489 lines
22 KiB
C++
489 lines
22 KiB
C++
/********************************************************************
|
|
* This file includes functions to print Verilog modules for a Grid
|
|
* (CLBs, I/Os, heterogeneous blocks etc.)
|
|
*******************************************************************/
|
|
/* System header files */
|
|
#include <vector>
|
|
#include <fstream>
|
|
|
|
/* Header files from external libs */
|
|
#include "util.h"
|
|
#include "vtr_assert.h"
|
|
#include "circuit_library_utils.h"
|
|
|
|
/* Header files for VPR */
|
|
#include "vpr_types.h"
|
|
#include "globals.h"
|
|
|
|
/* Header files for FPGA X2P tool suite */
|
|
#include "fpga_x2p_naming.h"
|
|
#include "fpga_x2p_types.h"
|
|
#include "fpga_x2p_utils.h"
|
|
#include "fpga_x2p_pbtypes_utils.h"
|
|
#include "module_manager_utils.h"
|
|
#include "fpga_x2p_globals.h"
|
|
|
|
/* Header files for Verilog generator */
|
|
#include "verilog_global.h"
|
|
#include "verilog_utils.h"
|
|
#include "verilog_writer_utils.h"
|
|
#include "verilog_module_writer.h"
|
|
#include "verilog_grid.h"
|
|
|
|
/********************************************************************
|
|
* Print Verilog modules of a primitive node in the pb_graph_node graph
|
|
* This generic function can support all the different types of primitive nodes
|
|
* i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders.
|
|
*
|
|
* The Verilog module will consist of two parts:
|
|
* 1. Logic module of the primitive node
|
|
* This module performs the logic function of the block
|
|
* 2. Memory module of the primitive node
|
|
* This module stores the configuration bits for the logic module
|
|
* if the logic module is a programmable resource, such as LUT
|
|
*
|
|
* Verilog module structure:
|
|
*
|
|
* Primitive block
|
|
* +---------------------------------------+
|
|
* | |
|
|
* | +---------+ +---------+ |
|
|
* in |----->| |--->| |<------|configuration lines
|
|
* | | Logic |... | Memory | |
|
|
* out|<-----| |--->| | |
|
|
* | +---------+ +---------+ |
|
|
* | |
|
|
* +---------------------------------------+
|
|
*
|
|
*******************************************************************/
|
|
static
|
|
void print_verilog_primitive_block(std::fstream& fp,
|
|
ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
t_sram_orgz_info* cur_sram_orgz_info,
|
|
t_pb_graph_node* primitive_pb_graph_node,
|
|
const e_side& io_side,
|
|
const bool& use_explicit_mapping) {
|
|
/* Ensure a valid file handler */
|
|
check_file_handler(fp);
|
|
|
|
/* Ensure a valid pb_graph_node */
|
|
if (NULL == primitive_pb_graph_node) {
|
|
vpr_printf(TIO_MESSAGE_ERROR,
|
|
"(File:%s,[LINE%d]) Invalid primitive_pb_graph_node!\n",
|
|
__FILE__, __LINE__);
|
|
exit(1);
|
|
}
|
|
|
|
/* Find the circuit model id linked to the pb_graph_node */
|
|
CircuitModelId& primitive_model = primitive_pb_graph_node->pb_type->circuit_model;
|
|
|
|
/* Generate the module name for this primitive pb_graph_node*/
|
|
std::string primitive_module_name_prefix(grid_verilog_file_name_prefix);
|
|
/* Add side string to the name if it is valid, this is mainly for I/O block */
|
|
if (NUM_SIDES != io_side) {
|
|
Side side_manager(io_side);
|
|
primitive_module_name_prefix += std::string(side_manager.to_string());
|
|
primitive_module_name_prefix += std::string("_");
|
|
}
|
|
std::string primitive_module_name = generate_physical_block_module_name(primitive_module_name_prefix, primitive_pb_graph_node->pb_type);
|
|
|
|
/* Create a module of the primitive LUT and register it to module manager */
|
|
ModuleId primitive_module = module_manager.add_module(primitive_module_name);
|
|
/* Ensure that the module has been created and thus unique! */
|
|
VTR_ASSERT(ModuleId::INVALID() != primitive_module);
|
|
|
|
/* Find the global ports required by the primitive node, and add them to the module */
|
|
std::vector<CircuitPortId> primitive_model_global_ports = circuit_lib.model_global_ports(primitive_model, true);
|
|
for (auto port : primitive_model_global_ports) {
|
|
/* The global I/O of the FPGA has a special name */
|
|
BasicPort module_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
|
|
module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GLOBAL_PORT);
|
|
}
|
|
|
|
/* Find the inout ports required by the primitive node, and add them to the module
|
|
* This is mainly due to the I/O blocks, which have inout ports for the top-level fabric
|
|
*/
|
|
if (SPICE_MODEL_IOPAD == circuit_lib.model_type(primitive_model)) {
|
|
std::vector<CircuitPortId> primitive_model_inout_ports = circuit_lib.model_ports_by_type(primitive_model, SPICE_MODEL_PORT_INOUT);
|
|
for (auto port : primitive_model_inout_ports) {
|
|
BasicPort module_port(generate_fpga_global_io_port_name(std::string(gio_inout_prefix), circuit_lib, primitive_model), circuit_lib.port_size(port));
|
|
module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_INOUT_PORT);
|
|
}
|
|
}
|
|
/* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here.
