1409 lines
72 KiB
C++
1409 lines
72 KiB
C++
/***********************************************
|
|
* This file includes functions to generate
|
|
* Verilog submodules for multiplexers.
|
|
* including both fundamental submodules
|
|
* such as a branch in a multiplexer
|
|
* and the full multiplexer
|
|
**********************************************/
|
|
#include <string>
|
|
#include <algorithm>
|
|
|
|
/* Headers from vtrutil library */
|
|
#include "vtr_log.h"
|
|
#include "vtr_assert.h"
|
|
#include "vtr_time.h"
|
|
|
|
#include "mux_graph.h"
|
|
#include "module_manager.h"
|
|
#include "mux_utils.h"
|
|
#include "circuit_library_utils.h"
|
|
#include "decoder_library_utils.h"
|
|
#include "module_manager_utils.h"
|
|
#include "build_module_graph_utils.h"
|
|
#include "openfpga_reserved_words.h"
|
|
#include "openfpga_naming.h"
|
|
|
|
#include "build_mux_modules.h"
|
|
|
|
/* begin namespace openfpga */
|
|
namespace openfpga {
|
|
|
|
/*********************************************************************
|
|
* Generate structural Verilog codes (consist of transmission-gates or
|
|
* pass-transistor) modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
*
|
|
* +----------+
|
|
* input[0] --->| tgate[0] |-+
|
|
* +----------+ |
|
|
* |
|
|
* +----------+ |
|
|
* input[1] --->| tgate[1] |-+--->output[0]
|
|
* +----------+ |
|
|
* |
|
|
* ... ... |
|
|
* |
|
|
* +----------+ |
|
|
* input[i] --->| tgate[i] |-+
|
|
* +----------+
|
|
*********************************************************************/
|
|
static
|
|
void build_cmos_mux_branch_body(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& tgate_model,
|
|
const ModuleId& mux_module,
|
|
const ModulePortId& module_input_port,
|
|
const ModulePortId& module_output_port,
|
|
const ModulePortId& module_mem_port,
|
|
const ModulePortId& module_mem_inv_port,
|
|
const MuxGraph& mux_graph) {
|
|
/* Get the module id of tgate in Module manager */
|
|
ModuleId tgate_module_id = module_manager.find_module(circuit_lib.model_name(tgate_model));
|
|
VTR_ASSERT(ModuleId::INVALID() != tgate_module_id);
|
|
|
|
/* Get model ports of tgate */
|
|
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
|
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
|
VTR_ASSERT(3 == tgate_input_ports.size());
|
|
VTR_ASSERT(1 == tgate_output_ports.size());
|
|
|
|
/* Find the module ports of tgate module */
|
|
/* Input port is the data path input of the tgate, whose size must be 1 ! */
|
|
ModulePortId tgate_module_input = module_manager.find_module_port(tgate_module_id, circuit_lib.port_prefix(tgate_input_ports[0]));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(tgate_module_id, tgate_module_input));
|
|
BasicPort tgate_module_input_port = module_manager.module_port(tgate_module_id, tgate_module_input);
|
|
VTR_ASSERT(1 == tgate_module_input_port.get_width());
|
|
|
|
/* Mem port is the memory of the tgate, whose size must be 1 ! */
|
|
ModulePortId tgate_module_mem = module_manager.find_module_port(tgate_module_id, circuit_lib.port_prefix(tgate_input_ports[1]));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(tgate_module_id, tgate_module_mem));
|
|
BasicPort tgate_module_mem_port = module_manager.module_port(tgate_module_id, tgate_module_mem);
|
|
VTR_ASSERT(1 == tgate_module_mem_port.get_width());
|
|
|
|
/* Mem inv port is the inverted memory of the tgate, whose size must be 1 ! */
|
|
ModulePortId tgate_module_mem_inv = module_manager.find_module_port(tgate_module_id, circuit_lib.port_prefix(tgate_input_ports[2]));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(tgate_module_id, tgate_module_mem_inv));
|
|
BasicPort tgate_module_mem_inv_port = module_manager.module_port(tgate_module_id, tgate_module_mem_inv);
|
|
VTR_ASSERT(1 == tgate_module_mem_inv_port.get_width());
|
|
|
|
/* Output port is the data path output of the tgate, whose size must be 1 ! */
|
|
ModulePortId tgate_module_output = module_manager.find_module_port(tgate_module_id, circuit_lib.port_prefix(tgate_output_ports[0]));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(tgate_module_id, tgate_module_output));
|
|
BasicPort tgate_module_output_port = module_manager.module_port(tgate_module_id, tgate_module_output);
|
|
VTR_ASSERT(1 == tgate_module_output_port.get_width());
|
|
|
|
/* Ensure that input port size does match mux inputs */
|
|
BasicPort input_port = module_manager.module_port(mux_module, module_input_port);
|
|
VTR_ASSERT(input_port.get_width() == mux_graph.num_inputs());
|
|
|
|
/* Add module nets for each mux inputs */
|
|
std::vector<ModuleNetId> mux_input_nets;
|
|
for (const size_t& pin : input_port.pins()) {
|
|
ModuleNetId input_net = module_manager.create_module_net(mux_module);
|
|
mux_input_nets.push_back(input_net);
|
|
/* Configure the source for each net */
|
|
module_manager.add_module_net_source(mux_module, input_net, mux_module, 0, module_input_port, pin);
|
|
}
|
|
|
|
/* Ensure that output port size does match mux outputs */
|
|
BasicPort output_port = module_manager.module_port(mux_module, module_output_port);
|
|
VTR_ASSERT(output_port.get_width() == mux_graph.num_outputs());
|
|
|
|
/* Add module nets for each mux outputs */
|
|
std::vector<ModuleNetId> mux_output_nets;
|
|
for (const size_t& pin : output_port.pins()) {
|
|
ModuleNetId output_net = module_manager.create_module_net(mux_module);
|
|
mux_output_nets.push_back(output_net);
|
|
/* Configure the sink for each net */
|
|
module_manager.add_module_net_sink(mux_module, output_net, mux_module, 0, module_output_port, pin);
|
|
}
|
|
|
|
/* Ensure that mem port size does match mux outputs */
|
|
BasicPort mem_port = module_manager.module_port(mux_module, module_mem_port);
|
|
VTR_ASSERT(mem_port.get_width() == mux_graph.num_memory_bits());
|
|
|
|
/* Add module nets for each mem inputs */
|
|
std::vector<ModuleNetId> mux_mem_nets;
|
|
for (const size_t& pin : mem_port.pins()) {
|
|
ModuleNetId mem_net = module_manager.create_module_net(mux_module);
|
|
mux_mem_nets.push_back(mem_net);
|
|
/* Configure the source for each net */
|
|
module_manager.add_module_net_source(mux_module, mem_net, mux_module, 0, module_mem_port, pin);
|
|
}
|
|
|
|
/* Ensure that mem_inv port size does match mux outputs */
|
|
BasicPort mem_inv_port = module_manager.module_port(mux_module, module_mem_inv_port);
|
|
VTR_ASSERT(mem_inv_port.get_width() == mux_graph.num_memory_bits());
|
|
|
|
/* Add module nets for each mem inverted inputs */
|
|
std::vector<ModuleNetId> mux_mem_inv_nets;
|
|
for (const size_t& pin : mem_inv_port.pins()) {
|
|
ModuleNetId mem_net = module_manager.create_module_net(mux_module);
|
|
mux_mem_inv_nets.push_back(mem_net);
|
|
/* Configure the source for each net */
|
|
module_manager.add_module_net_source(mux_module, mem_net, mux_module, 0, module_mem_inv_port, pin);
|
|
}
|
|
|
|
/* Build a module following the connections in mux_graph */
|
|
/* Iterate over the inputs */
|
|
for (const auto& mux_input : mux_graph.inputs()) {
|
|
/* Iterate over the outputs */
|
|
for (const auto& mux_output : mux_graph.outputs()) {
|
|
/* Add the a tgate to bridge the mux input and output */
|
|
size_t tgate_instance = module_manager.num_instance(mux_module, tgate_module_id);
|
|
module_manager.add_child_module(mux_module, tgate_module_id);
|
|
|
|
/* Add module nets to connect the mux input and tgate input */
|
|
module_manager.add_module_net_sink(mux_module, mux_input_nets[size_t(mux_graph.input_id(mux_input))], tgate_module_id, tgate_instance, tgate_module_input, tgate_module_input_port.get_lsb());
|
|
|
|
/* if there is a connection between the input and output, a tgate will be outputted */
|
|
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
|
|
/* There should be only one edge or no edge*/
|
|
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
|
|
/* No need to output tgates if there are no edges between two nodes */
|
|
if (0 == edges.size()) {
|
|
continue;
|
|
}
|
|
|
|
/* Add module nets to connect the mux output and tgate output */
|
|
module_manager.add_module_net_source(mux_module, mux_output_nets[size_t(mux_graph.output_id(mux_output))], tgate_module_id, tgate_instance, tgate_module_output, tgate_module_output_port.get_lsb());
|
|
|
|
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
|
|
/* Add module nets to connect the mem input and tgate mem input */
|
|
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
