OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/verilog/verilog_grid.cpp

489 lines
22 KiB
C++

/********************************************************************
* This file includes functions to print Verilog modules for a Grid
* (CLBs, I/Os, heterogeneous blocks etc.)
*******************************************************************/
/* System header files */
#include <vector>
#include <fstream>
/* Header files from external libs */
#include "util.h"
#include "vtr_assert.h"
#include "circuit_library_utils.h"
/* Header files for VPR */
#include "vpr_types.h"
#include "globals.h"
/* Header files for FPGA X2P tool suite */
#include "fpga_x2p_naming.h"
#include "fpga_x2p_types.h"
#include "fpga_x2p_utils.h"
#include "fpga_x2p_pbtypes_utils.h"
#include "module_manager_utils.h"
#include "fpga_x2p_globals.h"
/* Header files for Verilog generator */
#include "verilog_global.h"
#include "verilog_utils.h"
#include "verilog_writer_utils.h"
#include "verilog_module_writer.h"
#include "verilog_grid.h"
/********************************************************************
* Print Verilog modules of a primitive node in the pb_graph_node graph
* This generic function can support all the different types of primitive nodes
* i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders.
*
* The Verilog module will consist of two parts:
* 1. Logic module of the primitive node
* This module performs the logic function of the block
* 2. Memory module of the primitive node
* This module stores the configuration bits for the logic module
* if the logic module is a programmable resource, such as LUT
*
* Verilog module structure:
*
* Primitive block
* +---------------------------------------+
* | |
* | +---------+ +---------+ |
* in |----->| |--->| |<------|configuration lines
* | | Logic |... | Memory | |
* out|<-----| |--->| | |
* | +---------+ +---------+ |
* | |
* +---------------------------------------+
*
*******************************************************************/
static
void print_verilog_primitive_block(std::fstream& fp,
ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
t_pb_graph_node* primitive_pb_graph_node,
const e_side& io_side,
const bool& use_explicit_mapping) {
/* Ensure a valid file handler */
check_file_handler(fp);
/* Ensure a valid pb_graph_node */
if (NULL == primitive_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid primitive_pb_graph_node!\n",
__FILE__, __LINE__);
exit(1);
}
/* Find the circuit model id linked to the pb_graph_node */
CircuitModelId& primitive_model = primitive_pb_graph_node->pb_type->circuit_model;
/* Generate the module name for this primitive pb_graph_node*/
std::string primitive_module_name_prefix(grid_verilog_file_name_prefix);
/* Add side string to the name if it is valid, this is mainly for I/O block */
if (NUM_SIDES != io_side) {
Side side_manager(io_side);
primitive_module_name_prefix += std::string(side_manager.to_string());
primitive_module_name_prefix += std::string("_");
}
std::string primitive_module_name = generate_physical_block_module_name(primitive_module_name_prefix, primitive_pb_graph_node->pb_type);
/* Create a module of the primitive LUT and register it to module manager */
ModuleId primitive_module = module_manager.add_module(primitive_module_name);
/* Ensure that the module has been created and thus unique! */
VTR_ASSERT(ModuleId::INVALID() != primitive_module);
/* Find the global ports required by the primitive node, and add them to the module */
std::vector<CircuitPortId> primitive_model_global_ports = circuit_lib.model_global_ports(primitive_model, true);
for (auto port : primitive_model_global_ports) {
/* The global I/O of the FPGA has a special name */
BasicPort module_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Find the inout ports required by the primitive node, and add them to the module
* This is mainly due to the I/O blocks, which have inout ports for the top-level fabric
*/
if (SPICE_MODEL_IOPAD == circuit_lib.model_type(primitive_model)) {
std::vector<CircuitPortId> primitive_model_inout_ports = circuit_lib.model_ports_by_type(primitive_model, SPICE_MODEL_PORT_INOUT);
for (auto port : primitive_model_inout_ports) {
BasicPort module_port(generate_fpga_global_io_port_name(std::string(gio_inout_prefix), circuit_lib, primitive_model), circuit_lib.port_size(port));
module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_INOUT_PORT);
}
}
/* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here.
