OpenFPGA/fpga_flow/scripts/fpga_flow.pl

3599 lines
132 KiB
Perl

#!usr/bin/perl -w
# use the strict mode
use strict;
# Use the Shell enviornment
#use Shell;
# Use the time
use Time::gmtime;
# Use switch module
#use Switch;
use File::Path;
use Cwd;
use FileHandle;
# Multi-thread support
use threads;
#use threads::shared;
# Date
my $mydate = gmctime();
# Current Path
my $cwd = getcwd();
# Global Variants
my ($max_route_width_retry) = (1000);
# input Option Hash
my %opt_h;
my $opt_ptr = \%opt_h;
# configurate file hash
my %conf_h;
my $conf_ptr = \%conf_h;
# reports has
my %rpt_h;
my $rpt_ptr = \%rpt_h;
# Benchmarks
my @benchmark_names;
my %benchmarks;
my $benchmarks_ptr = \%benchmarks;
my $verilog_benchmark;
# Supported flows
my @supported_flows = ("standard",
"vtr_mccl",
"mccl",
"mig_mccl",
"mpack2",
"mpack1",
"vtr",
"vtr_standard",
"yosys_vpr");
my %selected_flows;
# Configuration file keywords list
# Category for conf file.
# main category : 1st class
my @mctgy;
# sub category : 2nd class
my @sctgy;
# Initialize these categories
@mctgy = ("dir_path",
"flow_conf",
"csv_tags",
);
# refer to the keywords of dir_path
@{$sctgy[0]} = ("script_base",
"benchmark_dir",
"yosys_path",
"odin2_path",
"cirkit_path",
"abc_mccl_path",
"abc_path",
"abc_with_bb_support_path",
"mpack1_path",
"m2net_path",
"mpack2_path",
"vpr_path",
"rpt_dir",
"ace_path",
);
# refer to the keywords of flow_type
@{$sctgy[1]} = ("flow_type",
"vpr_arch",
"mpack2_arch",
"m2net_conf",
"mpack1_abc_stdlib",
"power_tech_xml",
);
# refer to the keywords of csv_tags
@{$sctgy[2]} = ("mpack1_tags",
"mpack2_tags",
"vpr_tags",
"vpr_power_tags"
);
# ----------Subrountines------------#
# Print TABs and strings
sub tab_print($ $ $)
{
my ($FILE,$str,$num_tab) = @_;
my ($my_tab) = (" ");
for (my $i = 0; $i < $num_tab; $i++) {
print $FILE "$my_tab";
}
print $FILE "$str";
}
# Create paths if it does not exist.
sub generate_path($)
{
my ($mypath) = @_;
if (!(-e "$mypath"))
{
mkpath "$mypath";
print "Path($mypath) does not exist...Create it.\n";
}
return 0;
}
# Print the usage
sub print_usage()
{
print "Usage:\n";
print " fpga_flow [-options <value>]\n";
print " Mandatory options: \n";
print " -conf <file> : specify the basic configuration files for fpga_flow\n";
print " -benchmark <file> : the configuration file contains benchmark file names\n";
print " -rpt <file> : CSV file consists of data\n";
print " -N <int> : N-LUT/Matrix\n";
print " Other Options:\n";
print " [ General ] \n";
print " \t-matlab_rpt <data_name> : .m file consists of data compatible to matlab scripts. Specify the data name to be appeared in the script\n";
print " \t-I <int> : Number of inputs of a CLB, mandatory when mpack1 flow is chosen\n";
print " \t-K <int> : K-LUT, mandatory when standard flow is chosen\n";
print " \t-M <int> : M-Matrix, mandatory when mpack1 flow is chosen\n";
print " \t-power : run power estimation oriented flow\n";
print " \t-black_box_ace: run activity estimation with black box support. It increase the power.\n";
print " \t-remove_designs: remove all the old results.\n";
print " \t-multi_thread <int>: turn on the mutli-thread mode, specify the number of threads\n";
print " \t-multi_task <int>: turn on the mutli-task mode\n";
print " \t-parse_results_only : only parse the flow results and write CSV report.\n";
print " \t-debug : debug mode\n";
print " \t-help : print usage\n";
print " [ ODIN II ] \n";
print " \t-min_hard_adder_size: min. size of hard adder in carry chain defined in Arch XML.(Default:1)\n";
print " \t-mem_size: size of memory, mandatory when VTR/VTR_MCCL/VTR_MIG_MCCL flow is chosen\n";
print " \t-odin2_carry_chain_support: turn on the carry_chain support only valid for VTR_MCCL/VTR_MIG_MCCL flow \n";
print " [ ABC ] \n";
print " \t-abc_scl : run ABC optimization for sequential circuits, mandatory when VTR flow is selected.\n";
print " \t-abc_verilog_rewrite : run ABC to convert a blif netlist to a Verilog netlist.\n";
print " [ ACE ] \n";
print " \t-ace_p <float> : specify the default signal probablity of PIs in ACE2.\n";
print " \t-ace_d <float> : specify the default signal density of PIs in ACE2.\n";
print " [ VPR - Original Version ] \n";
print " \t-vpr_timing_pack_off : turn off the timing-driven pack for vpr.\n";
print " \t-vpr_place_clb_pin_remap: turn on place_clb_pin_remap in VPR.\n";
print " \t-vpr_max_router_iteration <int> : specify the max router iteration in VPR.\n";
print " \t-vpr_route_breadthfirst : use the breadth-first routing algorithm of VPR.\n";
print " \t-vpr_use_tileable_route_chan_width: turn on the conversion to tileable_route_chan_width in VPR.\n";
print " \t-min_route_chan_width <float> : turn on routing with <float>* min_route_chan_width.\n";
print " \t-fix_route_chan_width : turn on routing with a fixed route_chan_width, defined in benchmark configuration file.\n";
