2048x16_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="11" port_class="address"/>
<input name="data" num_pins="16" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="16" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_2048x16_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_2048x16_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[10:0]" output="mem_2048x16_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[10:0]" out_port="mem_2048x16_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[15:0]" output="mem_2048x16_sp.data">
<delay_constant max="132e-12" in_port="memory.data[15:0]" out_port="mem_2048x16_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x16_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_2048x16_sp.we"/>
</direct>
<direct name="dataout1" input="mem_2048x16_sp.out" output="memory.out[15:0]">
<delay_constant max="40e-12" in_port="mem_2048x16_sp.out" out_port="memory.out[15:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x16_sp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_4096x8_sp">
<pb_type name="mem_4096x8_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="12" port_class="address"/>
<input name="data" num_pins="8" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="8" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_4096x8_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_4096x8_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_4096x8_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_4096x8_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[11:0]" output="mem_4096x8_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[11:0]" out_port="mem_4096x8_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[7:0]" output="mem_4096x8_sp.data">
<delay_constant max="132e-12" in_port="memory.data[7:0]" out_port="mem_4096x8_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_4096x8_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_4096x8_sp.we"/>
</direct>
<direct name="dataout1" input="mem_4096x8_sp.out" output="memory.out[7:0]">
<delay_constant max="40e-12" in_port="mem_4096x8_sp.out" out_port="memory.out[7:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_4096x8_sp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_8192x4_sp">
<pb_type name="mem_8192x4_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="13" port_class="address"/>
<input name="data" num_pins="4" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="4" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_8192x4_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_8192x4_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[12:0]" output="mem_8192x4_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[12:0]" out_port="mem_8192x4_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[3:0]" output="mem_8192x4_sp.data">
<delay_constant max="132e-12" in_port="memory.data[3:0]" out_port="mem_8192x4_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_8192x4_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_8192x4_sp.we"/>
</direct>
<direct name="dataout1" input="mem_8192x4_sp.out" output="memory.out[3:0]">
<delay_constant max="40e-12" in_port="mem_8192x4_sp.out" out_port="memory.out[3:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_8192x4_sp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_16384x2_sp">
<pb_type name="mem_16384x2_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="14" port_class="address"/>
<input name="data" num_pins="2" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="2" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_16384x2_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_16384x2_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[13:0]" output="mem_16384x2_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[13:0]" out_port="mem_16384x2_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[1:0]" output="mem_16384x2_sp.data">
<delay_constant max="132e-12" in_port="memory.data[1:0]" out_port="mem_16384x2_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_16384x2_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_16384x2_sp.we"/>
</direct>
<direct name="dataout1" input="mem_16384x2_sp.out" output="memory.out[1:0]">
<delay_constant max="40e-12" in_port="mem_16384x2_sp.out" out_port="memory.out[1:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_16384x2_sp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_32768x1_sp">
<pb_type name="mem_32768x1_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
<input name="addr" num_pins="15" port_class="address"/>
<input name="data" num_pins="1" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="1" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_32768x1_sp.addr" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_sp.data" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_sp.we" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_32768x1_sp.out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="9.0e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[14:0]" output="mem_32768x1_sp.addr">
<delay_constant max="132e-12" in_port="memory.addr1[14:0]" out_port="mem_32768x1_sp.addr"/>
</direct>
<direct name="data1" input="memory.data[0:0]" output="mem_32768x1_sp.data">