* Since we have linked pb_type ports to circuit models when setting up FPGA-X2P,
* no ports of the circuit model will be missing here
*/
add_pb_type_ports_to_module_manager(module_manager, primitive_module, primitive_pb_graph_node->pb_type);
/* Add configuration ports */
/* Shared SRAM ports*/
size_t num_shared_config_bits = find_circuit_num_shared_config_bits(circuit_lib, primitive_model, cur_sram_orgz_info->type);
if (0 < num_shared_config_bits) {
/* Check: this SRAM organization type must be memory-bank ! */
VTR_ASSERT( SPICE_SRAM_MEMORY_BANK == cur_sram_orgz_info->type );
/* Generate a list of ports */
add_reserved_sram_ports_to_module_manager(module_manager, primitive_module,
num_shared_config_bits);
}
/* TODO: this should be added to the cur_sram_orgz_info !!! */
t_spice_model* mem_model = NULL;
get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model);
CircuitModelId sram_model = circuit_lib.model(mem_model->name);
VTR_ASSERT(CircuitModelId::INVALID() != sram_model);
/* Regular (independent) SRAM ports */
size_t num_config_bits = find_circuit_num_config_bits(circuit_lib, primitive_model);
if (0 < num_config_bits) {
add_sram_ports_to_module_manager(module_manager, primitive_module,
circuit_lib, sram_model, cur_sram_orgz_info->type,
num_config_bits);
}
/* Find the module id in the module manager */
ModuleId logic_module = module_manager.find_module(circuit_lib.model_name(primitive_model));
VTR_ASSERT(ModuleId::INVALID() != logic_module);
size_t logic_instance_id = module_manager.num_instance(primitive_module, logic_module);
/* Add the logic module as a child of primitive module */
module_manager.add_child_module(primitive_module, logic_module);
/* Add nets to connect the logic model ports to pb_type ports */
add_primitive_pb_type_module_nets(module_manager, primitive_module, logic_module, logic_instance_id, circuit_lib, primitive_pb_graph_node->pb_type);
/* Add the associated memory module as a child of primitive module */
std::string memory_module_name = generate_memory_module_name(circuit_lib, primitive_model, sram_model, std::string(verilog_mem_posfix));
ModuleId memory_module = module_manager.find_module(memory_module_name);
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std::vector<ModuleId> memory_modules;
std::vector<size_t> memory_instances;
/* If there is no memory module required, we can skip the assocated net addition */
if (ModuleId::INVALID() != memory_module) {
size_t memory_instance_id = module_manager.num_instance(primitive_module, memory_module);
/* Add the memory module as a child of primitive module */
module_manager.add_child_module(primitive_module, memory_module);
/* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus(module_manager, primitive_module,
logic_module, logic_instance_id,
memory_module, memory_instance_id,
circuit_lib, primitive_model);
/* Record memory-related information */
memory_modules.push_back(memory_module);
memory_instances.push_back(memory_instance_id);
}
/* Add all the nets to connect configuration ports from memory module to primitive modules
* This is a one-shot addition that covers all the memory modules in this primitive module!
*/
if (false == memory_modules.empty()) {
add_module_nets_memory_config_bus(module_manager, primitive_module,
memory_modules, memory_instances,
cur_sram_orgz_info->type, circuit_lib.design_tech_type(sram_model));
}
/* Write the verilog module */
write_verilog_module_to_file(fp, module_manager, primitive_module, use_explicit_mapping);
/* Add an empty line as a splitter */
fp << std::endl;
}
/********************************************************************
* Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.)
* This function will traverse the graph of complex logic block (t_pb_graph_node)
* in a recursive way, using a Depth First Search (DFS) algorithm.
* As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph
* will be printed out first, while the top-level will be printed out in the last
*
* Note: this function will print a unique Verilog module for each type of
* t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly
* hierarchical Verilog organization as well as simplify the Verilog file sizes.
