OpenFPGA/libs/libfpgabitstream/src/bitstream_manager.h

247 lines
10 KiB
C++

/******************************************************************************
* This file introduces a data structure to store bitstream-related information
*
* General concept
* ---------------
* The idea is to create a unified data structure that stores all the configuration bits
* with proper annotation to which modules in FPGA fabric it belongs to.
* 1. It can be easily organized in fabric-dependent representation
* (generate a sequence of bitstream which exactly fit the configuration protocol of FPGA fabric)
* 2. Or it can be easily organized in fabric-independent representation (think about XML file)
*
* Cross-reference
* ---------------
* May be used only when you want to bind the bitstream to a specific FPGA fabric!
* If you do so, please make sure the block name is exactly same as the instance name
* of a child module in ModuleManager!!!
* The configurable modules/instances in module manager are arranged
* in the sequence to fit different configuration protocol.
* By using the link between ModuleManager and BitstreamManager,
* we can build a sequence of configuration bits to fit different configuration protocols.
*
* +------------------+ +-----------------+
* | | block_name == instance_name | |
* | BitstreamManager |-------------------------------->| ModuleManager |
* | | | |
* +------------------+ +-----------------+
*
* Restrictions:
* 1. Each block inside BitstreamManager should have only 1 parent block
* and multiple child block
* 2. Each bit inside BitstreamManager should have only 1 parent block
*
******************************************************************************/
#ifndef BITSTREAM_MANAGER_H
#define BITSTREAM_MANAGER_H
#include <vector>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include "vtr_vector.h"
#include "bitstream_manager_fwd.h"
/* begin namespace openfpga */
namespace openfpga {
class BitstreamManager {
public: /* Type implementations */
/*
* This class (forward delcared above) is a template used to represent a lazily calculated
* iterator of the specified ID type. The key assumption made is that the ID space is
* contiguous and can be walked by incrementing the underlying ID value. To account for
* invalid IDs, it keeps a reference to the invalid ID set and returns ID::INVALID() for
* ID values in the set.
*
* It is used to lazily create an iteration range (e.g. as returned by RRGraph::edges() RRGraph::nodes())
* just based on the count of allocated elements (i.e. RRGraph::num_nodes_ or RRGraph::num_edges_),
* and the set of any invalid IDs (i.e. RRGraph::invalid_node_ids_, RRGraph::invalid_edge_ids_).
*/
template<class ID>
class lazy_id_iterator : public std::iterator<std::bidirectional_iterator_tag, ID> {
public:
//Since we pass ID as a template to std::iterator we need to use an explicit 'typename'
//to bring the value_type and iterator names into scope
typedef typename std::iterator<std::bidirectional_iterator_tag, ID>::value_type value_type;
typedef typename std::iterator<std::bidirectional_iterator_tag, ID>::iterator iterator;
lazy_id_iterator(value_type init, const std::unordered_set<ID>& invalid_ids)
: value_(init)
, invalid_ids_(invalid_ids) {}
//Advance to the next ID value
iterator operator++() {
value_ = ID(size_t(value_) + 1);
return *this;
}
//Advance to the previous ID value
iterator operator--() {
value_ = ID(size_t(value_) - 1);
return *this;
}
//Dereference the iterator
value_type operator*() const { return (invalid_ids_.count(value_)) ? ID::INVALID() : value_; }
friend bool operator==(const lazy_id_iterator<ID> lhs, const lazy_id_iterator<ID> rhs) { return lhs.value_ == rhs.value_; }
friend bool operator!=(const lazy_id_iterator<ID> lhs, const lazy_id_iterator<ID> rhs) { return !(lhs == rhs); }
private:
value_type value_;
const std::unordered_set<ID>& invalid_ids_;
};
public: /* Public constructor */
BitstreamManager();
public: /* Types and ranges */
//Lazy iterator utility forward declaration
template<class ID>
class lazy_id_iterator;
typedef lazy_id_iterator<ConfigBitId> config_bit_iterator;
typedef lazy_id_iterator<ConfigBlockId> config_block_iterator;
typedef vtr::Range<config_bit_iterator> config_bit_range;
typedef vtr::Range<config_block_iterator> config_block_range;
public: /* Public aggregators */
/* Find all the configuration bits */
size_t num_bits() const;
config_bit_range bits() const;
size_t num_blocks() const;
config_block_range blocks() const;
public: /* Public Accessors */
/* Find the value of bitstream */
bool bit_value(const ConfigBitId& bit_id) const;