print " [ VPR - FPGA-X2P Extension ] \n";
print " \t-vpr_fpga_x2p_rename_illegal_port : turn on renaming illegal ports option of VPR FPGA SPICE\n";
print " \t-vpr_fpga_x2p_signal_density_weight <float>: specify the option signal_density_weight of VPR FPGA SPICE\n";
print " \t-vpr_fpga_x2p_sim_window_size <float>: specify the option sim_window_size of VPR FPGA SPICE\n";
print " \t-vpr_fpga_x2p_compact_routing_hierarchy : allow routing block modularization\n";
print " [ VPR - FPGA-SPICE Extension ] \n";
print " \t-vpr_fpga_spice <task_file> : turn on SPICE netlists print-out in VPR, specify a task file\n";
print " \t-vpr_fpga_spice_sim_mt_num <int>: specify the option sim_mt_num of VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_print_component_tb : print component-level testbenches in VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_print_grid_tb : print Grid-level testbenches in VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_print_top_tb : print full-chip testbench in VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_leakage_only : turn on leakage_only mode in VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_parasitic_net_estimation_off : turn off parasitic_net_estimation in VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_testbench_load_extraction_off : turn off testbench_load_extraction in VPR FPGA SPICE\n";
print " \t-vpr_fpga_spice_simulator_path <string> : Specify simulator path\n";
print " [ VPR - FPGA-Verilog Extension ] \n";
print " \t-vpr_fpga_verilog : turn on Verilog Generator of VPR FPGA SPICE\n";
print " \t-vpr_fpga_verilog_dir <verilog_path>: provide the path where generated verilog files will be written\n";
print " \t-vpr_fpga_verilog_include_timing : turn on printing delay specification in Verilog files\n";
print " \t-vpr_fpga_verilog_include_signal_init : turn on printing signal initialization in Verilog files\n";
print " \t-vpr_fpga_verilog_print_autocheck_top_testbench: turn on printing autochecked top-level testbench for Verilog Generator of VPR FPGA SPICE\n";
print " \t-vpr_fpga_verilog_formal_verification_top_netlist : turn on printing formal top Verilog files\n";
print " \t-vpr_fpga_verilog_include_icarus_simulator : Add syntax and definition required to use Icarus Verilog simulator\n";
print " \t-vpr_fpga_verilog_print_user_defined_template : \n";
print " \t-vpr_fpga_verilog_print_report_timing_tcl : Generate tcl script useful for timing report generation\n";
print " \t-vpr_fpga_verilog_report_timing_rpt_path <path_to_generate_reports> : Specify path for report timing\n";
print " \t-vpr_fpga_verilog_print_sdc_pnr : Generate sdc file to constraint Hardware P&R\n";
print " \t-vpr_fpga_verilog_print_sdc_analysis : Generate sdc file to do STA\n";
print " \t-vpr_fpga_verilog_print_top_tb : turn on printing top-level testbench for Verilog Generator of VPR FPGA SPICE\n";
print " \t-vpr_fpga_verilog_print_input_blif_tb : turn on printing testbench for input blif file in Verilog Generator of VPR FPGA SPICE\n";
print " \t-vpr_fpga_verilog_print_modelsim_autodeck <modelsim.ini_path>: turn on printing modelsim simulation script\n";
print " [ VPR - FPGA-Bitstream Extension ] \n";
print " \t-vpr_fpga_bitstream_generator: turn on FPGA-SPICE bitstream generator\n";
exit(1);
return 1;
}
sub spot_option($ $)
{
my ($start,$target) = @_;
my ($arg_no,$flag) = (-1,"unfound");
for (my $iarg = $start; $iarg < $#ARGV+1; $iarg++)
{
if ($ARGV[$iarg] eq $target)
{
if ("found" eq $flag)
{
print "Error: Repeated Arguments!(IndexA: $arg_no,IndexB: $iarg)\n";
&print_usage();
}
else
{
$flag = "found";
$arg_no = $iarg;
}
}
}
# return the arg_no if target is found
# or return -1 when target is missing
return $arg_no;
}
# Specify in the input list,
# 1. Option Name
# 2. Whether Option with value. if yes, choose "on"
# 3. Whether Option is mandatory. If yes, choose "on"
sub read_opt_into_hash($ $ $)
{
my ($opt_name,$opt_with_val,$mandatory) = @_;
# Check the -$opt_name
my ($opt_fact) = ("-".$opt_name);
my ($cur_arg) = (0);
my ($argfd) = (&spot_option($cur_arg,"$opt_fact"));
if ($opt_with_val eq "on")
{
if (-1 != $argfd)
{
if ($ARGV[$argfd+1] =~ m/^-/)
{
print "The next argument cannot start with '-'!\n";
print "it implies an option!\n";
}
else
{
$opt_ptr->{"$opt_name\_val"} = $ARGV[$argfd+1];
$opt_ptr->{"$opt_name"} = "on";
}
}
else
{
$opt_ptr->{"$opt_name"} = "off";
if ($mandatory eq "on")
{
print "Mandatory option: $opt_fact is missing!\n";
&print_usage();
}
}
}
else
{
if (-1 != $argfd)
{
$opt_ptr->{"$opt_name"} = "on";
}
else
{
$opt_ptr->{"$opt_name"} = "off";
if ($mandatory eq "on")
{
print "Mandatory option: $opt_fact is missing!\n";
&print_usage();
}
}
}
return 0;
}
# Read options
sub opts_read()