|
|
/* wire mem to mem of module, and wire mem_inv to mem_inv of module */
|
|
module_manager.add_module_net_sink(mux_module, mux_mem_nets[size_t(mux_mem)], tgate_module_id, tgate_instance, tgate_module_mem, tgate_module_mem_port.get_lsb());
|
|
module_manager.add_module_net_sink(mux_module, mux_mem_inv_nets[size_t(mux_mem)], tgate_module_id, tgate_instance, tgate_module_mem_inv, tgate_module_mem_inv_port.get_lsb());
|
|
} else {
|
|
/* wire mem_inv to mem of module, wire mem to mem_inv of module */
|
|
module_manager.add_module_net_sink(mux_module, mux_mem_inv_nets[size_t(mux_mem)], tgate_module_id, tgate_instance, tgate_module_mem, tgate_module_mem_port.get_lsb());
|
|
module_manager.add_module_net_sink(mux_module, mux_mem_nets[size_t(mux_mem)], tgate_module_id, tgate_instance, tgate_module_mem_inv, tgate_module_mem_inv_port.get_lsb());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a CMOS multiplexer with the given size
|
|
* Support structural and behavioral Verilog codes
|
|
*********************************************************************/
|
|
static
|
|
void build_cmos_mux_branch_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& mux_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph) {
|
|
/* Get the tgate model */
|
|
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(mux_model);
|
|
|
|
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */
|
|
if (CIRCUIT_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
|
|
VTR_ASSERT(CIRCUIT_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
|
|
return;
|
|
}
|
|
|
|
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, CIRCUIT_MODEL_PORT_INPUT, true, true);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of inputs */
|
|
size_t num_inputs = mux_graph.num_inputs();
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 output */
|
|
VTR_ASSERT(1 == num_outputs);
|
|
/* MUX graph must have only 1 level*/
|
|
VTR_ASSERT(1 == mux_graph.num_levels());
|
|
|
|
/* Create a Verilog Module based on the circuit model, and add to module manager */
|
|
ModuleId mux_module = module_manager.add_module(module_name);
|
|
VTR_ASSERT(true == module_manager.valid_module_id(mux_module));
|
|
/* Add module ports */
|
|
/* Add each input port */
|
|
BasicPort input_port("in", num_inputs);
|
|
ModulePortId module_input_port = module_manager.add_port(mux_module, input_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* Add each output port */
|
|
BasicPort output_port("out", num_outputs);
|
|
ModulePortId module_output_port = module_manager.add_port(mux_module, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
|
/* Add each memory port */
|
|
BasicPort mem_port("mem", num_mems);
|
|
ModulePortId module_mem_port = module_manager.add_port(mux_module, mem_port, ModuleManager::MODULE_INPUT_PORT);
|
|
BasicPort mem_inv_port("mem_inv", num_mems);
|
|
ModulePortId module_mem_inv_port = module_manager.add_port(mux_module, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* By default we give a structural description,
|
|
* Writers can freely write the module in their styles
|
|
* For instance, Verilog writer can ignore the internal structure and write in behavioral codes
|
|
*/
|
|
build_cmos_mux_branch_body(module_manager, circuit_lib, tgate_model, mux_module, module_input_port, module_output_port, module_mem_port, module_mem_inv_port, mux_graph);
|
|
|
|
/* Add global ports to the mux module:
|
|
* This is a much easier job after adding sub modules (instances),
|
|
* we just need to find all the global ports from the child modules and build a list of it
|
|
*/
|
|
add_module_global_ports_from_child_modules(module_manager, mux_module);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a RRAM-based multiplexer with the given size
|
|
* Support structural and behavioral Verilog codes
|
|
*********************************************************************/
|
|
static
|
|
void build_rram_mux_branch_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& mux_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph) {
|
|
/* Get the input ports from the mux */
|
|
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
|
/* Get the output ports from the mux */
|
|
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
|
/* Get the BL and WL ports from the mux */
|
|
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_BLB, true);
|
|
std::vector<CircuitPortId> mux_wl_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_WL, true);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of inputs */
|
|
size_t num_inputs = mux_graph.num_inputs();
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 output */
|
|
VTR_ASSERT(1 == num_outputs);
|
|
/* MUX graph must have only 1 level*/
|
|
VTR_ASSERT(1 == mux_graph.num_levels());
|
|
/* MUX graph must have only 1 input and 1 BLB and 1 WL port */
|
|
VTR_ASSERT(1 == mux_input_ports.size());
|
|
VTR_ASSERT(1 == mux_output_ports.size());
|
|
VTR_ASSERT(1 == mux_blb_ports.size());
|
|
VTR_ASSERT(1 == mux_wl_ports.size());
|
|
|
|
/* Create a Verilog Module based on the circuit model, and add to module manager */
|
|
ModuleId mux_module = module_manager.add_module(module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != mux_module);
|
|
|
|
/* Add module ports */
|
|
/* Add each global programming enable/disable ports */
|
|
std::vector<CircuitPortId> prog_enable_ports = circuit_lib.model_global_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_INPUT, true, true);
|
|
for (const auto& port : prog_enable_ports) {
|
|
/* Configure each global port */
|
|
BasicPort global_port(circuit_lib.port_prefix(port), circuit_lib.port_size(port));
|
|
module_manager.add_port(mux_module, global_port, ModuleManager::MODULE_GLOBAL_PORT);
|
|
}
|
|
|
|
/* Add each input port */
|
|
BasicPort input_port(circuit_lib.port_prefix(mux_input_ports[0]), num_inputs);
|
|
module_manager.add_port(mux_module, input_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* Add each output port */
|
|
BasicPort output_port(circuit_lib.port_prefix(mux_output_ports[0]), num_outputs);
|
|
module_manager.add_port(mux_module, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
|
|
|
/* Add RRAM programming ports,
|
|
* RRAM MUXes require one more pair of BLB and WL
|
|
* to configure the memories. See schematic for details
|
|
*/
|
|
BasicPort blb_port(circuit_lib.port_prefix(mux_blb_ports[0]), num_mems + 1);
|
|
module_manager.add_port(mux_module, blb_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
BasicPort wl_port(circuit_lib.port_prefix(mux_wl_ports[0]), num_mems + 1);
|
|
module_manager.add_port(mux_module, wl_port, ModuleManager::MODULE_INPUT_PORT);
|
|
|
|
/* Note: we do not generate the internal structure of the ReRAM-based MUX
|
|
* circuit as a module graph!
|
|
* This is mainly due to that the internal structure could be different
|
|
* in Verilog or SPICE netlists
|
|
* Leave the writers to customize this
|
|
*/
|
|
}
|
|
|
|
/***********************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
**********************************************/
|
|
static
|
|
void build_mux_branch_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& mux_model,
|
|
const size_t& mux_size,
|
|
const MuxGraph& mux_graph) {
|
|
std::string module_name = generate_mux_branch_subckt_name(circuit_lib, mux_model, mux_size, mux_graph.num_inputs(), MUX_BASIS_MODULE_POSTFIX);
|
|
|
|
/* Multiplexers built with different technology is in different organization */
|
|
switch (circuit_lib.design_tech_type(mux_model)) {
|
|
case CIRCUIT_MODEL_DESIGN_CMOS:
|
|
build_cmos_mux_branch_module(module_manager, circuit_lib, mux_model, module_name, mux_graph);
|
|
break;
|
|
case CIRCUIT_MODEL_DESIGN_RRAM:
|
|
build_rram_mux_branch_module(module_manager, circuit_lib, mux_model, module_name, mux_graph);
|
|
break;
|
|
default:
|
|
VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid design technology of multiplexer '%s'\n",
|
|
circuit_lib.model_name(mux_model).c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/********************************************************************
|
|
* Generate the standard-cell-based internal logic (multiplexing structure)
|
|
* for a multiplexer or LUT in Verilog codes
|
|
* This function will :
|
|
* 1. build a multiplexing structure by instanciating standard cells MUX2
|
|
* 2. add intermediate buffers between multiplexing stages if specified.