*
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*******************************************************************/
static
void print_verilog_physical_blocks_rec(std::fstream& fp,
ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
t_pb_graph_node* physical_pb_graph_node,
const e_side& io_side,
const bool& use_explicit_mapping) {
/* Check the file handler*/
check_file_handler(fp);
/* Check cur_pb_graph_node*/
if (NULL == physical_pb_graph_node) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n",
__FILE__, __LINE__);
exit(1);
}
/* Get the pb_type definition related to the node */
t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type;
/* Find the mode that physical implementation of a pb_type */
int physical_mode_index = find_pb_type_physical_mode_index((*physical_pb_type));
/* For non-leaf node in the pb_type graph:
* Recursively Depth-First Generate all the child pb_type at the level
*/
if (FALSE == is_primitive_pb_type(physical_pb_type)) {
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ipb) {
/* Go recursive to visit the children */
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
cur_sram_orgz_info,
&(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][0]),
io_side,
use_explicit_mapping);
}
}
/* For leaf node, a primitive Verilog module will be generated */
if (TRUE == is_primitive_pb_type(physical_pb_type)) {
print_verilog_primitive_block(fp, module_manager, circuit_lib,
cur_sram_orgz_info,
physical_pb_graph_node,
io_side,
use_explicit_mapping);
/* Finish for primitive node, return */
return;
}
/* Generate the name of the Verilog module for this pb_type */
std::string pb_module_name_prefix(grid_verilog_file_name_prefix);
/* Add side string to the name if it is valid */
if (NUM_SIDES != io_side) {
Side side_manager(io_side);
pb_module_name_prefix += std::string(side_manager.to_string());
pb_module_name_prefix += std::string("_");
}
std::string pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, physical_pb_type);
/* Register the Verilog module in module manager */
ModuleId pb_module = module_manager.add_module(pb_module_name);
VTR_ASSERT(ModuleId::INVALID() != pb_module);
/* TODO: Add ports to the Verilog module */
/* TODO: Count I/O (INOUT) ports from the sub-modules under this Verilog module */
/* TODO: Count shared SRAM ports from the sub-modules under this Verilog module */
/* TODO: Count SRAM ports from the sub-modules under this Verilog module */
/* TODO: Count formal verification ports from the sub-modules under this Verilog module */
/* Print Verilog module declaration */
print_verilog_module_declaration(fp, module_manager, pb_module);
/* Comment lines */
print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
/* TODO: Print local wires (bus wires for memory configuration) */
/*
dump_verilog_sram_config_bus_internal_wires(fp, cur_sram_orgz_info,
stamped_sram_cnt,
stamped_sram_cnt + num_conf_bits - 1);
*/
/* TODO: Instanciate all the child Verilog modules */
for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ipb++) {
/* Each child may exist multiple times in the hierarchy*/
for (int jpb = 0; jpb < physical_pb_type->modes[physical_mode_index].pb_type_children[ipb].num_pb; jpb++) {
/* we should make sure this placement index == child_pb_type[jpb] */
VTR_ASSERT(jpb == physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][jpb].placement_index);
}
}
/* TODO: Print programmable/non-programmable interconnections inside the Verilog module */
/*
dump_verilog_pb_graph_interc(cur_sram_orgz_info, fp, subckt_name,
cur_pb_graph_node, mode_index,
is_explicit_mapping);
*/
/* Print an end to the Verilog module */
print_verilog_module_end(fp, module_manager.module_name(pb_module));
print_verilog_comment(fp, std::string("----- END Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----"));
/* Add an empty line as a splitter */
fp << std::endl;
}
/*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist
* for a type of physical block
*
* For IO blocks:
* The param 'border_side' is required, which is specify which side of fabric
* the I/O block locates at.