{
# if no arguments detected, print the usage.
if (-1 == $#ARGV) {
print "Error : No input arguments!\n";
print "Help desk:\n";
&print_usage();
exit(1);
}
# Read in the options
my ($cur_arg,$arg_found);
$cur_arg = 0;
print "Analyzing your options...\n";
# Read the options with internal options
my $argfd;
# Check help fist
$argfd = &spot_option($cur_arg,"-help");
if (-1 != $argfd) {
print "Help desk:\n";
&print_usage();
}
# Then Check the debug with highest priority
$argfd = &spot_option($cur_arg,"-debug");
if (-1 != $argfd) {
$opt_ptr->{"debug"} = "on";
} else {
$opt_ptr->{"debug"} = "off";
}
# Check mandatory options
# Check the -conf
# Read Opt into Hash(opt_ptr) : "opt_name","with_val","mandatory"
&read_opt_into_hash("conf","on","on");
&read_opt_into_hash("benchmark","on","on");
&read_opt_into_hash("rpt","on","on");
&read_opt_into_hash("matlab_rpt","on","off"); # Add an option to output report file compatible to matlab scripts
&read_opt_into_hash("N","on","on");
&read_opt_into_hash("K","on","off");
&read_opt_into_hash("I","on","off");
&read_opt_into_hash("M","on","off");
&read_opt_into_hash("power","off","off");
&read_opt_into_hash("vpr_place_clb_pin_remap","off","off");
&read_opt_into_hash("black_box_ace","off","off");
&read_opt_into_hash("remove_designs","off","off");
&read_opt_into_hash("abc_scl","off","off");
&read_opt_into_hash("abc_verilog_rewrite","off","off");
&read_opt_into_hash("ace_p","on","off");
&read_opt_into_hash("ace_d","on","off");
&read_opt_into_hash("vpr_timing_pack_off","off","off");
&read_opt_into_hash("vpr_route_breadthfirst","off","off");
&read_opt_into_hash("vpr_use_tileable_route_chan_width","off","off");
&read_opt_into_hash("min_route_chan_width","on","off");
&read_opt_into_hash("fix_route_chan_width","off","off");
&read_opt_into_hash("vpr_max_router_iteration","on","off");
&read_opt_into_hash("multi_task","on","off");
&read_opt_into_hash("multi_thread","on","off");
&read_opt_into_hash("parse_results_only","off","off");
# VTR/VTR_MCCL/VTR_MIG_MCCL flow options
# Read Opt into Hash(opt_ptr) : "opt_name","with_val","mandatory"
&read_opt_into_hash("min_hard_adder_size","on","off");
&read_opt_into_hash("mem_size","on","off");
&read_opt_into_hash("odin2_carry_chain_support","off","off");
# FPGA-SPICE options
# Read Opt into Hash(opt_ptr) : "opt_name","with_val","mandatory"
&read_opt_into_hash("vpr_fpga_spice","on","off");
&read_opt_into_hash("vpr_fpga_x2p_rename_illegal_port","off","off");
&read_opt_into_hash("vpr_fpga_x2p_signal_density_weight","on","off");
&read_opt_into_hash("vpr_fpga_x2p_sim_window_size","on","off");
&read_opt_into_hash("vpr_fpga_x2p_compact_routing_hierarchy","off","off");
&read_opt_into_hash("vpr_fpga_spice_sim_mt_num","on","off");
&read_opt_into_hash("vpr_fpga_spice_print_component_tb","off","off");
&read_opt_into_hash("vpr_fpga_spice_print_grid_tb","off","off");
&read_opt_into_hash("vpr_fpga_spice_print_top_tb","off","off");
&read_opt_into_hash("vpr_fpga_spice_leakage_only","off","off");
&read_opt_into_hash("vpr_fpga_spice_parasitic_net_estimation_off","off","off");
&read_opt_into_hash("vpr_fpga_spice_testbench_load_extraction_off","off","off");
&read_opt_into_hash("vpr_fpga_spice_simulator_path","on","off");
# FPGA-Verilog options
# Read Opt into Hash(opt_ptr) : "opt_name","with_val","mandatory"
&read_opt_into_hash("vpr_fpga_verilog","off","off");
&read_opt_into_hash("vpr_fpga_verilog_print_top_tb","off","off");
&read_opt_into_hash("vpr_fpga_verilog_print_input_blif_tb","off","off");
&read_opt_into_hash("vpr_fpga_bitstream_generator","off","off");
&read_opt_into_hash("vpr_fpga_verilog_print_autocheck_top_testbench","off","off");
&read_opt_into_hash("vpr_fpga_verilog_dir","on","off");
&read_opt_into_hash("vpr_fpga_verilog_print_modelsim_autodeck","on","off");
&read_opt_into_hash("vpr_fpga_verilog_include_timing","off","off");
&read_opt_into_hash("vpr_fpga_verilog_include_signal_init","off","off");
&read_opt_into_hash("vpr_fpga_verilog_formal_verification_top_netlist","off","off");
&read_opt_into_hash("vpr_fpga_verilog_include_icarus_simulator","off","off");
&read_opt_into_hash("vpr_fpga_verilog_print_report_timing_tcl","off","off");
&read_opt_into_hash("vpr_fpga_verilog_report_timing_rpt_path","on","off");