|
|
*******************************************************************/
|
|
static
|
|
void build_cmos_mux_module_mux2_multiplexing_structure(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const ModuleId& mux_module,
|
|
const CircuitModelId& mux_model,
|
|
const CircuitModelId& std_cell_model,
|
|
const vtr::vector<MuxInputId, ModuleNetId>& mux_module_input_nets,
|
|
const vtr::vector<MuxOutputId, ModuleNetId>& mux_module_output_nets,
|
|
const vtr::vector<MuxMemId, ModuleNetId>& mux_module_mem_nets,
|
|
const MuxGraph& mux_graph) {
|
|
/* Get the regular (non-mode-select) sram ports from the mux */
|
|
std::vector<CircuitPortId> mux_regular_sram_ports = find_circuit_regular_sram_ports(circuit_lib, mux_model);
|
|
VTR_ASSERT(1 == mux_regular_sram_ports.size());
|
|
|
|
/* Find the input ports and output ports of the standard cell */
|
|
std::vector<CircuitPortId> std_cell_input_ports = circuit_lib.model_ports_by_type(std_cell_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
|
std::vector<CircuitPortId> std_cell_output_ports = circuit_lib.model_ports_by_type(std_cell_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
|
/* Quick check the requirements on port map */
|
|
VTR_ASSERT(3 == std_cell_input_ports.size());
|
|
VTR_ASSERT(1 == std_cell_output_ports.size());
|
|
|
|
/* Find module information of the standard cell MUX2 */
|
|
std::string std_cell_module_name = circuit_lib.model_name(std_cell_model);
|
|
/* Get the moduleId for the submodule */
|
|
ModuleId std_cell_module_id = module_manager.find_module(std_cell_module_name);
|
|
/* We must have one */
|
|
VTR_ASSERT(ModuleId::INVALID() != std_cell_module_id);
|
|
|
|
/* Find the module ports of the standard cell MUX2 module */
|
|
std::vector<ModulePortId> std_cell_module_inputs;
|
|
std::vector<BasicPort> std_cell_module_input_ports;
|
|
/* Input 0 port is the first data path input of the tgate, whose size must be 1 ! */
|
|
for (size_t port_id = 0; port_id < 2; ++port_id) {
|
|
std_cell_module_inputs.push_back(module_manager.find_module_port(std_cell_module_id, circuit_lib.port_prefix(std_cell_input_ports[port_id])));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(std_cell_module_id, std_cell_module_inputs[port_id]));
|
|
std_cell_module_input_ports.push_back(module_manager.module_port(std_cell_module_id, std_cell_module_inputs[port_id]));
|
|
VTR_ASSERT(1 == std_cell_module_input_ports[port_id].get_width());
|
|
}
|
|
|
|
/* Mem port is the memory of the standard cell MUX2, whose size must be 1 ! */
|
|
ModulePortId std_cell_module_mem = module_manager.find_module_port(std_cell_module_id, circuit_lib.port_prefix(std_cell_input_ports[2]));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(std_cell_module_id, std_cell_module_mem));
|
|
BasicPort std_cell_module_mem_port = module_manager.module_port(std_cell_module_id, std_cell_module_mem);
|
|
VTR_ASSERT(1 == std_cell_module_mem_port.get_width());
|
|
|
|
/* Output port is the data path output of the standard cell MUX2, whose size must be 1 ! */
|
|
ModulePortId std_cell_module_output = module_manager.find_module_port(std_cell_module_id, circuit_lib.port_prefix(std_cell_output_ports[0]));
|
|
VTR_ASSERT(true == module_manager.valid_module_port_id(std_cell_module_id, std_cell_module_output));
|
|
BasicPort std_cell_module_output_port = module_manager.module_port(std_cell_module_id, std_cell_module_output);
|
|
VTR_ASSERT(1 == std_cell_module_output_port.get_width());
|
|
|
|
/* Cache Net ids for each level of the multiplexer */
|
|
std::vector<std::vector<ModuleNetId>> module_nets_by_level;
|
|
module_nets_by_level.resize(mux_graph.num_node_levels());
|
|
for (size_t level = 0; level < mux_graph.num_node_levels(); ++level) {
|
|
/* Print the internal wires located at this level */
|
|
module_nets_by_level[level].resize(mux_graph.num_nodes_at_level(level));
|
|
}
|
|
|
|
/* Build the location map of intermediate buffers */
|
|
std::vector<bool> inter_buffer_location_map = build_mux_intermediate_buffer_location_map(circuit_lib, mux_model, mux_graph.num_node_levels());
|
|
|
|
/* Add all the branch modules and intermediate buffers */
|
|
for (const auto& node : mux_graph.non_input_nodes()) {
|
|
/* Get the size of branch circuit
|
|
* Instanciate an branch circuit by the size (fan-in) of the node
|
|
*/
|
|
size_t branch_size = mux_graph.node_in_edges(node).size();
|
|
/* To match the standard cell MUX2: We should have only 2 input_nodes */
|
|
VTR_ASSERT(2 == branch_size);
|
|
|
|
/* Find the instance id */
|
|
size_t std_cell_instance_id = module_manager.num_instance(mux_module, std_cell_module_id);
|
|
/* Add the module to mux_module */
|
|
module_manager.add_child_module(mux_module, std_cell_module_id);
|
|
|
|
/* Get the node level and index in the current level */
|
|
size_t output_node_level = mux_graph.node_level(node);
|
|
size_t output_node_index_at_level = mux_graph.node_index_at_level(node);
|
|
/* Set a name for the instance */
|
|
std::string std_cell_instance_name = generate_mux_branch_instance_name(output_node_level, output_node_index_at_level, false);
|
|
module_manager.set_child_instance_name(mux_module, std_cell_module_id, std_cell_instance_id, std_cell_instance_name);
|
|
|
|
/* Add module nets to wire to next stage modules */
|
|
ModuleNetId branch_net;
|
|
if (true == mux_graph.is_node_output(node)) {
|
|
/* This is an output node, we should use existing output nets */
|
|
MuxOutputId output_id = mux_graph.output_id(node);
|
|
branch_net = mux_module_output_nets[output_id];
|
|
} else {
|
|
VTR_ASSERT(false == mux_graph.is_node_output(node));
|
|
branch_net = module_manager.create_module_net(mux_module);
|
|
}
|
|
module_manager.add_module_net_source(mux_module, branch_net, std_cell_module_id, std_cell_instance_id, std_cell_module_output, std_cell_module_output_port.get_lsb());
|
|
|
|
/* Record the module net id in the cache */
|
|
module_nets_by_level[output_node_level][output_node_index_at_level] = branch_net;
|
|
|
|
/* Wire the branch module memory ports to the nets of MUX memory ports */
|
|
/* Get the mems in the branch circuits */
|
|
std::vector<MuxMemId> mems;
|
|
for (const auto& edge : mux_graph.node_in_edges(node)) {
|
|
/* Get the mem control the edge */
|
|
MuxMemId mem = mux_graph.find_edge_mem(edge);
|
|
/* Add the mem if it is not in the list */
|
|
if (mems.end() == std::find(mems.begin(), mems.end(), mem)) {
|
|
mems.push_back(mem);
|
|
}
|
|
}
|
|
/* Connect mem to mem net one by one
|
|
* Note that standard cell MUX2 only needs mem but NOT mem_inv
|
|
*/
|
|
for (const MuxMemId& mem : mems) {
|
|
module_manager.add_module_net_sink(mux_module, mux_module_mem_nets[mem], std_cell_module_id, std_cell_instance_id, std_cell_module_mem, std_cell_module_mem_port.get_lsb());
|
|
}
|
|
|
|
/* Wire the branch module inputs to the nets in previous stage */
|
|
/* Get the nodes which drive the root_node */
|
|
std::vector<MuxNodeId> input_nodes;
|
|
for (const auto& edge : mux_graph.node_in_edges(node)) {
|
|
/* Get the nodes drive the edge */
|
|
for (const auto& src_node : mux_graph.edge_src_nodes(edge)) {
|
|
input_nodes.push_back(src_node);
|
|
}
|
|
}
|
|
/* Number of inputs should match the branch_input_size!!! */
|
|
VTR_ASSERT(input_nodes.size() == branch_size);
|
|
/* To match the standard cell MUX2: We should have only 2 input_nodes */
|
|
VTR_ASSERT(2 == input_nodes.size());
|
|
/* build the link between input_node[0] and std_cell_input_port[0]
|
|
* build the link between input_node[1] and std_cell_input_port[1]
|
|
*/
|
|
for (size_t node_id = 0; node_id < input_nodes.size(); ++node_id) {
|
|
/* Find the port info of each input node */
|
|
size_t input_node_level = mux_graph.node_level(input_nodes[node_id]);
|
|
size_t input_node_index_at_level = mux_graph.node_index_at_level(input_nodes[node_id]);
|
|
/* For inputs of mux, the net id is reserved */
|
|
if (true == mux_graph.is_node_input(input_nodes[node_id])) {
|
|
/* Get node input id */
|
|
MuxInputId input_id = mux_graph.input_id(input_nodes[node_id]);
|
|
module_manager.add_module_net_sink(mux_module, mux_module_input_nets[input_id], std_cell_module_id, std_cell_instance_id, std_cell_module_inputs[node_id], std_cell_module_input_ports[node_id].get_lsb());
|
|
} else {
|
|
VTR_ASSERT (false == mux_graph.is_node_input(input_nodes[node_id]));
|
|
/* Find the input port of standard cell */
|
|
module_manager.add_module_net_sink(mux_module, module_nets_by_level[input_node_level][input_node_index_at_level], std_cell_module_id, std_cell_instance_id, std_cell_module_inputs[node_id], std_cell_module_input_ports[node_id].get_lsb());
|
|
}
|
|
}
|
|
|
|
/* Identify if an intermediate buffer is needed */
|
|
if (false == inter_buffer_location_map[output_node_level]) {
|
|
continue;
|
|
}
|
|
/* Add an intermediate buffer to mux_module if needed */
|
|
if (true == mux_graph.is_node_output(node)) {
|
|
/* Output node does not need buffer addition here, it is handled outside this function */
|
|
continue;
|
|
}
|
|
/* Now we need to add intermediate buffers by instanciating the modules */
|
|
CircuitModelId buffer_model = circuit_lib.lut_intermediate_buffer_model(mux_model);
|
|
/* We must have a valid model id */
|
|
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
|
|
|
|
/* Create a module net which sources from buffer output */
|
|
ModuleNetId buffer_net = add_inverter_buffer_child_module_and_nets(module_manager, mux_module, circuit_lib, buffer_model, branch_net);
|
|
|
|
/* Record the module net id in the cache */
|
|
module_nets_by_level[output_node_level][output_node_index_at_level] = buffer_net;
|
|
}
|
|
}
|
|
|
|
/********************************************************************
|
|
* Generate the pass-transistor/transmission-gate -based internal logic
|
|
* (multiplexing structure) for a multiplexer or LUT in Verilog codes
|
|
* This function will :
|
|
* 1. build a multiplexing structure by instanciating the branch circuits
|
|
* generated before
|
|
* 2. add intermediate buffers between multiplexing stages if specified.