/* Find the parent block of a configuration bit */
ConfigBlockId bit_parent_block(const ConfigBitId& bit_id) const;
/* Find a name of a block */
std::string block_name(const ConfigBlockId& block_id) const;
/* Find the parent of a block */
ConfigBlockId block_parent(const ConfigBlockId& block_id) const;
/* Find the children of a block */
std::vector<ConfigBlockId> block_children(const ConfigBlockId& block_id) const;
/* Find all the bits that belong to a block */
std::vector<ConfigBitId> block_bits(const ConfigBlockId& block_id) const;
/* Find the child block in a bitstream manager with a given name */
ConfigBlockId find_child_block(const ConfigBlockId& block_id, const std::string& child_block_name) const;
/* Find path id of a block */
int block_path_id(const ConfigBlockId& block_id) const;
/* Find input net ids of a block */
std::string block_input_net_ids(const ConfigBlockId& block_id) const;
/* Find input net ids of a block */
std::string block_output_net_ids(const ConfigBlockId& block_id) const;
public: /* Public Mutators */
/* Add a new configuration bit to the bitstream manager */
ConfigBitId add_bit(const ConfigBlockId& parent_block, const bool& bit_value);
/* Reserve memory for a number of clocks */
void reserve_blocks(const size_t& num_blocks);
/* Reserve memory for a number of bits */
void reserve_bits(const size_t& num_bits);
/* Create a new block of configuration bits */
ConfigBlockId create_block();
/* Add a new block of configuration bits to the bitstream manager */
ConfigBlockId add_block(const std::string& block_name);
/* Set a name for a block */
void set_block_name(const ConfigBlockId& block_id,
const std::string& block_name);
/* Reserve child blocks for a block to be memory efficient */
void reserve_child_blocks(const ConfigBlockId& parent_block,
const size_t& num_children);
/* Set a block as a child block of another */
void add_child_block(const ConfigBlockId& parent_block, const ConfigBlockId& child_block);
/* Add a bitstream to a block */
void add_block_bits(const ConfigBlockId& block,
const std::vector<bool>& block_bitstream);
/* Add a path id to a block */
void add_path_id_to_block(const ConfigBlockId& block, const int& path_id);
/* Add an input net id to a block */
void add_input_net_id_to_block(const ConfigBlockId& block, const std::string& input_net_id);
/* Add an output net id to a block */
void add_output_net_id_to_block(const ConfigBlockId& block, const std::string& output_net_id);
public: /* Public Validators */
bool valid_bit_id(const ConfigBitId& bit_id) const;
bool valid_block_id(const ConfigBlockId& block_id) const;
bool valid_block_path_id(const ConfigBlockId& block_id) const;
private: /* Internal data */
/* Unique id of a block of bits in the Bitstream */
size_t num_blocks_;
std::unordered_set<ConfigBlockId> invalid_block_ids_;
vtr::vector<ConfigBlockId, size_t> block_bit_id_lsbs_;
vtr::vector<ConfigBlockId, short> block_bit_lengths_;
/* Back-annotation for the bits */
/* Parent block of a bit in the Bitstream
* For each bit, the block name can be designed to be same as the instance name in a module
* to reflect its position in the module tree (ModuleManager)
* Note that the blocks here all unique, unlike ModuleManager where modules can be instanciated
* Therefore, this block graph can be considered as a flattened graph of ModuleGraph
*/
vtr::vector<ConfigBlockId, std::string> block_names_;
vtr::vector<ConfigBlockId, ConfigBlockId> parent_block_ids_;
vtr::vector<ConfigBlockId, std::vector<ConfigBlockId>> child_block_ids_;
/* The ids of the inputs of routing multiplexer blocks which is propagated to outputs
* By default, it will be -2 (which is invalid)
* A valid id starts from -1
* -1 indicates an unused routing multiplexer.
* It will be converted to a valid id by bitstream builders)
* For used routing multiplexers, the path id will be >= 0
*
* Note:
* -Bitstream manager will NOT check if the id is good for bitstream builders
* It just store the results
*/
vtr::vector<ConfigBlockId, short> block_path_ids_;
/* Net ids that are mapped to inputs and outputs of this block
*
* Note:
* -Bitstream manager will NOT check if the id is good for bitstream builders
* It just store the results
*/
vtr::vector<ConfigBlockId, std::string> block_input_net_ids_;
vtr::vector<ConfigBlockId, std::string> block_output_net_ids_;
/* Unique id of a bit in the Bitstream */
size_t num_bits_;
std::unordered_set<ConfigBitId> invalid_bit_ids_;
/* value of a bit in the Bitstream */
vtr::vector<ConfigBitId, char> bit_values_;
vtr::vector<ConfigBitId, ConfigBlockId> bit_parent_blocks_;
};
} /* end namespace openfpga */
#endif