&read_opt_into_hash("vpr_fpga_verilog_print_sdc_pnr","off","off");
&read_opt_into_hash("vpr_fpga_verilog_print_sdc_analysis","off","off");
&read_opt_into_hash("vpr_fpga_verilog_print_user_defined_template","off","off");
# Regression test option
&read_opt_into_hash("end_flow_with_test","off","off");
&print_opts();
return 0;
}
# List the options
sub print_opts()
{
print "List your options\n";
while(my ($key,$value) = each(%opt_h))
{print "$key : $value\n";}
return 0;
}
# Read each line and ignore the comments which starts with given arg
# return the valid information of line
sub read_line($ $)
{
my ($line,$com) = @_;
my @chars;
if (defined($line))
{
@chars = split/$com/,$line;
if (!($line =~ m/[\w\d]/))
{$chars[0] = undef;}
if ($line =~ m/^\s*$com/)
{$chars[0] = undef;}
}
else
{$chars[0] = undef;}
if (defined($chars[0]))
{
$chars[0] =~ s/^(\s+)//g;
$chars[0] =~ s/(\s+)$//g;
}
return $chars[0];
}
# Check each keywords has been defined in configuration file
sub check_keywords_conf()
{
for (my $imcg = 0; $imcg<$#mctgy+1; $imcg++)
{
for (my $iscg = 0; $iscg<$#{$sctgy[$imcg]}+1; $iscg++)
{
if (defined($conf_ptr->{$mctgy[$imcg]}->{$sctgy[$imcg]->[$iscg]}->{val}))
{
if ("on" eq $opt_ptr->{debug})
{
print "Keyword($mctgy[$imcg],$sctgy[$imcg]->[$iscg]) = ";
print "$conf_ptr->{$mctgy[$imcg]}->{$sctgy[$imcg]->[$iscg]}->{val}";
print "\n";
}
}
else
{die "Error: Keyword($mctgy[$imcg],$sctgy[$imcg]->[$iscg]) is missing!\n";}
}
}
return 0;
}
# Read the configuration file
sub read_conf()
{
# Read in these key words
my ($line,$post_line);
my @equation;
my $cur = "unknown";
open (CONF, "< $opt_ptr->{conf_val}") or die "Fail to open $opt_ptr->{conf_val}!\n";
print "Reading $opt_ptr->{conf_val}...\n";
while(defined($line = <CONF>))
{
chomp $line;
$post_line = &read_line($line,"#");
if (defined($post_line))
{
if ($post_line =~ m/\[(\w+)\]/)
{$cur = $1;}
elsif ("unknown" eq $cur)
{
die "Error: Unknown tags for this line!\n$post_line\n";
}
else
{
$post_line =~ s/\s//g;
@equation = split /=/,$post_line;
$conf_ptr->{$cur}->{$equation[0]}->{val} = $equation[1];
}
}
}
# Check these key words
print "Read complete!\n";
&check_keywords_conf();
print "Checking these keywords...";
print "Successfully\n";
close(CONF);
return 0;
}
sub read_benchmarks()
{
# Read in file names
my ($line,$post_line,$cur);
$cur = 0;
open (FCONF,"< $opt_ptr->{benchmark_val}") or die "Fail to open $opt_ptr->{benchmark_val}!\n";
print "Reading $opt_ptr->{benchmark_val}...\n";
while(defined($line = <FCONF>))
{
chomp $line;
$post_line = &read_line($line,"#");
if (defined($post_line)) {
$post_line =~ s/\s+//g;
my @tokens = split(",",$post_line);
# first is the benchmark name,
#the second is the channel width, if applicable
if ($tokens[0]) {
$benchmark_names[$cur] = $tokens[0];
} else {
die "ERROR: invalid definition for benchmarks!\n";
}
$benchmarks_ptr->{"$benchmark_names[$cur]"}->{fix_route_chan_width} = $tokens[1];
$cur++;
}
}
print "Benchmarks(total $cur):\n";
foreach my $temp(@benchmark_names)
{print "$temp\n";}
close(FCONF);
return 0;
}
# Input program path is like "~/program_dir/program_name"
# We split it from the scalar
sub split_prog_path($)
{
my ($prog_path) = @_;
my @path_elements = split /\//,$prog_path;
my ($prog_dir,$prog_name);
$prog_name = $path_elements[$#path_elements];
$prog_dir = $prog_path;
$prog_dir =~ s/$prog_name$//g;
return ($prog_dir,$prog_name);
}
sub check_blif_type($)
{
my ($blif) = @_;
my ($line);
open (BLIF, "< $blif") or die "Fail to open $blif!\n";
while(defined($line = <BLIF>)) {
chomp $line;
if ($line =~ /^\.latch/) {
close(BLIF);
return "seq";
}
}
close(BLIF);
return "comb";
}
# Check Options
sub check_opts() {
# Task 1: min_chan_width <float> > 1
if (("on" eq $opt_ptr->{min_route_chan_width})
&&(1. > $opt_ptr->{min_route_chan_width_val})) {
die "ERROR: Invalid -min_chan_width, should be at least 1.0!\n";
}
# Task 2: check mandatory option when flow mpack1 is chosen
if ("on" eq $selected_flows{"mpack1"}->{flow_status}) {
if ("off" eq $opt_ptr->{M}) {
die "ERROR: Option -M should be specified when flow mpack1 is selected!\n";
}
if ("off" eq $opt_ptr->{I}) {
die "ERROR: Option -I should be specified when flow mpack1 is selected!\n";
}
}