|
|
*******************************************************************/
|
|
static
|
|
void build_cmos_mux_module_tgate_multiplexing_structure(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const ModuleId& mux_module,
|
|
const CircuitModelId& circuit_model,
|
|
const vtr::vector<MuxInputId, ModuleNetId>& mux_module_input_nets,
|
|
const vtr::vector<MuxOutputId, ModuleNetId>& mux_module_output_nets,
|
|
const vtr::vector<MuxMemId, ModuleNetId>& mux_module_mem_nets,
|
|
const vtr::vector<MuxMemId, ModuleNetId>& mux_module_mem_inv_nets,
|
|
const MuxGraph& mux_graph) {
|
|
/* Find the actual mux size */
|
|
size_t mux_size = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs());
|
|
|
|
/* Get the regular (non-mode-select) sram ports from the mux */
|
|
std::vector<CircuitPortId> mux_regular_sram_ports = find_circuit_regular_sram_ports(circuit_lib, circuit_model);
|
|
VTR_ASSERT(1 == mux_regular_sram_ports.size());
|
|
|
|
/* Cache Net ids for each level of the multiplexer */
|
|
std::vector<std::vector<ModuleNetId>> module_nets_by_level;
|
|
module_nets_by_level.resize(mux_graph.num_node_levels());
|
|
for (size_t level = 0; level < mux_graph.num_node_levels(); ++level) {
|
|
/* Print the internal wires located at this level */
|
|
module_nets_by_level[level].resize(mux_graph.num_nodes_at_level(level));
|
|
}
|
|
|
|
/* Build the location map of intermediate buffers */
|
|
std::vector<bool> inter_buffer_location_map = build_mux_intermediate_buffer_location_map(circuit_lib, circuit_model, mux_graph.num_node_levels());
|
|
|
|
/* Add all the branch modules and intermediate buffers */
|
|
for (const auto& node : mux_graph.non_input_nodes()) {
|
|
/* Get the size of branch circuit
|
|
* Instanciate an branch circuit by the size (fan-in) of the node
|
|
*/
|
|
size_t branch_size = mux_graph.node_in_edges(node).size();
|
|
|
|
/* Instanciate the branch module which is a tgate-based module
|
|
*/
|
|
std::string branch_module_name= generate_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, branch_size, MUX_BASIS_MODULE_POSTFIX);
|
|
/* Get the moduleId for the submodule */
|
|
ModuleId branch_module_id = module_manager.find_module(branch_module_name);
|
|
/* We must have one */
|
|
VTR_ASSERT(ModuleId::INVALID() != branch_module_id);
|
|
|
|
/* Find the instance id */
|
|
size_t branch_instance_id = module_manager.num_instance(mux_module, branch_module_id);
|
|
/* Add the module to mux_module */
|
|
module_manager.add_child_module(mux_module, branch_module_id);
|
|
|
|
/* Get the node level and index in the current level */
|
|
size_t output_node_level = mux_graph.node_level(node);
|
|
size_t output_node_index_at_level = mux_graph.node_index_at_level(node);
|
|
/* Set a name for the instance */
|
|
std::string branch_instance_name = generate_mux_branch_instance_name(output_node_level, output_node_index_at_level, false);
|
|
module_manager.set_child_instance_name(mux_module, branch_module_id, branch_instance_id, branch_instance_name);
|
|
|
|
/* Get the output port id of branch module */
|
|
ModulePortId branch_module_output_port_id = module_manager.find_module_port(branch_module_id, std::string("out"));
|
|
BasicPort branch_module_output_port = module_manager.module_port(branch_module_id, branch_module_output_port_id);
|
|
|
|
/* Add module nets to wire to next stage modules */
|
|
ModuleNetId branch_net;
|
|
if (true == mux_graph.is_node_output(node)) {
|
|
/* This is an output node, we should use existing output nets */
|
|
MuxOutputId output_id = mux_graph.output_id(node);
|
|
branch_net = mux_module_output_nets[output_id];
|
|
} else {
|
|
VTR_ASSERT(false == mux_graph.is_node_output(node));
|
|
branch_net = module_manager.create_module_net(mux_module);
|
|
}
|
|
module_manager.add_module_net_source(mux_module, branch_net, branch_module_id, branch_instance_id, branch_module_output_port_id, branch_module_output_port.get_lsb());
|
|
|
|
/* Record the module net id in the cache */
|
|
module_nets_by_level[output_node_level][output_node_index_at_level] = branch_net;
|
|
|
|
/* Wire the branch module memory ports to the nets of MUX memory ports */
|
|
/* Get the mems in the branch circuits */
|
|
std::vector<MuxMemId> mems;
|
|
for (const auto& edge : mux_graph.node_in_edges(node)) {
|
|
/* Get the mem control the edge */
|
|
MuxMemId mem = mux_graph.find_edge_mem(edge);
|
|
/* Add the mem if it is not in the list */
|
|
if (mems.end() == std::find(mems.begin(), mems.end(), mem)) {
|
|
mems.push_back(mem);
|
|
}
|
|
}
|
|
|
|
/* Get mem/mem_inv ports of branch module */
|
|
ModulePortId branch_module_mem_port_id = module_manager.find_module_port(branch_module_id, std::string("mem"));
|
|
BasicPort branch_module_mem_port = module_manager.module_port(branch_module_id, branch_module_mem_port_id);
|
|
ModulePortId branch_module_mem_inv_port_id = module_manager.find_module_port(branch_module_id, std::string("mem_inv"));
|
|
BasicPort branch_module_mem_inv_port = module_manager.module_port(branch_module_id, branch_module_mem_inv_port_id);
|
|
|
|
/* Note that we do NOT care inverted edge-to-mem connection.
|
|
* It is handled in branch module generation!!!