|
|
* Since we have linked pb_type ports to circuit models when setting up FPGA-X2P,
|
|
* no ports of the circuit model will be missing here
|
|
*/
|
|
add_pb_type_ports_to_module_manager(module_manager, primitive_module, primitive_pb_graph_node->pb_type);
|
|
|
|
/* Add configuration ports */
|
|
/* Shared SRAM ports*/
|
|
size_t num_shared_config_bits = find_circuit_num_shared_config_bits(circuit_lib, primitive_model, cur_sram_orgz_info->type);
|
|
if (0 < num_shared_config_bits) {
|
|
/* Check: this SRAM organization type must be memory-bank ! */
|
|
VTR_ASSERT( SPICE_SRAM_MEMORY_BANK == cur_sram_orgz_info->type );
|
|
/* Generate a list of ports */
|
|
add_reserved_sram_ports_to_module_manager(module_manager, primitive_module,
|
|
num_shared_config_bits);
|
|
}
|
|
|
|
/* TODO: this should be added to the cur_sram_orgz_info !!! */
|
|
t_spice_model* mem_model = NULL;
|
|
get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model);
|
|
CircuitModelId sram_model = circuit_lib.model(mem_model->name);
|
|
VTR_ASSERT(CircuitModelId::INVALID() != sram_model);
|
|
|
|
/* Regular (independent) SRAM ports */
|
|
size_t num_config_bits = find_circuit_num_config_bits(circuit_lib, primitive_model);
|
|
if (0 < num_config_bits) {
|
|
add_sram_ports_to_module_manager(module_manager, primitive_module,
|
|
circuit_lib, sram_model, cur_sram_orgz_info->type,
|
|
num_config_bits);
|
|
}
|
|
|
|
/* Find the module id in the module manager */
|
|
ModuleId logic_module = module_manager.find_module(circuit_lib.model_name(primitive_model));
|
|
VTR_ASSERT(ModuleId::INVALID() != logic_module);
|
|
size_t logic_instance_id = module_manager.num_instance(primitive_module, logic_module);
|
|
/* Add the logic module as a child of primitive module */
|
|
module_manager.add_child_module(primitive_module, logic_module);
|
|
|
|
/* Add nets to connect the logic model ports to pb_type ports */
|
|
add_primitive_pb_type_module_nets(module_manager, primitive_module, logic_module, logic_instance_id, circuit_lib, primitive_pb_graph_node->pb_type);
|
|
|
|
/* Add the associated memory module as a child of primitive module */
|
|
std::string memory_module_name = generate_memory_module_name(circuit_lib, primitive_model, sram_model, std::string(verilog_mem_posfix));
|
|
ModuleId memory_module = module_manager.find_module(memory_module_name);
|
|
|
|
/* Vectors to record all the memory modules have been added
|
|
* They are used to add module nets of configuration bus
|
|
*/
|
|
std::vector<ModuleId> memory_modules;
|
|
std::vector<size_t> memory_instances;
|
|
|
|
/* If there is no memory module required, we can skip the assocated net addition */
|
|
if (ModuleId::INVALID() != memory_module) {
|
|
size_t memory_instance_id = module_manager.num_instance(primitive_module, memory_module);
|
|
/* Add the memory module as a child of primitive module */
|
|
module_manager.add_child_module(primitive_module, memory_module);
|
|
|
|
/* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */
|
|
add_module_nets_between_logic_and_memory_sram_bus(module_manager, primitive_module,
|
|
logic_module, logic_instance_id,
|
|
memory_module, memory_instance_id,
|
|
circuit_lib, primitive_model);
|
|
/* Record memory-related information */
|
|
memory_modules.push_back(memory_module);
|
|
memory_instances.push_back(memory_instance_id);
|
|
}
|
|
/* Add all the nets to connect configuration ports from memory module to primitive modules
|
|
* This is a one-shot addition that covers all the memory modules in this primitive module!