# Task 3: check mandatory options when flow vtr is chosen
if ("on" eq $selected_flows{"vtr"}->{flow_status}) {
if ("off" eq $opt_ptr->{mem_size}) {
die "ERROR: Option -mem_size should be specified when flow vtr is selected\n";
}
if ("off" eq $opt_ptr->{K}) {
die "ERROR: Option -K should be specified when flow vtr is selected\n";
}
if ("off" eq $opt_ptr->{abc_scl}) {
die "ERROR: Option -abc_scl should be specified when flow vtr is selected\n";
}
}
# Task 3: check mandatory options when flow vtr_standard or standard is chosen
if (("on" eq $selected_flows{"standard"}->{flow_status})
||("on" eq $selected_flows{"vtr_standard"}->{flow_status})) {
if ("off" eq $opt_ptr->{K}) {
die "ERROR: Option -K should be specified when flow vtr_standard|standard is selected\n";
}
}
}
# Run ABC with standard library mapping
sub run_abc_libmap($ $ $)
{
my ($bm,$blif_out,$log) = @_;
# Get ABC path
my ($abc_dir,$abc_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_path}->{val});
chdir $abc_dir;
my ($mpack1_stdlib) = ($conf_ptr->{flow_conf}->{mpack1_abc_stdlib}->{val});
# Run MPACK ABC
my ($abc_seq_optimize) = ("");
if (("on" eq $opt_ptr->{abc_scl})&&("seq" eq &check_blif_type($bm))) {
($abc_seq_optimize) = ("scl -l;");
}
# !!! For standard library, we cannot use sweep ???
system("./$abc_name -c \"read_blif $bm; resyn2; read_library $mpack1_stdlib; $abc_seq_optimize map -v; write_blif $blif_out; quit;\" > $log");
chdir $cwd;
}
# Rewrite the verilog after optimization
sub run_rewrite_verilog($ $ $ $ $) {
my ($blif, $path, $benchmark, $bm, $log) = @_;
my ($new_verilog) = "$path/$benchmark".".v";
my ($cmd_log) = ($log);
$cmd_log =~ s/\.log$/_rewrite_verilog\.ys/;
# Get Yosys path
my ($yosys_dir,$yosys_name) = &split_prog_path($conf_ptr->{dir_path}->{yosys_path}->{val});
print "Entering $yosys_dir\n";
chdir $yosys_dir;
my ($lut_num) = $opt_ptr->{K_val};
# Create yosys synthesize script
my ($YOSYS_CMD_FH) = (FileHandle->new);
if ($YOSYS_CMD_FH->open("> $cmd_log")) {
print "INFO: auto generating cmds for Yosys ($cmd_log) ...\n";
} else {
die "ERROR: fail to auto generating cmds for Yosys ($cmd_log) ...\n";
}
# Output the standard format (refer to VTR_flow script)
print $YOSYS_CMD_FH "# Yosys rewriting verilog script for $bm\n";
print $YOSYS_CMD_FH "read_blif $blif\n";
print $YOSYS_CMD_FH "write_verilog $new_verilog\n";
close($YOSYS_CMD_FH);
#
# Create a local copy for the commands
system("./$yosys_name $cmd_log > $log");
if (!(-e $new_verilog)) {
die "ERROR: Yosys fail at rewriting benchmark $bm.\n";
}
print "Leaving $yosys_dir\n";
chdir $cwd;
return ($new_verilog);
}
# Run yosys synthesis with ABC LUT mapping
sub run_yosys_fpgamap($ $ $ $) {
my ($bm, $bm_path, $blif_out, $log) = @_;
my ($cmd_log) = ($log);
$cmd_log =~ s/log$/ys/;
# Get Yosys path
my ($yosys_dir,$yosys_name) = &split_prog_path($conf_ptr->{dir_path}->{yosys_path}->{val});
print "Entering $yosys_dir\n";
chdir $yosys_dir;
my ($lut_num) = $opt_ptr->{K_val};
# Create yosys synthesize script
my ($YOSYS_CMD_FH) = (FileHandle->new);
if ($YOSYS_CMD_FH->open("> $cmd_log")) {
print "INFO: auto generating cmds for Yosys ($cmd_log) ...\n";
} else {
die "ERROR: fail to auto generating cmds for Yosys ($cmd_log) ...\n";
}
# Output the standard format (refer to VTR_flow script)
print $YOSYS_CMD_FH "# Yosys synthesis script for $bm\n";
print $YOSYS_CMD_FH "# read Verilog \n";
print $YOSYS_CMD_FH "read_verilog -nolatches $bm_path\n";
print $YOSYS_CMD_FH "\n";
print $YOSYS_CMD_FH "# Technology mapping\n";
print $YOSYS_CMD_FH "hierarchy -top $bm\n";
print $YOSYS_CMD_FH "proc\n";
print $YOSYS_CMD_FH "techmap -D NO_LUT -map +/adff2dff.v\n";
print $YOSYS_CMD_FH "\n";
print $YOSYS_CMD_FH "# Synthesis\n";
print $YOSYS_CMD_FH "synth -top $bm -flatten\n";
print $YOSYS_CMD_FH "clean\n";
print $YOSYS_CMD_FH "\n";
print $YOSYS_CMD_FH "# LUT mapping \n";
print $YOSYS_CMD_FH "abc -lut $lut_num\n";
print $YOSYS_CMD_FH "\n";
print $YOSYS_CMD_FH "# Check \n";
print $YOSYS_CMD_FH "synth -run check\n";
print $YOSYS_CMD_FH "\n";
print $YOSYS_CMD_FH "# Clean and output blif \n";
print $YOSYS_CMD_FH "opt_clean -purge\n";
print $YOSYS_CMD_FH "write_blif $blif_out\n";
close($YOSYS_CMD_FH);
#
# Create a local copy for the commands
system("./$yosys_name $cmd_log > $log");
if (!(-e $blif_out)) {