<delay_constant max="132e-12" in_port="memory.data[0:0]" out_port="mem_32768x1_sp.data"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_32768x1_sp.we">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_32768x1_sp.we"/>
</direct>
<direct name="dataout1" input="mem_32768x1_sp.out" output="memory.out[0:0]">
<delay_constant max="40e-12" in_port="mem_32768x1_sp.out" out_port="memory.out[0:0]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_32768x1_sp.clk">
</direct>
</interconnect>
</mode-->
<!-- Specify true dual port mode next -->
<!--mode name="mem_1024x32_dp">
<pb_type name="mem_1024x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="addr1" num_pins="10" port_class="address1"/>
<input name="addr2" num_pins="10" port_class="address2"/>
<input name="data1" num_pins="32" port_class="data_in1"/>
<input name="data2" num_pins="32" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="32" port_class="data_out1"/>
<output name="out2" num_pins="32" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_1024x32_dp.addr1" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_dp.data1" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_dp.we1" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_dp.addr2" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_dp.data2" clock="clk"/>
<T_setup value="509e-12" port="mem_1024x32_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_1024x32_dp.out1" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_1024x32_dp.out2" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[9:0]" output="mem_1024x32_dp.addr1">
<delay_constant max="132e-12" in_port="memory.addr1[9:0]" out_port="mem_1024x32_dp.addr1"/>
</direct>
<direct name="address2" input="memory.addr2[9:0]" output="mem_1024x32_dp.addr2">
<delay_constant max="132e-12" in_port="memory.addr2[9:0]" out_port="mem_1024x32_dp.addr2"/>
</direct>
<direct name="data1" input="memory.data[31:0]" output="mem_1024x32_dp.data1">
<delay_constant max="132e-12" in_port="memory.data[31:0]" out_port="mem_1024x32_dp.data1"/>
</direct>
<direct name="data2" input="memory.data[63:32]" output="mem_1024x32_dp.data2">
<delay_constant max="132e-12" in_port="memory.data[63:32]" out_port="mem_1024x32_dp.data2"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_1024x32_dp.we1">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_1024x32_dp.we1"/>
</direct>
<direct name="writeen2" input="memory.we2" output="mem_1024x32_dp.we2">
<delay_constant max="132e-12" in_port="memory.we2" out_port="mem_1024x32_dp.we2"/>
</direct>
<direct name="dataout1" input="mem_1024x32_dp.out1" output="memory.out[31:0]">
<delay_constant max="40e-12" in_port="mem_1024x32_dp.out1" out_port="memory.out[31:0]"/>
</direct>
<direct name="dataout2" input="mem_1024x32_dp.out2" output="memory.out[63:32]">
<delay_constant max="40e-12" in_port="mem_1024x32_dp.out2" out_port="memory.out[63:32]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_1024x32_dp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_2048x16_dp">
<pb_type name="mem_2048x16_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="addr1" num_pins="11" port_class="address1"/>
<input name="addr2" num_pins="11" port_class="address2"/>
<input name="data1" num_pins="16" port_class="data_in1"/>
<input name="data2" num_pins="16" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="16" port_class="data_out1"/>
<output name="out2" num_pins="16" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_2048x16_dp.addr1" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_dp.data1" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_dp.we1" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_dp.addr2" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_dp.data2" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x16_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_2048x16_dp.out1" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_2048x16_dp.out2" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[10:0]" output="mem_2048x16_dp.addr1">
<delay_constant max="132e-12" in_port="memory.addr1[10:0]" out_port="mem_2048x16_dp.addr1"/>
</direct>
<direct name="address2" input="memory.addr2[10:0]" output="mem_2048x16_dp.addr2">
<delay_constant max="132e-12" in_port="memory.addr2[10:0]" out_port="mem_2048x16_dp.addr2"/>
</direct>
<direct name="data1" input="memory.data[15:0]" output="mem_2048x16_dp.data1">
<delay_constant max="132e-12" in_port="memory.data[15:0]" out_port="mem_2048x16_dp.data1"/>
</direct>
<direct name="data2" input="memory.data[31:16]" output="mem_2048x16_dp.data2">
<delay_constant max="132e-12" in_port="memory.data[31:16]" out_port="mem_2048x16_dp.data2"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x16_dp.we1">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_2048x16_dp.we1"/>
</direct>
<direct name="writeen2" input="memory.we2" output="mem_2048x16_dp.we2">
<delay_constant max="132e-12" in_port="memory.we2" out_port="mem_2048x16_dp.we2"/>
</direct>
<direct name="dataout1" input="mem_2048x16_dp.out1" output="memory.out[15:0]">
<delay_constant max="40e-12" in_port="mem_2048x16_dp.out1" out_port="memory.out[15:0]"/>
</direct>
<direct name="dataout2" input="mem_2048x16_dp.out2" output="memory.out[31:16]">