|
|
*/
|
|
if (false == memory_modules.empty()) {
|
|
add_module_nets_memory_config_bus(module_manager, primitive_module,
|
|
memory_modules, memory_instances,
|
|
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
|
|
}
|
|
|
|
/* Write the verilog module */
|
|
write_verilog_module_to_file(fp, module_manager, primitive_module, use_explicit_mapping);
|
|
|
|
/* Add an empty line as a splitter */
|
|
fp << std::endl;
|
|
}
|
|
|
|
/********************************************************************
|
|
* Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.)
|
|
* This function will traverse the graph of complex logic block (t_pb_graph_node)
|
|
* in a recursive way, using a Depth First Search (DFS) algorithm.
|
|
* As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph
|
|
* will be printed out first, while the top-level will be printed out in the last
|
|
*
|
|
* Note: this function will print a unique Verilog module for each type of
|
|
* t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly
|
|
* hierarchical Verilog organization as well as simplify the Verilog file sizes.
|
|
*
|
|
* Note: DFS is the right way. Do NOT use BFS.
|
|
* DFS can guarantee that all the sub-modules can be registered properly
|
|
* to its parent in module manager
|
|
*******************************************************************/
|
|
static
|
|
void print_verilog_physical_blocks_rec(std::fstream& fp,
|
|
ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const MuxLibrary& mux_lib,
|
|
t_sram_orgz_info* cur_sram_orgz_info,
|
|
t_pb_graph_node* physical_pb_graph_node,
|
|
const e_side& io_side,
|
|
const bool& use_explicit_mapping) {
|
|
/* Check the file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Check cur_pb_graph_node*/
|
|
if (NULL == physical_pb_graph_node) {
|
|
vpr_printf(TIO_MESSAGE_ERROR,
|
|
"(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n",
|
|
__FILE__, __LINE__);
|
|
exit(1);
|
|
}
|
|
|
|
/* Get the pb_type definition related to the node */
|
|
t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type;
|
|
|
|
/* Find the mode that physical implementation of a pb_type */
|
|
int physical_mode_index = find_pb_type_physical_mode_index((*physical_pb_type));
|
|
|
|
/* For non-leaf node in the pb_type graph:
|
|
* Recursively Depth-First Generate all the child pb_type at the level
|
|
*/
|
|
if (FALSE == is_primitive_pb_type(physical_pb_type)) {
|
|
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ipb) {
|
|
/* Go recursive to visit the children */
|
|
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
|
|
cur_sram_orgz_info,
|
|
&(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][0]),
|
|
io_side,
|
|
use_explicit_mapping);
|
|
}
|
|
}
|
|
|
|
/* For leaf node, a primitive Verilog module will be generated */
|
|
if (TRUE == is_primitive_pb_type(physical_pb_type)) {
|
|
print_verilog_primitive_block(fp, module_manager, circuit_lib,
|
|
cur_sram_orgz_info,
|
|
physical_pb_graph_node,
|
|
io_side,
|
|
use_explicit_mapping);
|
|
/* Finish for primitive node, return */
|
|
return;
|
|
}
|
|
|
|
/* Generate the name of the Verilog module for this pb_type */
|
|
std::string pb_module_name_prefix(grid_verilog_file_name_prefix);
|
|
/* Add side string to the name if it is valid */
|
|
if (NUM_SIDES != io_side) {
|
|
Side side_manager(io_side);
|
|
pb_module_name_prefix += std::string(side_manager.to_string());
|
|
pb_module_name_prefix += std::string("_");
|
|
}
|
|
std::string pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, physical_pb_type);
|
|
|
|
/* Register the Verilog module in module manager */
|
|
ModuleId pb_module = module_manager.add_module(pb_module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != pb_module);
|
|
|
|
/* TODO: Add ports to the Verilog module */
|
|
|
|
/* TODO: Count I/O (INOUT) ports from the sub-modules under this Verilog module */
|
|
/* TODO: Count shared SRAM ports from the sub-modules under this Verilog module */
|
|