die "ERROR: Fail Yosys for benchmark $bm.\n";
}
print "Leaving $yosys_dir\n";
chdir $cwd;
}
# Run ABC by FPGA-oriented synthesis
sub run_abc_fpgamap($ $ $)
{
my ($bm,$blif_out,$log) = @_;
my ($cmd_log) = ($log."cmd");
# Get ABC path
my ($abc_dir,$abc_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_path}->{val});
my ($lut_num) = $opt_ptr->{K_val};
# Before we run this blif, identify it is a combinational or sequential
my ($abc_seq_optimize) = ("");
if (("on" eq $opt_ptr->{abc_scl})&&("seq" eq &check_blif_type($bm))) {
($abc_seq_optimize) = ("scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;");
}
my ($fpga_synthesis_method) = ("if");
#my ($fpga_synthesis_method) = ("fpga");
#
my ($dump_verilog) = ("");
if ("on" eq $opt_ptr->{abc_verilog_rewrite}) {
$dump_verilog = "write_verilog $bm.v";
}
# Run FPGA ABC
#`csh -cx './$abc_name -c \"read $bm; resyn2; $fpga_synthesis_method -K $lut_num; $abc_seq_optimize $abc_seq_optimize sweep; write_blif $blif_out; quit\" > $log'`;
my ($ABC_CMD_FH) = (FileHandle->new);
if ($ABC_CMD_FH->open("> $cmd_log")) {
print "INFO: auto generating cmds for ABC ($cmd_log) ...\n";
} else {
die "ERROR: fail to auto generating cmds for ABC ($cmd_log) ...\n";
}
# Output the standard format (refer to VTR_flow script)
print $ABC_CMD_FH "read $bm; resyn; resyn2; scleanup; $fpga_synthesis_method -K $lut_num; sweep; $abc_seq_optimize write_blif $blif_out; $dump_verilog; quit\n";
close($ABC_CMD_FH);
#
# Create a local copy for the commands
#
print "Entering $abc_dir\n";
chdir $abc_dir;
system("./$abc_name -F $cmd_log > $log");
if (!(-e $blif_out)) {
die "ERROR: Fail ABC for benchmark $bm.\n";
}
if (("on" eq $opt_ptr->{abc_verilog_rewrite})&&(!(-e "$bm.v"))) {
die "ERROR: ABC verilog rewrite failed for benchmark $bm!\n";
}
print "Leaving $abc_dir\n";
chdir $cwd;
}
# Run ABC by FPGA-oriented synthesis
sub run_abc_bb_fpgamap($ $ $) {
my ($bm,$blif_out,$log) = @_;
# Get ABC path
my ($abc_dir,$abc_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_with_bb_support_path}->{val});
my ($lut_num) = $opt_ptr->{K_val};
# Before we run this blif, identify it is a combinational or sequential
my ($abc_seq_optimize) = ("");
if (("on" eq $opt_ptr->{abc_scl})&&("seq" eq &check_blif_type($bm))) {
($abc_seq_optimize) = ("scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;");
}
my ($fpga_synthesis_method) = ("if");
#my ($fpga_synthesis_method) = ("fpga");
#
my ($dump_verilog) = ("");
if ("on" eq $opt_ptr->{abc_verilog_rewrite}) {
$dump_verilog = "write_verilog $bm.v";
}
chdir $abc_dir;
# Run FPGA ABC
system("./$abc_name -c \"read $bm; resyn; resyn2; $fpga_synthesis_method -K $lut_num; $abc_seq_optimize sweep; write_hie $bm $blif_out; $dump_verilog; quit;\" > $log");
if (!(-e $blif_out)) {
die "ERROR: Fail ABC_with_bb_support for benchmark $bm.\n";
}
if (("on" eq $opt_ptr->{abc_verilog_rewrite})&&(!(-e "$bm.v"))) {
die "ERROR: ABC verilog rewrite failed for benchmark $bm!\n";
}
chdir $cwd;
}
# Run ABC Carry-chain premapping by FPGA-oriented synthesis
sub run_abc_mccl_fpgamap($ $ $)
{
my ($bm,$blif_out,$log) = @_;
# Get ABC path
my ($abc_mccl_dir,$abc_mccl_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_mccl_path}->{val});
my ($abc_bb_dir,$abc_bb_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_with_bb_support_path}->{val});
my ($lut_num) = $opt_ptr->{K_val};
# Before we run this blif, identify it is a combinational or sequential
my ($abc_seq_optimize) = ("");
if (("on" eq $opt_ptr->{abc_scl})&&("seq" eq &check_blif_type($bm))) {
($abc_seq_optimize) = ("scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;");
}
my ($fpga_synthesis_method) = ("if");
#my ($fpga_synthesis_method) = ("fpga");
# Name the intermediate file
my ($fadds_blif, $interm_blif) = ($blif_out, $blif_out);
$fadds_blif =~ s/\.blif$/_fadds.blif/;
$interm_blif =~ s/\.blif$/_interm.blif/;
my ($min_chain_length) = (4);
my ($mccl_opt_A, $mccl_opt_B, $mccl_opt_S) = (3, 3, 2);
chdir $abc_mccl_dir;
print "INFO: entering abc_mccl directory: $abc_mccl_dir \n";
# Run ABC three times:
# 1st time: run abc_with_mccl: read the $bm and do carry-chain detection
system("./$abc_mccl_name -c \"read $bm; strash; &get; &fadds -nv -N $min_chain_length; \&getspec; \&put; wfadds $fadds_blif; quit;\" > $log.ccdetect");