|
|
*/
|
|
/* Connect mem/mem_inv to mem/mem_inv net one by one */
|
|
for (size_t mem_id = 0; mem_id < mems.size(); ++mem_id) {
|
|
module_manager.add_module_net_sink(mux_module, mux_module_mem_nets[mems[mem_id]], branch_module_id, branch_instance_id, branch_module_mem_port_id, branch_module_mem_port.pins()[mem_id]);
|
|
module_manager.add_module_net_sink(mux_module, mux_module_mem_inv_nets[mems[mem_id]], branch_module_id, branch_instance_id, branch_module_mem_inv_port_id, branch_module_mem_inv_port.pins()[mem_id]);
|
|
}
|
|
|
|
/* Wire the branch module inputs to the nets in previous stage */
|
|
/* Get the input port id of branch module */
|
|
ModulePortId branch_module_input_port_id = module_manager.find_module_port(branch_module_id, std::string("in"));
|
|
BasicPort branch_module_input_port = module_manager.module_port(branch_module_id, branch_module_input_port_id);
|
|
|
|
/* Get the nodes which drive the root_node */
|
|
std::vector<MuxNodeId> input_nodes;
|
|
for (const auto& edge : mux_graph.node_in_edges(node)) {
|
|
/* Get the nodes drive the edge */
|
|
for (const auto& src_node : mux_graph.edge_src_nodes(edge)) {
|
|
input_nodes.push_back(src_node);
|
|
}
|
|
}
|
|
/* Number of inputs should match the branch_input_size!!! */
|
|
VTR_ASSERT(input_nodes.size() == branch_size);
|
|
/* build the link between input_node and branch circuit input_port[0]
|
|
*/
|
|
for (size_t node_id = 0; node_id < input_nodes.size(); ++node_id) {
|
|
/* Find the port info of each input node */
|
|
size_t input_node_level = mux_graph.node_level(input_nodes[node_id]);
|
|
size_t input_node_index_at_level = mux_graph.node_index_at_level(input_nodes[node_id]);
|
|
/* For inputs of mux, the net id is reserved */
|
|
if (true == mux_graph.is_node_input(input_nodes[node_id])) {
|
|
/* Get node input id */
|
|
MuxInputId input_id = mux_graph.input_id(input_nodes[node_id]);
|
|
module_manager.add_module_net_sink(mux_module, mux_module_input_nets[input_id], branch_module_id, branch_instance_id, branch_module_input_port_id, branch_module_input_port.pins()[node_id]);
|
|
} else {
|
|
VTR_ASSERT (false == mux_graph.is_node_input(input_nodes[node_id]));
|
|
module_manager.add_module_net_sink(mux_module, module_nets_by_level[input_node_level][input_node_index_at_level], branch_module_id, branch_instance_id, branch_module_input_port_id, branch_module_input_port.pins()[node_id]);
|
|
}
|
|
}
|
|
|
|
/* Identify if an intermediate buffer is needed */
|
|
if (false == inter_buffer_location_map[output_node_level]) {
|
|
continue;
|
|
}
|
|
/* Add an intermediate buffer to mux_module if needed */
|
|
if (true == mux_graph.is_node_output(node)) {
|
|
/* Output node does not need buffer addition here, it is handled outside this function */
|
|
continue;
|
|
}
|
|
/* Now we need to add intermediate buffers by instanciating the modules */
|
|
CircuitModelId buffer_model = circuit_lib.lut_intermediate_buffer_model(circuit_model);
|
|
/* We must have a valid model id */
|
|
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
|
|
|
|
ModuleNetId buffer_net = add_inverter_buffer_child_module_and_nets(module_manager, mux_module, circuit_lib, buffer_model, branch_net);
|
|
|
|
/* Record the module net id in the cache */
|
|
module_nets_by_level[output_node_level][output_node_index_at_level] = buffer_net;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
* This function will add nets and input buffers (if needed)
|
|
* to a mux module
|
|
* Module net represents the connections when there are no input buffers
|
|
* mux_input_net[0]
|
|
* |
|
|
* v +------------
|
|
* mux_in[0] ----------->|
|
|
* |
|
|
* |
|
|
* |
|
|
* | Multiplexing
|
|
* mux_input_net[i] | Structure
|
|
* | |
|
|
* v |
|
|
* mux_in[0] ----------->|
|
|
* |
|
|
*
|
|
*
|
|
* Module net represents the connections when there are input buffers
|
|
* mux_input_net[0]
|
|
* |
|
|
* +-----------------+ v +------------
|
|
* mux_in[0] ----->| input_buffer[0] |-----> |
|
|
* +-----------------+ |
|
|
* |
|
|
* ... |
|
|
* | Multiplexing
|
|
* mux_input_net[i] | Structure
|
|
* | |
|
|
* +-----------------+ v |
|
|
* mux_in[0] ----->| input_buffer[0] |-----> |
|
|
* +-----------------+ |
|
|
*********************************************************************/
|
|
static
|
|
vtr::vector<MuxInputId, ModuleNetId> build_mux_module_input_buffers(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const ModuleId& mux_module,
|
|
const CircuitModelId& mux_model,
|
|
const MuxGraph& mux_graph) {
|
|
vtr::vector<MuxInputId, ModuleNetId> mux_input_nets(mux_graph.num_inputs(), ModuleNetId::INVALID());
|
|
|
|
/* Get the input ports from the mux */
|
|
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
|
/* We should have only 1 input port! */
|
|
VTR_ASSERT(1 == mux_input_ports.size());
|
|
|
|
/* Get the input port from MUX module */
|
|
ModulePortId module_input_port_id = module_manager.find_module_port(mux_module, circuit_lib.port_prefix(mux_input_ports[0]));
|
|
VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id);
|
|
/* Get the port from module */
|
|
BasicPort module_input_port = module_manager.module_port(mux_module, module_input_port_id);
|
|
|
|
/* Iterate over all the inputs in the MUX graph */
|
|
for (const auto& input_node : mux_graph.inputs()) {
|
|
/* Fetch fundamental information from MUX graph w.r.t. the input node */
|
|
MuxInputId input_index = mux_graph.input_id(input_node);
|
|
VTR_ASSERT(MuxInputId::INVALID() != input_index);
|
|
|
|
/* For last input:
|
|
* Add a constant value to the last input, if this MUX needs a constant input
|
|
*/
|
|
if ( (MuxInputId(mux_graph.num_inputs() - 1) == mux_graph.input_id(input_node))
|
|
&& (true == circuit_lib.mux_add_const_input(mux_model)) ) {
|
|
/* Get the constant input value */
|
|
size_t const_value = circuit_lib.mux_const_input_value(mux_model);
|
|
VTR_ASSERT( (0 == const_value) || (1 == const_value) );
|
|
/* Instanciate a VDD module (default module)
|
|
* and build a net between VDD and the MUX input
|
|
*/
|
|
/* Get the moduleId for the buffer module */
|
|
ModuleId const_val_module_id = module_manager.find_module(generate_const_value_module_name(const_value));
|
|
/* We must have one */
|
|
VTR_ASSERT(ModuleId::INVALID() != const_val_module_id);
|
|
size_t const_val_instance = module_manager.num_instance(mux_module, const_val_module_id);
|
|
module_manager.add_child_module(mux_module, const_val_module_id);
|
|
ModulePortId const_port_id = module_manager.find_module_port(const_val_module_id, generate_const_value_module_output_port_name(const_value));
|
|
|
|
ModuleNetId input_net = module_manager.create_module_net(mux_module);
|
|
module_manager.add_module_net_source(mux_module, input_net, const_val_module_id, const_val_instance, const_port_id, 0);
|
|
mux_input_nets[input_index] = input_net;
|
|
continue;
|
|
}
|
|
|
|
/* When we do not need any buffer, create a net for the input directly */
|
|
if (false == circuit_lib.is_input_buffered(mux_model)) {
|
|
ModuleNetId input_net = module_manager.create_module_net(mux_module);
|
|
module_manager.add_module_net_source(mux_module, input_net, mux_module, 0, module_input_port_id, size_t(input_index));
|
|
mux_input_nets[input_index] = input_net;
|
|
continue;
|
|
}
|
|
|
|
/* Now we need to add intermediate buffers by instanciating the modules */
|
|
CircuitModelId buffer_model = circuit_lib.input_buffer_model(mux_model);
|
|
/* We must have a valid model id */
|
|
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
|
|
|
|
/* Connect the module net from branch output to buffer input */
|
|
ModuleNetId buffer_net = module_manager.create_module_net(mux_module);
|
|
module_manager.add_module_net_source(mux_module, buffer_net, mux_module, 0, module_input_port_id, size_t(input_index));
|
|
|
|
/* Create a module net which sources from buffer output */
|
|
ModuleNetId input_net = add_inverter_buffer_child_module_and_nets(module_manager, mux_module, circuit_lib, buffer_model, buffer_net);
|
|
mux_input_nets[input_index] = input_net;
|
|
}
|
|
|
|
return mux_input_nets;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* This function will add nets and input buffers (if needed)
|
|
* to a mux module
|
|
* Module net represents the connections when there are no output buffers
|
|
*
|
|
* mux_output_net[0]
|
|
* ------------+ |
|
|
* | v
|
|
* |--------> mux_output[0]
|
|
* |
|
|
* |
|
|
* Multiplexer | ...
|
|
* Strcuture |
|
|
* |--------> mux_output[i]
|
|
* | ^
|
|
* | |
|
|
* ------------+ mux_output_net[i]
|
|
*
|
|
* Module net represents the connections when there are output buffers
|
|
*
|
|
* mux_output_net[0]
|
|
* ------------+ |
|
|
* | |
|
|
* | v +------------------+
|
|
* |------->| output_buffer[0] |------> mux_output[0]
|
|
* | +------------------+
|
|
* |
|
|
* Multiplexer | ...