/* TODO: Count SRAM ports from the sub-modules under this Verilog module */
|
|
/* TODO: Count formal verification ports from the sub-modules under this Verilog module */
|
|
|
|
/* Print Verilog module declaration */
|
|
print_verilog_module_declaration(fp, module_manager, pb_module);
|
|
|
|
/* Comment lines */
|
|
print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
|
|
|
|
/* TODO: Print local wires (bus wires for memory configuration) */
|
|
/*
|
|
dump_verilog_sram_config_bus_internal_wires(fp, cur_sram_orgz_info,
|
|
stamped_sram_cnt,
|
|
stamped_sram_cnt + num_conf_bits - 1);
|
|
*/
|
|
|
|
/* TODO: Instanciate all the child Verilog modules */
|
|
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ipb++) {
|
|
/* Each child may exist multiple times in the hierarchy*/
|
|
for (int jpb = 0; jpb < physical_pb_type->modes[physical_mode_index].pb_type_children[ipb].num_pb; jpb++) {
|
|
/* we should make sure this placement index == child_pb_type[jpb] */
|
|
VTR_ASSERT(jpb == physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][jpb].placement_index);
|
|
}
|
|
}
|
|
/* TODO: Print programmable/non-programmable interconnections inside the Verilog module */
|
|
/*
|
|
dump_verilog_pb_graph_interc(cur_sram_orgz_info, fp, subckt_name,
|
|
cur_pb_graph_node, mode_index,
|
|
is_explicit_mapping);
|
|
*/
|
|
|
|
/* Print an end to the Verilog module */
|
|
print_verilog_module_end(fp, module_manager.module_name(pb_module));
|
|
|
|
print_verilog_comment(fp, std::string("----- END Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
|
|
|
|
/* Add an empty line as a splitter */
|
|
fp << std::endl;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* This function will create a Verilog file and print out a Verilog netlist
|
|
* for a type of physical block
|
|
*
|
|
* For IO blocks:
|
|
* The param 'border_side' is required, which is specify which side of fabric
|
|
* the I/O block locates at.
|
|
*****************************************************************************/
|
|
static
|
|
void print_verilog_grid(ModuleManager& module_manager,
|
|
const MuxLibrary& mux_lib,
|
|
const CircuitLibrary& circuit_lib,
|
|
t_sram_orgz_info* cur_sram_orgz_info,
|
|
const std::string& verilog_dir,
|
|
const std::string& subckt_dir,
|
|
t_type_ptr phy_block_type,
|
|
const e_side& border_side,
|
|
const bool& use_explicit_mapping) {
|
|
/* Check code: if this is an IO block, the border side MUST be valid */
|
|
if (IO_TYPE == phy_block_type) {
|
|
VTR_ASSERT(NUM_SIDES != border_side);
|
|
}
|
|
|
|
/* Give a name to the Verilog netlist */
|
|
/* Create the file name for Verilog */
|
|
std::string verilog_fname(subckt_dir
|
|
+ generate_grid_block_netlist_name(std::string(phy_block_type->name),
|
|
IO_TYPE == phy_block_type,
|
|
border_side,
|
|
std::string(verilog_netlist_file_postfix))
|
|
);
|
|
/* TODO: remove the bak file when the file is ready */
|
|
verilog_fname += ".bak";
|
|
|
|
/* Echo status */
|
|
if (IO_TYPE == phy_block_type) {
|
|
Side side_manager(border_side);
|
|
vpr_printf(TIO_MESSAGE_INFO,
|
|
"Writing FPGA Verilog Netlist (%s) for logic block %s at %s side ...\n",
|
|
verilog_fname.c_str(), phy_block_type->name,
|
|
side_manager.c_str());
|
|
} else {
|
|
vpr_printf(TIO_MESSAGE_INFO,
|
|
"Writing FPGA Verilog Netlist (%s) for logic block %s...\n",
|
|
verilog_fname.c_str(), phy_block_type->name);
|
|
}
|
|
|
|
/* Create the file stream */
|
|
std::fstream fp;
|
|
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
|
|
|
|
check_file_handler(fp);
|
|
|
|
print_verilog_file_header(fp, std::string("Verilog modules for physical block: " + std::string(phy_block_type->name) + "]"));
|
|
|
|
/* Print preprocessing flags */
|
|
print_verilog_include_defines_preproc_file(fp, verilog_dir);
|
|
|
|
/* TODO: Print Verilog modules for all the pb_types/pb_graph_nodes */
|
|
/* TODO: use a Depth-First Search Algorithm to print the sub-modules
|
|
* Note: DFS is the right way. Do NOT use BFS.