# Repeat chdir for multi-thread supporting!
chdir $abc_mccl_dir;
print "INFO: entering abc_mccl directory: $abc_mccl_dir \n";
# 2nd time: run abc_with_mccl: read the $fadds_blif and do carry-chain LUT premapping
system("./$abc_mccl_name -c \"read $fadds_blif; resyn; resyn2; mccl -A $mccl_opt_A -B $mccl_opt_B -S $mccl_opt_S -K $lut_num -O 1 -r -o $interm_blif; quit;\" > $log.mccl");
chdir $abc_bb_dir;
print "INFO: entering abc_with_bb_support directory: $abc_bb_dir \n";
# 3rd time: run abc_with_bb_support: read the pre-processed blif and do cleanup and recover
system("./$abc_bb_name -c \"read $interm_blif; $abc_seq_optimize sweep; write_hie $interm_blif $blif_out; quit;\" > $log");
if (!(-e $blif_out)) {
die "ERROR: Fail ABC_mccl_FPGA_mapping for benchmark $bm.\n";
}
chdir $cwd;
}
# Run ABC MIG Carry-chain premapping by FPGA-oriented synthesis
sub run_abc_mig_mccl_fpgamap($ $ $)
{
my ($bm,$blif_out,$log) = @_;
# Get ABC path
my ($abc_mig_mccl_dir,$abc_mig_mccl_name) = &split_prog_path($conf_ptr->{dir_path}->{cirkit_path}->{val});
my ($abc_mccl_dir,$abc_mccl_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_mccl_path}->{val});
my ($abc_bb_dir,$abc_bb_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_with_bb_support_path}->{val});
my ($lut_num) = $opt_ptr->{K_val};
# Before we run this blif, identify it is a combinational or sequential
my ($abc_seq_optimize) = ("");
if (("on" eq $opt_ptr->{abc_scl})&&("seq" eq &check_blif_type($bm))) {
($abc_seq_optimize) = ("scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;");
}
my ($fpga_synthesis_method) = ("if");
#my ($fpga_synthesis_method) = ("fpga");
# Name the intermediate file
my ($fadds_blif, $interm_blif) = ($bm, $bm);
$fadds_blif =~ s/\.blif$/_fadds.blif/;
$interm_blif =~ s/\.blif$/_interm.blif/;
my ($min_chain_length) = (4);
my ($mccl_opt_A, $mccl_opt_B, $mccl_opt_S) = (3, 3, 2);
chdir $abc_mccl_dir;
print "INFO: entering abc_mig_mccl directory: $abc_mccl_dir \n";
# Run ABC three times:
# 1st time: run abc_with_mig_mccl: read the $bm and do carry-chain detection
# TODO: unfinished!!!!
system("./$abc_mig_mccl_name -c \"readv $bm; chains -C ; quit;\" > $log.ccdetect");