*****************************************************************************/
static
void print_verilog_grid(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
const std::string& verilog_dir,
const std::string& subckt_dir,
t_type_ptr phy_block_type,
const e_side& border_side,
const bool& use_explicit_mapping) {
/* Check code: if this is an IO block, the border side MUST be valid */
if (IO_TYPE == phy_block_type) {
VTR_ASSERT(NUM_SIDES != border_side);
}
/* Give a name to the Verilog netlist */
/* Create the file name for Verilog */
std::string verilog_fname(subckt_dir
+ generate_grid_block_netlist_name(std::string(phy_block_type->name),
IO_TYPE == phy_block_type,
border_side,
std::string(verilog_netlist_file_postfix))
);
/* TODO: remove the bak file when the file is ready */
verilog_fname += ".bak";
/* Echo status */
if (IO_TYPE == phy_block_type) {
Side side_manager(border_side);
vpr_printf(TIO_MESSAGE_INFO,
"Writing FPGA Verilog Netlist (%s) for logic block %s at %s side ...\n",
verilog_fname.c_str(), phy_block_type->name,
side_manager.c_str());
} else {
vpr_printf(TIO_MESSAGE_INFO,
"Writing FPGA Verilog Netlist (%s) for logic block %s...\n",
verilog_fname.c_str(), phy_block_type->name);
}
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
print_verilog_file_header(fp, std::string("Verilog modules for physical block: " + std::string(phy_block_type->name) + "]"));
/* Print preprocessing flags */
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* TODO: Print Verilog modules for all the pb_types/pb_graph_nodes */
/* TODO: use a Depth-First Search Algorithm to print the sub-modules
* Note: DFS is the right way. Do NOT use BFS.
* DFS can guarantee that all the sub-modules can be registered properly
* to its parent in module manager
*/
print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
/* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib,
cur_sram_orgz_info,
phy_block_type->pb_graph_head,
border_side,
use_explicit_mapping);
print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----"));
/* TODO: Create a Verilog Module for the top-level physical block, and add to module manager */
std::string module_name = generate_grid_block_module_name(std::string(grid_verilog_file_name_prefix), phy_block_type->name, IO_TYPE == phy_block_type, border_side);
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* TODO: Add ports to the module */
/* TODO: Print the module definition for the top-level Verilog module of physical block */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Finish printing ports */
/* Print an empty line a splitter */
fp << std::endl;
/* TODO: instanciate all the sub modules */
for (int iz = 0; iz < phy_block_type->capacity; ++iz) {
}
/* Put an end to the top-level Verilog module of physical block */
print_verilog_module_end(fp, module_manager.module_name(module_id));
/* Add an empty line as a splitter */
fp << std::endl;
/* Close file handler */
fp.close();
/* Add fname to the linked list */
/* TODO: add it when it is ready
grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str());
*/
}
/*****************************************************************************
* Create logic block modules in a compact way:
* 1. Only one module for each I/O on each border side (IO_TYPE)
* 2. Only one module for each CLB (FILL_TYPE)
* 3. Only one module for each heterogeneous block
****************************************************************************/
void print_verilog_grids(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
const std::string& verilog_dir,
const std::string& subckt_dir,
const bool& is_explicit_mapping) {
/* Enumerate the types, dump one Verilog module for each */
for (int itype = 0; itype < num_types; itype++) {
if (EMPTY_TYPE == &type_descriptors[itype]) {
/* Bypass empty type or NULL */
continue;
} else if (IO_TYPE == &type_descriptors[itype]) {
/* Special for I/O block, generate one module for each border side */
for (int iside = 0; iside < NUM_SIDES; iside++) {
Side side_manager(iside);
print_verilog_grid(module_manager, mux_lib, circuit_lib,
cur_sram_orgz_info,
verilog_dir, subckt_dir,
&type_descriptors[itype],
side_manager.get_side(),
is_explicit_mapping);
}
continue;
} else if (FILL_TYPE == &type_descriptors[itype]) {
/* For CLB */
print_verilog_grid(module_manager, mux_lib, circuit_lib,
cur_sram_orgz_info,
verilog_dir, subckt_dir,
&type_descriptors[itype],
NUM_SIDES,
is_explicit_mapping);
continue;
} else {
/* For heterogenenous blocks */
print_verilog_grid(module_manager, mux_lib, circuit_lib,
cur_sram_orgz_info,
verilog_dir, subckt_dir,
&type_descriptors[itype],
NUM_SIDES,
is_explicit_mapping);
}
}
/* Output a header file for all the logic blocks */
vpr_printf(TIO_MESSAGE_INFO, "Generating header file for grid Verilog modules...\n");
std::string grid_verilog_fname(logic_block_verilog_file_name);
/* TODO: remove .bak when it is ready */
grid_verilog_fname += ".bak";
dump_verilog_subckt_header_file(grid_verilog_subckt_file_path_head,
subckt_dir.c_str(),
grid_verilog_fname.c_str());
}