<delay_constant max="40e-12" in_port="mem_2048x16_dp.out2" out_port="memory.out[31:16]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x16_dp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_2048x8_dp">
<pb_type name="mem_2048x8_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="addr1" num_pins="12" port_class="address1"/>
<input name="addr2" num_pins="12" port_class="address2"/>
<input name="data1" num_pins="8" port_class="data_in1"/>
<input name="data2" num_pins="8" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="8" port_class="data_out1"/>
<output name="out2" num_pins="8" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_2048x8_dp.addr1" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x8_dp.data1" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x8_dp.we1" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x8_dp.addr2" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x8_dp.data2" clock="clk"/>
<T_setup value="509e-12" port="mem_2048x8_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_2048x8_dp.out1" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_2048x8_dp.out2" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[11:0]" output="mem_2048x8_dp.addr1">
<delay_constant max="132e-12" in_port="memory.addr1[11:0]" out_port="mem_2048x8_dp.addr1"/>
</direct>
<direct name="address2" input="memory.addr2[11:0]" output="mem_2048x8_dp.addr2">
<delay_constant max="132e-12" in_port="memory.addr2[11:0]" out_port="mem_2048x8_dp.addr2"/>
</direct>
<direct name="data1" input="memory.data[7:0]" output="mem_2048x8_dp.data1">
<delay_constant max="132e-12" in_port="memory.data[7:0]" out_port="mem_2048x8_dp.data1"/>
</direct>
<direct name="data2" input="memory.data[15:8]" output="mem_2048x8_dp.data2">
<delay_constant max="132e-12" in_port="memory.data[15:8]" out_port="mem_2048x8_dp.data2"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x8_dp.we1">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_2048x8_dp.we1"/>
</direct>
<direct name="writeen2" input="memory.we2" output="mem_2048x8_dp.we2">
<delay_constant max="132e-12" in_port="memory.we2" out_port="mem_2048x8_dp.we2"/>
</direct>
<direct name="dataout1" input="mem_2048x8_dp.out1" output="memory.out[7:0]">
<delay_constant max="40e-12" in_port="mem_2048x8_dp.out1" out_port="memory.out[7:0]"/>
</direct>
<direct name="dataout2" input="mem_2048x8_dp.out2" output="memory.out[15:8]">
<delay_constant max="40e-12" in_port="mem_2048x8_dp.out2" out_port="memory.out[15:8]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x8_dp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_8192x4_dp">
<pb_type name="mem_8192x4_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="addr1" num_pins="13" port_class="address1"/>
<input name="addr2" num_pins="13" port_class="address2"/>
<input name="data1" num_pins="4" port_class="data_in1"/>
<input name="data2" num_pins="4" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="4" port_class="data_out1"/>
<output name="out2" num_pins="4" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_8192x4_dp.addr1" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_dp.data1" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_dp.we1" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_dp.addr2" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_dp.data2" clock="clk"/>
<T_setup value="509e-12" port="mem_8192x4_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_8192x4_dp.out1" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_8192x4_dp.out2" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[12:0]" output="mem_8192x4_dp.addr1">
<delay_constant max="132e-12" in_port="memory.addr1[12:0]" out_port="mem_8192x4_dp.addr1"/>
</direct>
<direct name="address2" input="memory.addr2[12:0]" output="mem_8192x4_dp.addr2">
<delay_constant max="132e-12" in_port="memory.addr2[12:0]" out_port="mem_8192x4_dp.addr2"/>
</direct>
<direct name="data1" input="memory.data[3:0]" output="mem_8192x4_dp.data1">
<delay_constant max="132e-12" in_port="memory.data[3:0]" out_port="mem_8192x4_dp.data1"/>
</direct>
<direct name="data2" input="memory.data[7:4]" output="mem_8192x4_dp.data2">
<delay_constant max="132e-12" in_port="memory.data[7:4]" out_port="mem_8192x4_dp.data2"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_8192x4_dp.we1">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_8192x4_dp.we1"/>
</direct>
<direct name="writeen2" input="memory.we2" output="mem_8192x4_dp.we2">
<delay_constant max="132e-12" in_port="memory.we2" out_port="mem_8192x4_dp.we2"/>
</direct>
<direct name="dataout1" input="mem_8192x4_dp.out1" output="memory.out[3:0]">
<delay_constant max="40e-12" in_port="mem_8192x4_dp.out1" out_port="memory.out[3:0]"/>
</direct>
<direct name="dataout2" input="mem_8192x4_dp.out2" output="memory.out[7:4]">
<delay_constant max="40e-12" in_port="mem_8192x4_dp.out2" out_port="memory.out[7:4]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_8192x4_dp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_16384x2_dp">
<pb_type name="mem_16384x2_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="addr1" num_pins="14" port_class="address1"/>
<input name="addr2" num_pins="14" port_class="address2"/>
<input name="data1" num_pins="2" port_class="data_in1"/>
<input name="data2" num_pins="2" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="2" port_class="data_out1"/>