|
|
* Strcuture |
|
|
* | +------------------+
|
|
* |------->| output_buffer[i] |------> mux_output[i]
|
|
* | ^ +------------------+
|
|
* | |
|
|
* | |
|
|
* ------------+ mux_output_net[i]
|
|
|
|
*
|
|
*********************************************************************/
|
|
static
|
|
vtr::vector<MuxOutputId, ModuleNetId> build_mux_module_output_buffers(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const ModuleId& mux_module,
|
|
const CircuitModelId& mux_model,
|
|
const MuxGraph& mux_graph) {
|
|
|
|
/* Create module nets for output ports */
|
|
vtr::vector<MuxOutputId, ModuleNetId> mux_output_nets(mux_graph.num_outputs(), ModuleNetId::INVALID());
|
|
|
|
/* Get the output ports from the mux */
|
|
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_OUTPUT, false);
|
|
|
|
/* Iterate over all the outputs in the MUX module */
|
|
for (const auto& output_port : mux_output_ports) {
|
|
/* Get the output port from MUX module */
|
|
ModulePortId module_output_port_id = module_manager.find_module_port(mux_module, circuit_lib.port_prefix(output_port));
|
|
VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id);
|
|
/* Get the port from module */
|
|
BasicPort module_output_port = module_manager.module_port(mux_module, module_output_port_id);
|
|
|
|
/* Iterate over each pin of the output port */
|
|
for (const size_t& pin : circuit_lib.pins(output_port)) {
|
|
/* Fetch fundamental information from MUX graph w.r.t. the input node */
|
|
/* Deposite the last level of the graph, which is a default value */
|
|
size_t output_node_level = mux_graph.num_node_levels() - 1;
|
|
/* If there is a fracturable level specified for the output, we find the exact level */
|
|
if (size_t(-1) != circuit_lib.port_lut_frac_level(output_port)) {
|
|
output_node_level = circuit_lib.port_lut_frac_level(output_port);
|
|
}
|
|
/* Deposite a zero, which is a default value */
|
|
size_t output_node_index_at_level = 0;
|
|
/* If there are output masks, we find the node_index */
|
|
if (!circuit_lib.port_lut_output_mask(output_port).empty()) {
|
|
output_node_index_at_level = circuit_lib.port_lut_output_mask(output_port).at(pin);
|
|
}
|
|
/* Double check the node exists in the Mux Graph */
|
|
MuxNodeId node_id = mux_graph.node_id(output_node_level, output_node_index_at_level);
|
|
VTR_ASSERT(MuxNodeId::INVALID() != node_id);
|
|
MuxOutputId output_index = mux_graph.output_id(node_id);
|
|
|
|
/* Create the port information of the module output at the given pin range, which is the output of buffer instance */
|
|
BasicPort instance_output_port(module_output_port.get_name(), pin, pin);
|
|
|
|
/* If the output is not supposed to be buffered, create a net for the input directly */
|
|
if (false == circuit_lib.is_output_buffered(mux_model)) {
|
|
ModuleNetId output_net = module_manager.create_module_net(mux_module);
|
|
module_manager.add_module_net_sink(mux_module, output_net, mux_module, 0, module_output_port_id, pin);
|
|
mux_output_nets[output_index] = output_net;
|
|
continue; /* Finish here */
|
|
}
|
|
|
|
/* Reach here, we need a buffer, create a port-to-port map and output the buffer instance */
|
|
/* Now we need to add intermediate buffers by instanciating the modules */
|
|
CircuitModelId buffer_model = circuit_lib.output_buffer_model(mux_model);
|
|
/* We must have a valid model id */
|
|
VTR_ASSERT(CircuitModelId::INVALID() != buffer_model);
|
|
|
|
/* Create a module net which sinks at buffer input */
|
|
ModuleNetId input_net = module_manager.create_module_net(mux_module);
|
|
ModuleNetId output_net = add_inverter_buffer_child_module_and_nets(module_manager, mux_module, circuit_lib, buffer_model, input_net);
|
|
module_manager.add_module_net_sink(mux_module, output_net, mux_module, 0, module_output_port_id, pin);
|
|
mux_output_nets[output_index] = input_net;
|
|
}
|
|
}
|
|
|
|
return mux_output_nets;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* This function will
|
|
* 1. Build local encoders for a MUX module (if specified)
|
|
* 2. Build nets between memory ports of a MUX module and branch circuits
|
|
* This happens when local encoders are not needed
|
|
*
|
|
* MUX module
|
|
* +---------------------
|
|
* | mux_mem_nets/mux_mem_inv_nets
|
|
* | |
|
|
* | v +---------
|
|
* mem-+-------->|
|
|
* | | Branch Module
|
|
* | |
|
|
*
|
|
* 3. Build nets between local encoders and memory ports of a MUX module
|
|
* This happens when local encoders are needed
|
|
* 4. Build nets between local encoders and branch circuits
|
|
* This happens when local encoders are needed
|
|
*
|
|
* MUX module
|
|
* +---------------------
|
|
* |
|
|
* | +-------+ mux_mem_nets/mux_mem_inv_nets
|
|
* | | | |
|
|
* mem--+------>| | v +---------
|
|
* | | Local |-------->|
|
|
* | |Encoder| | Branch
|
|
* | | | | Module
|
|
* | | | |
|
|
* | | | |
|
|
*
|
|
*********************************************************************/
|
|
static
|
|
void build_mux_module_local_encoders_and_memory_nets(ModuleManager& module_manager,
|
|
const ModuleId& mux_module,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& mux_model,
|
|
const std::vector<CircuitPortId>& mux_sram_ports,
|
|
const MuxGraph& mux_graph,
|
|
vtr::vector<MuxMemId, ModuleNetId>& mux_mem_nets,
|
|
vtr::vector<MuxMemId, ModuleNetId>& mux_mem_inv_nets) {
|
|
|
|
/* Create nets here, and we will configure the net source later */
|
|
for (size_t mem = 0; mem < mux_graph.num_memory_bits(); ++mem) {
|
|
ModuleNetId mem_net = module_manager.create_module_net(mux_module);
|
|
mux_mem_nets.push_back(mem_net);
|
|
ModuleNetId mem_inv_net = module_manager.create_module_net(mux_module);
|
|
mux_mem_inv_nets.push_back(mem_inv_net);
|
|
}
|
|
|
|
if (false == circuit_lib.mux_use_local_encoder(mux_model)) {
|
|
/* Add mem and mem_inv nets here */
|
|
size_t mem_net_cnt = 0;
|
|
for (const auto& port : mux_sram_ports) {
|
|
ModulePortId mem_port_id = module_manager.find_module_port(mux_module, circuit_lib.port_prefix(port));
|
|
BasicPort mem_port = module_manager.module_port(mux_module, mem_port_id);
|
|
for (const size_t& pin : mem_port.pins()) {
|
|
MuxMemId mem_id = MuxMemId(mem_net_cnt);
|
|
/* Set the module net source */
|
|
module_manager.add_module_net_source(mux_module, mux_mem_nets[mem_id], mux_module, 0, mem_port_id, pin);
|
|
/* Update counter */
|
|
mem_net_cnt++;
|
|
}
|
|
}
|
|
VTR_ASSERT(mem_net_cnt == mux_graph.num_memory_bits());
|
|
|
|
/* Add mem and mem_inv nets here */
|
|
size_t mem_inv_net_cnt = 0;
|
|
for (const auto& port : mux_sram_ports) {
|
|
ModulePortId mem_inv_port_id = module_manager.find_module_port(mux_module, std::string(circuit_lib.port_prefix(port) + "_inv"));
|
|
BasicPort mem_inv_port = module_manager.module_port(mux_module, mem_inv_port_id);
|
|
for (const size_t& pin : mem_inv_port.pins()) {
|
|
MuxMemId mem_id = MuxMemId(mem_inv_net_cnt);
|
|
/* Set the module net source */
|
|
module_manager.add_module_net_source(mux_module, mux_mem_inv_nets[mem_id], mux_module, 0, mem_inv_port_id, pin);
|
|
/* Update counter */
|
|
mem_inv_net_cnt++;
|
|
}
|
|
}
|
|
VTR_ASSERT(mem_inv_net_cnt == mux_graph.num_memory_bits());
|
|
return; /* Finish here if local encoders are not required */
|
|
}
|
|
|
|
/* Add local decoder instance here */
|
|
VTR_ASSERT(true == circuit_lib.mux_use_local_encoder(mux_model));
|
|
BasicPort decoder_data_port(generate_mux_local_decoder_data_port_name(), mux_graph.num_memory_bits());
|
|
BasicPort decoder_data_inv_port(generate_mux_local_decoder_data_inv_port_name(), mux_graph.num_memory_bits());
|
|
|
|
/* Local port to record the LSB and MSB of each level, here, we deposite (0, 0) */
|
|
ModulePortId mux_module_sram_port_id = module_manager.find_module_port(mux_module, circuit_lib.port_prefix(mux_sram_ports[0]));
|
|
ModulePortId mux_module_sram_inv_port_id = module_manager.find_module_port(mux_module, circuit_lib.port_prefix(mux_sram_ports[0]) + "_inv");
|
|
BasicPort lvl_addr_port(circuit_lib.port_prefix(mux_sram_ports[0]), 0);
|
|
BasicPort lvl_data_port(decoder_data_port.get_name(), 0);
|
|
BasicPort lvl_data_inv_port(decoder_data_inv_port.get_name(), 0);
|
|
|
|
/* Counter for mem index */
|
|
size_t mem_net_cnt = 0;
|
|
size_t mem_inv_net_cnt = 0;
|
|
|
|
for (const auto& lvl : mux_graph.levels()) {
|
|
size_t addr_size = find_mux_local_decoder_addr_size(mux_graph.num_memory_bits_at_level(lvl));
|
|
size_t data_size = mux_graph.num_memory_bits_at_level(lvl);
|
|
/* Update the LSB and MSB of addr and data port for the current level */
|
|
lvl_addr_port.rotate(addr_size);
|
|
lvl_data_port.rotate(data_size);
|
|
lvl_data_inv_port.rotate(data_size);
|
|
|
|
/* Exception: if the data size is one, we just need wires! */
|
|
if (1 == data_size) {
|
|
for (size_t pin_id = 0; pin_id < lvl_addr_port.pins().size(); ++pin_id) {
|
|
MuxMemId mem_id = MuxMemId(mem_net_cnt);
|
|
/* Set the module net source */
|
|
module_manager.add_module_net_source(mux_module, mux_mem_nets[mem_id], mux_module, 0, mux_module_sram_port_id, lvl_addr_port.pins()[pin_id]);