|
|
* DFS can guarantee that all the sub-modules can be registered properly
|
|
* to its parent in module manager
|
|
*/
|
|
print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
|
|
|
|
/* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
|
|
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
|
|
cur_sram_orgz_info,
|
|
phy_block_type->pb_graph_head,
|
|
border_side,
|
|
use_explicit_mapping);
|
|
|
|
print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
|
|
|
|
/* TODO: Create a Verilog Module for the top-level physical block, and add to module manager */
|
|
std::string module_name = generate_grid_block_module_name(std::string(grid_verilog_file_name_prefix), phy_block_type->name, IO_TYPE == phy_block_type, border_side);
|
|
ModuleId module_id = module_manager.add_module(module_name);
|
|
VTR_ASSERT(ModuleId::INVALID() != module_id);
|
|
|
|
/* TODO: Add ports to the module */
|
|
|
|
|
|
/* TODO: Print the module definition for the top-level Verilog module of physical block */
|
|
print_verilog_module_declaration(fp, module_manager, module_id);
|
|
/* Finish printing ports */
|
|
|
|
/* Print an empty line a splitter */
|
|
fp << std::endl;
|
|
|
|
/* TODO: instanciate all the sub modules */
|
|
for (int iz = 0; iz < phy_block_type->capacity; ++iz) {
|
|
}
|
|
|
|
/* Put an end to the top-level Verilog module of physical block */
|
|
print_verilog_module_end(fp, module_manager.module_name(module_id));
|
|
|
|
/* Add an empty line as a splitter */
|
|
fp << std::endl;
|
|
|
|
/* Close file handler */
|
|
fp.close();
|
|
|
|
/* Add fname to the linked list */
|
|
/* TODO: add it when it is ready
|
|
grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str());
|
|
*/
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Create logic block modules in a compact way:
|
|
* 1. Only one module for each I/O on each border side (IO_TYPE)
|
|
* 2. Only one module for each CLB (FILL_TYPE)
|
|
* 3. Only one module for each heterogeneous block
|
|
****************************************************************************/
|
|
void print_verilog_grids(ModuleManager& module_manager,
|
|
const CircuitLibrary& circuit_lib,
|
|
const MuxLibrary& mux_lib,
|
|
t_sram_orgz_info* cur_sram_orgz_info,
|
|
const std::string& verilog_dir,
|
|
const std::string& subckt_dir,
|
|
const bool& is_explicit_mapping) {
|
|
/* Enumerate the types, dump one Verilog module for each */
|
|
for (int itype = 0; itype < num_types; itype++) {
|
|
if (EMPTY_TYPE == &type_descriptors[itype]) {
|
|
/* Bypass empty type or NULL */
|
|
continue;
|
|
} else if (IO_TYPE == &type_descriptors[itype]) {
|
|
/* Special for I/O block, generate one module for each border side */
|
|
for (int iside = 0; iside < NUM_SIDES; iside++) {
|
|
Side side_manager(iside);
|
|
print_verilog_grid(module_manager, mux_lib, circuit_lib,
|
|
cur_sram_orgz_info,
|
|
verilog_dir, subckt_dir,
|
|
&type_descriptors[itype],
|
|
side_manager.get_side(),
|
|
is_explicit_mapping);
|
|
}
|
|
continue;
|
|
} else if (FILL_TYPE == &type_descriptors[itype]) {
|
|
/* For CLB */
|
|
print_verilog_grid(module_manager, mux_lib, circuit_lib,
|
|
cur_sram_orgz_info,
|
|
verilog_dir, subckt_dir,
|
|
&type_descriptors[itype],
|
|
NUM_SIDES,
|
|
is_explicit_mapping);
|
|
continue;
|
|
} else {
|
|
/* For heterogenenous blocks */
|
|
print_verilog_grid(module_manager, mux_lib, circuit_lib,
|
|
cur_sram_orgz_info,
|
|
verilog_dir, subckt_dir,
|
|
&type_descriptors[itype],
|
|
NUM_SIDES,
|
|
is_explicit_mapping);
|
|
}
|
|
}
|
|
|
|
/* Output a header file for all the logic blocks */
|
|
vpr_printf(TIO_MESSAGE_INFO, "Generating header file for grid Verilog modules...\n");
|
|
std::string grid_verilog_fname(logic_block_verilog_file_name);
|
|
/* TODO: remove .bak when it is ready */
|
|
grid_verilog_fname += ".bak";
|
|
dump_verilog_subckt_header_file(grid_verilog_subckt_file_path_head,
|
|
subckt_dir.c_str(),
|
|
grid_verilog_fname.c_str());
|
|
}
|
|
|