<output name="out2" num_pins="2" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_16384x2_dp.addr1" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_dp.data1" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_dp.we1" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_dp.addr2" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_dp.data2" clock="clk"/>
<T_setup value="509e-12" port="mem_16384x2_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_16384x2_dp.out1" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_16384x2_dp.out2" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[13:0]" output="mem_16384x2_dp.addr1">
<delay_constant max="132e-12" in_port="memory.addr1[13:0]" out_port="mem_16384x2_dp.addr1"/>
</direct>
<direct name="address2" input="memory.addr2[13:0]" output="mem_16384x2_dp.addr2">
<delay_constant max="132e-12" in_port="memory.addr2[13:0]" out_port="mem_16384x2_dp.addr2"/>
</direct>
<direct name="data1" input="memory.data[1:0]" output="mem_16384x2_dp.data1">
<delay_constant max="132e-12" in_port="memory.data[1:0]" out_port="mem_16384x2_dp.data1"/>
</direct>
<direct name="data2" input="memory.data[3:2]" output="mem_16384x2_dp.data2">
<delay_constant max="132e-12" in_port="memory.data[3:2]" out_port="mem_16384x2_dp.data2"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_16384x2_dp.we1">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_16384x2_dp.we1"/>
</direct>
<direct name="writeen2" input="memory.we2" output="mem_16384x2_dp.we2">
<delay_constant max="132e-12" in_port="memory.we2" out_port="mem_16384x2_dp.we2"/>
</direct>
<direct name="dataout1" input="mem_16384x2_dp.out1" output="memory.out[1:0]">
<delay_constant max="40e-12" in_port="mem_16384x2_dp.out1" out_port="memory.out[1:0]"/>
</direct>
<direct name="dataout2" input="mem_16384x2_dp.out2" output="memory.out[3:2]">
<delay_constant max="40e-12" in_port="mem_16384x2_dp.out2" out_port="memory.out[3:2]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_16384x2_dp.clk">
</direct>
</interconnect>
</mode>
<mode name="mem_32768x1_dp">
<pb_type name="mem_32768x1_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="addr1" num_pins="15" port_class="address1"/>
<input name="addr2" num_pins="15" port_class="address2"/>
<input name="data1" num_pins="1" port_class="data_in1"/>
<input name="data2" num_pins="1" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="1" port_class="data_out1"/>
<output name="out2" num_pins="1" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_32768x1_dp.addr1" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_dp.data1" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_dp.we1" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_dp.addr2" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_dp.data2" clock="clk"/>
<T_setup value="509e-12" port="mem_32768x1_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_32768x1_dp.out1" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_32768x1_dp.out2" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[14:0]" output="mem_32768x1_dp.addr1">
<delay_constant max="132e-12" in_port="memory.addr1[14:0]" out_port="mem_32768x1_dp.addr1"/>
</direct>
<direct name="address2" input="memory.addr2[14:0]" output="mem_32768x1_dp.addr2">
<delay_constant max="132e-12" in_port="memory.addr2[14:0]" out_port="mem_32768x1_dp.addr2"/>
</direct>
<direct name="data1" input="memory.data[0:0]" output="mem_32768x1_dp.data1">
<delay_constant max="132e-12" in_port="memory.data[0:0]" out_port="mem_32768x1_dp.data1"/>
</direct>
<direct name="data2" input="memory.data[1:1]" output="mem_32768x1_dp.data2">
<delay_constant max="132e-12" in_port="memory.data[1:1]" out_port="mem_32768x1_dp.data2"/>
</direct>
<direct name="writeen1" input="memory.we1" output="mem_32768x1_dp.we1">
<delay_constant max="132e-12" in_port="memory.we1" out_port="mem_32768x1_dp.we1"/>
</direct>
<direct name="writeen2" input="memory.we2" output="mem_32768x1_dp.we2">
<delay_constant max="132e-12" in_port="memory.we2" out_port="mem_32768x1_dp.we2"/>
</direct>
<direct name="dataout1" input="mem_32768x1_dp.out1" output="memory.out[0:0]">
<delay_constant max="40e-12" in_port="mem_32768x1_dp.out1" out_port="memory.out[0:0]"/>
</direct>
<direct name="dataout2" input="mem_32768x1_dp.out2" output="memory.out[1:1]">
<delay_constant max="40e-12" in_port="mem_32768x1_dp.out2" out_port="memory.out[1:1]"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_32768x1_dp.clk">
</direct>
</interconnect>
</mode-->
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!--fc default_in_type="frac" default_in_val="0.15" default_out_type="frac" default_out_val="0.10"/>
<pinlocations pattern="spread"/-->
<!-- Place this memory block every 8 columns from (and including) the second column -->
<!--gridlocations>
<loc type="col" start="2" repeat="8" priority="2"/>
</gridlocations>
<power method="sum-of-children"/>
</pb_type-->
<!-- Define fracturable memory end -->
</complexblocklist>
<power>
<local_interconnect C_wire="0"/>
<mux_transistor_size mux_transistor_size="5"/>
<FF_size FF_size="4"/>
<LUT_transistor_size LUT_transistor_size="5"/>
</power>
<clocks>
<clock buffer_size="auto" C_wire="0"/>
</clocks>
</architecture>