|
|
/* Update counter */
|
|
mem_net_cnt++;
|
|
|
|
MuxMemId mem_inv_id = MuxMemId(mem_inv_net_cnt);
|
|
/* Set the module net source */
|
|
module_manager.add_module_net_source(mux_module, mux_mem_inv_nets[mem_inv_id], mux_module, 0, mux_module_sram_inv_port_id, lvl_addr_port.pins()[pin_id]);
|
|
/* Update counter */
|
|
mem_inv_net_cnt++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
std::string decoder_module_name = generate_mux_local_decoder_subckt_name(addr_size, data_size);
|
|
ModuleId decoder_module = module_manager.find_module(decoder_module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != decoder_module);
|
|
|
|
size_t decoder_instance = module_manager.num_instance(mux_module, decoder_module);
|
|
module_manager.add_child_module(mux_module, decoder_module);
|
|
|
|
/* Add module nets to connect sram ports of MUX to address port */
|
|
ModulePortId decoder_module_addr_port_id = module_manager.find_module_port(decoder_module, generate_mux_local_decoder_addr_port_name());
|
|
BasicPort decoder_module_addr_port = module_manager.module_port(decoder_module, decoder_module_addr_port_id);
|
|
VTR_ASSERT(decoder_module_addr_port.get_width() == lvl_addr_port.get_width());
|
|
|
|
/* Build pin-to-pin net connection */
|
|
for (size_t pin_id = 0; pin_id < lvl_addr_port.pins().size(); ++pin_id) {
|
|
ModuleNetId net = module_manager.create_module_net(mux_module);
|
|
module_manager.add_module_net_source(mux_module, net, mux_module, 0, mux_module_sram_port_id, lvl_addr_port.pins()[pin_id]);
|
|
module_manager.add_module_net_sink(mux_module, net, decoder_module, decoder_instance, decoder_module_addr_port_id, decoder_module_addr_port.pins()[pin_id]);
|
|
}
|
|
|
|
/* Add module nets to connect data port to MUX mem ports */
|
|
ModulePortId decoder_module_data_port_id = module_manager.find_module_port(decoder_module, generate_mux_local_decoder_data_port_name());
|
|
BasicPort decoder_module_data_port = module_manager.module_port(decoder_module, decoder_module_data_port_id);
|
|
|
|
/* Build pin-to-pin net connection */
|
|
for (const size_t& pin : decoder_module_data_port.pins()) {
|
|
ModuleNetId net = mux_mem_nets[MuxMemId(mem_net_cnt)];
|
|
module_manager.add_module_net_source(mux_module, net, decoder_module, decoder_instance, decoder_module_data_port_id, pin);
|
|
/* Add the module nets to mux_mem_nets cache */
|
|
mem_net_cnt++;
|
|
}
|
|
|
|
ModulePortId decoder_module_data_inv_port_id = module_manager.find_module_port(decoder_module, generate_mux_local_decoder_data_inv_port_name());
|
|
BasicPort decoder_module_data_inv_port = module_manager.module_port(decoder_module, decoder_module_data_inv_port_id);
|
|
|
|
/* Build pin-to-pin net connection */
|
|
for (const size_t& pin : decoder_module_data_inv_port.pins()) {
|
|
ModuleNetId net = mux_mem_inv_nets[MuxMemId(mem_inv_net_cnt)];
|
|
module_manager.add_module_net_source(mux_module, net, decoder_module, decoder_instance, decoder_module_data_inv_port_id, pin);
|
|
/* Add the module nets to mux_mem_inv_nets cache */
|
|
mem_inv_net_cnt++;
|
|
}
|
|
}
|
|
VTR_ASSERT(mem_net_cnt == mux_graph.num_memory_bits());
|
|
VTR_ASSERT(mem_inv_net_cnt == mux_graph.num_memory_bits());
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate module of a CMOS multiplexer with the given size
|
|
* The module will consist of three parts:
|
|
* 1. instances of the branch circuits of multiplexers which are generated before
|
|
* This builds up the multiplexing structure
|
|
* 2. Input buffers/inverters
|
|
* 3. Output buffers/inverters
|
|
*********************************************************************/
|
|
static
|
|
void build_cmos_mux_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& mux_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph) {
|
|
/* Get the global ports required by MUX (and any submodules) */
|
|
std::vector<CircuitPortId> mux_global_ports = circuit_lib.model_global_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_INPUT, true, true);
|
|
/* Get the input ports from the mux */
|
|
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
|
/* Get the output ports from the mux */
|
|
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(mux_model, CIRCUIT_MODEL_PORT_OUTPUT, false);
|
|
/* Get the sram ports from the mux
|
|
* Multiplexing structure does not mode_sram_ports, they are handled in LUT modules
|
|
* Here we just bypass it.
|
|
*/
|
|
std::vector<CircuitPortId> mux_sram_ports = find_circuit_regular_sram_ports(circuit_lib, mux_model);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of data-path inputs */
|
|
size_t num_inputs = find_mux_num_datapath_inputs(circuit_lib, mux_model, mux_graph.num_inputs());
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* The size of of memory ports depend on
|
|
* if a local encoder is used for the mux or not
|
|
* Multiplexer local encoders are applied to memory bits at each stage
|
|
*/
|
|
if (true == circuit_lib.mux_use_local_encoder(mux_model)) {
|
|
num_mems = 0;
|
|
for (const auto& lvl : mux_graph.levels()) {
|
|
size_t data_size = mux_graph.num_memory_bits_at_level(lvl);
|
|
num_mems += find_mux_local_decoder_addr_size(data_size);
|
|
}
|
|
}
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 output */
|
|
VTR_ASSERT(1 == mux_input_ports.size());
|
|
/* A quick check on the model ports */
|
|
if ((CIRCUIT_MODEL_MUX == circuit_lib.model_type(mux_model))
|
|
|| ((CIRCUIT_MODEL_LUT == circuit_lib.model_type(mux_model))
|
|
&& (false == circuit_lib.is_lut_fracturable(mux_model))) ) {
|
|
VTR_ASSERT(1 == mux_output_ports.size());
|
|
VTR_ASSERT(1 == circuit_lib.port_size(mux_output_ports[0]));
|
|
} else {
|
|
VTR_ASSERT_SAFE( (CIRCUIT_MODEL_LUT == circuit_lib.model_type(mux_model))
|
|
&& (true == circuit_lib.is_lut_fracturable(mux_model)) );
|
|
for (const auto& port : mux_output_ports) {
|
|
VTR_ASSERT(0 < circuit_lib.port_size(port));
|
|
}
|
|
}
|
|
|
|
/* Create a Verilog Module based on the circuit model, and add to module manager */
|
|
ModuleId mux_module = module_manager.add_module(module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != mux_module);
|
|
/* Add module ports */
|
|
/* Add each input port
|
|
* Treat MUX and LUT differently
|
|
* 1. MUXes: we do not have a specific input/output sizes, it is inferred by architecture
|
|
* 2. LUTes: we do have specific input/output sizes,
|
|
* but the inputs of MUXes are the SRAM ports of LUTs
|
|
* and the SRAM ports of MUXes are the inputs of LUTs
|
|
*/
|
|
size_t input_port_cnt = 0;
|
|
for (const auto& port : mux_input_ports) {
|
|
BasicPort input_port(circuit_lib.port_prefix(port), num_inputs);
|
|
module_manager.add_port(mux_module, input_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* Update counter */
|
|
input_port_cnt++;
|
|
}
|
|
/* Double check: We should have only 1 input port generated here! */
|
|
VTR_ASSERT(1 == input_port_cnt);
|
|
|
|
/* Add input buffers and update module nets for inputs */
|
|
vtr::vector<MuxInputId, ModuleNetId> mux_input_nets = build_mux_module_input_buffers(module_manager, circuit_lib, mux_module, mux_model, mux_graph);
|
|
|
|
for (const auto& port : mux_output_ports) {
|
|
BasicPort output_port(circuit_lib.port_prefix(port), num_outputs);
|
|
if (CIRCUIT_MODEL_LUT == circuit_lib.model_type(mux_model)) {
|
|
output_port.set_width(circuit_lib.port_size(port));
|
|
}
|
|
module_manager.add_port(mux_module, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
|
}
|
|
|
|
/* TODO: Add output buffers and update module nets for outputs */
|
|
vtr::vector<MuxOutputId, ModuleNetId> mux_output_nets = build_mux_module_output_buffers(module_manager, circuit_lib, mux_module, mux_model, mux_graph);
|
|
|
|
size_t sram_port_cnt = 0;
|
|
for (const auto& port : mux_sram_ports) {
|
|
BasicPort mem_port(circuit_lib.port_prefix(port), num_mems);
|
|
module_manager.add_port(mux_module, mem_port, ModuleManager::MODULE_INPUT_PORT);
|
|
BasicPort mem_inv_port(std::string(circuit_lib.port_prefix(port) + "_inv"), num_mems);
|
|
module_manager.add_port(mux_module, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* Update counter */
|
|
sram_port_cnt++;
|
|
}
|
|
VTR_ASSERT(1 == sram_port_cnt);
|
|
|
|
/* Create module nets for mem and mem_inv ports */
|
|
vtr::vector<MuxMemId, ModuleNetId> mux_mem_nets;
|
|
vtr::vector<MuxMemId, ModuleNetId> mux_mem_inv_nets;
|
|
|
|
build_mux_module_local_encoders_and_memory_nets(module_manager, mux_module,
|
|
circuit_lib, mux_model, mux_sram_ports,
|
|
mux_graph,
|
|
mux_mem_nets, mux_mem_inv_nets);
|
|
|
|
/* Print the internal logic in Verilog codes */
|
|
/* Print the Multiplexing structure in Verilog codes
|
|
* Separated generation strategy on using standard cell MUX2 or TGATE,
|
|
* 1. MUX2 has a fixed port map: input_port[0] and input_port[1] is the data_path input
|
|
* 2. Branch TGATE-based module has a fixed port name
|
|
* TODO: the naming could be more flexible?
|
|
*/
|
|
/* Get the tgate model */
|
|
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(mux_model);
|
|
/* Instanciate the branch module:
|
|
* Case 1: the branch module is a standard cell MUX2
|
|
* Case 2: the branch module is a tgate-based module
|
|
*/
|
|
std::string branch_module_name;
|
|
if (CIRCUIT_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
|
|
VTR_ASSERT(CIRCUIT_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
|
|
build_cmos_mux_module_mux2_multiplexing_structure(module_manager, circuit_lib, mux_module, mux_model, tgate_model, mux_input_nets, mux_output_nets, mux_mem_nets, mux_graph);
|
|
} else {
|
|
VTR_ASSERT(CIRCUIT_MODEL_PASSGATE == circuit_lib.model_type(tgate_model));
|
|
build_cmos_mux_module_tgate_multiplexing_structure(module_manager, circuit_lib, mux_module, mux_model, mux_input_nets, mux_output_nets, mux_mem_nets, mux_mem_inv_nets, mux_graph);
|
|
}
|
|
|
|
/* Add global ports to the pb_module:
|
|
* This is a much easier job after adding sub modules (instances),
|
|
* we just need to find all the global ports from the child modules and build a list of it
|
|
*/
|
|
add_module_global_ports_from_child_modules(module_manager, mux_module);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Generate a module of a RRAM-based multiplexer with the given size
|
|
* The module will consist of three parts:
|
|
* 1. instances of the branch circuits of multiplexers which are generated before
|
|
* This builds up the 4T1R-based multiplexing structure
|
|
*
|
|
* BLB WL
|
|
* | | ...
|
|
* v v
|
|
* +--------+
|
|
* in[0]-->| | BLB WL
|
|
* ...| Branch |-----+ | |
|
|
* in -->| 0 | | v v
|
|
* [N-1] +--------+ | +--------+
|
|
* ... -->| |
|
|
* BLBs WLs ...| Branch |
|
|
* | | ... -->| X |
|
|
* v v +--------+
|
|
* +--------+ |
|
|
* -->| | |
|
|
* ...| Branch |----+
|
|
* -->| i |
|
|
* +--------+
|
|
*
|
|
* 2. Input buffers/inverters
|
|
* 3. Output buffers/inverters
|
|
*********************************************************************/
|
|
static
|
|
void build_rram_mux_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& circuit_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph) {
|
|
/* Error out for the conditions where we are not yet supported! */
|
|
if (CIRCUIT_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
|
|
/* RRAM LUT is not supported now... */
|
|
VTR_LOGF_ERROR(__FILE__, __LINE__, "RRAM-based LUT is not supported for circuit model '%s')!\n",
|
|
circuit_lib.model_name(circuit_model).c_str());
|
|
exit(1);
|
|
}
|
|
|
|
/* Get the global ports required by MUX (and any submodules) */
|
|
std::vector<CircuitPortId> mux_global_ports = circuit_lib.model_global_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_INPUT, true, true);
|
|
/* Get the input ports from the mux */
|
|
std::vector<CircuitPortId> mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_INPUT, true);
|
|
/* Get the output ports from the mux */
|
|
std::vector<CircuitPortId> mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true);
|
|
/* Get the BL and WL ports from the mux */
|
|
std::vector<CircuitPortId> mux_blb_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_BLB, true);
|
|
std::vector<CircuitPortId> mux_wl_ports = circuit_lib.model_ports_by_type(circuit_model, CIRCUIT_MODEL_PORT_WL, true);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of data-path inputs */
|
|
size_t num_inputs = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs());
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 input and 1 BLB and 1 WL port */
|
|
VTR_ASSERT(1 == mux_input_ports.size());
|
|
VTR_ASSERT(1 == mux_blb_ports.size());
|
|
VTR_ASSERT(1 == mux_wl_ports.size());
|
|
|
|
/* Create a Verilog Module based on the circuit model, and add to module manager */
|
|
ModuleId module_id = module_manager.add_module(module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != module_id);
|
|
/* Add module ports */
|
|
/* Add each global port */
|
|
for (const auto& port : mux_global_ports) {
|
|
/* Configure each global port */
|
|
BasicPort global_port(circuit_lib.port_prefix(port), circuit_lib.port_size(port));
|
|
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
|
|
}
|
|
/* Add each input port */
|
|
size_t input_port_cnt = 0;
|
|
for (const auto& port : mux_input_ports) {
|
|
BasicPort input_port(circuit_lib.port_prefix(port), num_inputs);
|
|
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
|
|
/* Update counter */
|
|
input_port_cnt++;
|
|
}
|
|
/* Double check: We should have only 1 input port generated here! */
|
|
VTR_ASSERT(1 == input_port_cnt);
|
|
|
|
for (const auto& port : mux_output_ports) {
|
|
BasicPort output_port(circuit_lib.port_prefix(port), num_outputs);
|
|
if (CIRCUIT_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
|
|
output_port.set_width(circuit_lib.port_size(port));
|
|
}
|
|
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
|
|
}
|
|
|
|
/* BLB port */
|
|
for (const auto& port : mux_blb_ports) {
|
|
/* IMPORTANT: RRAM-based MUX has an additional BLB pin per level
|
|
* So, the actual port width of BLB should be added by the number of levels of the MUX graph
|
|
*/
|
|
BasicPort blb_port(circuit_lib.port_prefix(port), num_mems + mux_graph.num_levels());
|
|
module_manager.add_port(module_id, blb_port, ModuleManager::MODULE_INPUT_PORT);
|
|
}
|
|
|
|
/* WL port */
|
|
for (const auto& port : mux_wl_ports) {
|
|
/* IMPORTANT: RRAM-based MUX has an additional WL pin per level
|
|
* So, the actual port width of WL should be added by the number of levels of the MUX graph
|
|
*/
|
|
BasicPort wl_port(circuit_lib.port_prefix(port), num_mems + mux_graph.num_levels());
|
|
module_manager.add_port(module_id, wl_port, ModuleManager::MODULE_INPUT_PORT);
|
|
}
|
|
|
|
/* TODO: Add the input and output buffers in Verilog codes */
|
|
|
|
/* TODO: Print the internal logic in Verilog codes */
|
|
}
|
|
|
|
/***********************************************
|
|
* Generate Verilog codes modeling a multiplexer
|
|
* with the given graph-level description
|
|
**********************************************/
|
|
static
|
|
void build_mux_module(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& circuit_model,
|
|
const MuxGraph& mux_graph) {
|
|
std::string module_name = generate_mux_subckt_name(circuit_lib, circuit_model,
|
|
find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs()),
|
|
std::string(""));
|
|
|
|
/* Multiplexers built with different technology is in different organization */
|
|
switch (circuit_lib.design_tech_type(circuit_model)) {
|
|
case CIRCUIT_MODEL_DESIGN_CMOS:
|
|
/* SRAM-based Multiplexer Verilog module generation */
|
|
build_cmos_mux_module(module_manager, circuit_lib, circuit_model, module_name, mux_graph);
|
|
break;
|
|
case CIRCUIT_MODEL_DESIGN_RRAM:
|
|
/* TODO: RRAM-based Multiplexer Verilog module generation */
|
|
build_rram_mux_module(module_manager, circuit_lib, circuit_model, module_name, mux_graph);
|
|
break;
|
|
default:
|
|
VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid design technology of multiplexer '%s'\n",
|
|
circuit_lib.model_name(circuit_model).c_str());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/***********************************************
|
|
* Generate Verilog modules for all the unique
|
|
* multiplexers in the FPGA device
|
|
**********************************************/
|
|
void build_mux_modules(ModuleManager& module_manager,
|
|
const MuxLibrary& mux_lib,
|
|
const CircuitLibrary& circuit_lib) {
|
|
vtr::ScopedStartFinishTimer timer("Building multiplexer modules");
|
|
|
|
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
|
|
for (auto mux : mux_lib.muxes()) {
|
|
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
|
|
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
|
|
/* Create a mux graph for the branch circuit */
|
|
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
|
|
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
|
|
for (auto branch_mux_graph : branch_mux_graphs) {
|
|
build_mux_branch_module(module_manager, circuit_lib, mux_circuit_model,
|
|
find_mux_num_datapath_inputs(circuit_lib, mux_circuit_model, mux_graph.num_inputs()),
|
|
branch_mux_graph);
|
|
}
|
|
}
|
|
|
|
/* Generate unique Verilog modules for the multiplexers */
|
|
for (auto mux : mux_lib.muxes()) {
|
|
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
|
|
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
|
|
/* Create MUX circuits */
|
|
build_mux_module(module_manager, circuit_lib, mux_circuit_model, mux_graph);
|
|
}
|
|
}
|
|
|
|
} /* end namespace openfpga */
|