# Repeat chdir for multi-thread supporting!
chdir $abc_mccl_dir;
print "INFO: entering abc_mccl directory: $abc_mccl_dir \n";
# 2nd time: run abc_with_mccl: read the $fadds_blif and do carry-chain LUT premapping
system("./$abc_mccl_name -c \"read $fadds_blif; resyn; resyn2; mccl -A $mccl_opt_A -B $mccl_opt_B -S $mccl_opt_S -K $lut_num -O 1 -r -o $interm_blif; quit;\" > $log.mccl");
chdir $abc_bb_dir;
print "INFO: entering abc_with_bb_support directory: $abc_bb_dir \n";
# 3rd time: run abc_with_bb_support: read the pre-processed blif and do cleanup and recover
system("./$abc_bb_name -c \"read $interm_blif; $abc_seq_optimize sweep; write_hie $interm_blif $blif_out; quit;\" > $log");
if (!(-e $blif_out)) {
die "ERROR: Fail ABC_mccl_FPGA_mapping for benchmark $bm.\n";
}
chdir $cwd;
}
sub run_mpack1p5($ $ $ $ $)
{
my ($blif_in,$blif_prefix,$matrix_size,$cell_size,$log) = @_;
# Get MPACK path
my ($mpack1_dir,$mpack1_name) = &split_prog_path($conf_ptr->{dir_path}->{mpack1_path}->{val});
chdir $mpack1_dir;
# Run MPACK
system("./$mpack1_name $blif_in $blif_prefix -matrix_depth $matrix_size -matrix_width $matrix_size -cell_size $cell_size > $log");
chdir $cwd;
}
sub run_mpack2($ $ $ $ $ $ $)
{
my ($blif_in,$blif_out,$mpack2_arch,$net,$stats,$vpr_arch,$log) = @_;
# Get MPACK path
my ($mpack2_dir,$mpack2_name) = &split_prog_path($conf_ptr->{dir_path}->{mpack2_path}->{val});
chdir $mpack2_dir;
#my ($ble_arch) = ($conf_ptr->{flow_conf}->{mpack_ble_arch}->{val});
# Run MPACK
system("./$mpack2_name -blif $blif_in -mpack_blif $blif_out -net $net -ble_arch $mpack2_arch -stats $stats -vpr_arch $vpr_arch > $log");
chdir $cwd;
}
# Extract Mpack2 stats
sub extract_mpack2_stats($ $ $)
{
my ($tag,$bm,$mstats) = @_;
my ($line);
my @keywords = split /\|/,$conf_ptr->{csv_tags}->{mpack2_tags}->{val};
open (MSTATS, "< $mstats") or die "ERROR: Fail to open $mstats!\n";
while(defined($line = <MSTATS>)) {
chomp $line;
$line =~ s/\s//g;
foreach my $tmp(@keywords) {
$tmp =~ s/\s//g;
if ($line =~ m/$tmp\s*([0-9E\-\+.]+)/i) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$opt_ptr->{K_val}}->{$tmp} = $1;
}
}
}
close(MSTATS);
}
# Extract Mpack1 stats
sub extract_mpack1_stats($ $ $)
{
my ($tag,$bm,$mstats) = @_;
my ($line);
my @keywords = split /\|/,$conf_ptr->{csv_tags}->{mpack1_tags}->{val};
open (MSTATS, "< $mstats") or die "ERROR: Fail to open $mstats!\n";
while(defined($line = <MSTATS>)) {
chomp $line;
$line =~ s/\s//g;
foreach my $tmp(@keywords) {
$tmp =~ s/\s//g;
if ($line =~ m/$tmp\s*([0-9E\-\+.]+)/i) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$opt_ptr->{M_val}}->{$tmp} = $1;
}
}
}
close(MSTATS);
}
# Black Box blif for ACE
sub black_box_blif($ $)
{
my ($blif_in,$blif_out) = @_;
my ($line);
open (BF, "< $blif_in") or die "Fail to open $blif_in!\n";
open (NBF, "> $blif_out") or die "Fail to open $blif_out!\n";
while(defined($line = <BF>)) {
chomp $line;
my @components;
if ($line =~ m/^\.names/) {
@components = split /\s+/,$line;
$line = ".subckt CELL ";
for (my $i=1; $i < ($opt_ptr->{K_val}+1); $i++) {
my $i1 = $i - 1;
if ($i < $#components) {
$line = $line."I[$i1]=$components[$i] ";
}
else {
$line = $line."I[$i1]=unconn ";
}
}
$line = $line."O[0]=$components[$#components] ";
}
print NBF "$line\n";
}
# definition of Black box
print NBF "\n";
print NBF ".model CELL\n";
print NBF ".inputs ";
for (my $i=0; $i < $opt_ptr->{K_val}; $i++) {
print NBF "I[$i] ";
}
print NBF "\n";
print NBF ".outputs O[0]\n";
print NBF ".blackbox\n";
print NBF ".end\n";
close(BF);
close(NBF);
}
# Extract VPR Power Esti
sub extract_vpr_power_esti($ $ $ $)
{
my ($tag,$ace_vpr_blif,$bm,$type) = @_;
my ($line,$tmp,$line_num);
my @keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
my ($vpr_power_stats) = $ace_vpr_blif;
$line_num = 0;
$vpr_power_stats =~ s/blif$/power/;
open (VSTATS, "< $vpr_power_stats") or die "Fail to open $vpr_power_stats!\n";
while(defined($line = <VSTATS>)) {
chomp $line;
$line_num++;
if ($line =~ m/^Total/i) {
my @power_info = split /\s+/,$line;
if ($#power_info < 3) {
print "Error: (vpr_power_stats:$vpr_power_stats)ilegal definition at LINE[$line_num]!\n";
die "Format should be [tag] [Power] [Proposition] [Dynamic Proposition] [Method](Optional)\n";
}
if ($power_info[3] > 1) {
die "Error: (vpr_power_stats:$vpr_power_stats)Dynamic Power Proposition should not be greater than 1 at LINE[$line_num]!\n";
}
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{total} = $power_info[1];
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{dynamic} = $power_info[1]*$power_info[3];
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{leakage} = $power_info[1]*(1-$power_info[3]);
next;
}
$line =~ s/\s//g;
foreach my $tmpkw(@keywords) {
$tmp = $tmpkw;
$tmp =~ s/\s//g;
$tmp =~ s/\(/\\\(/g;
$tmp =~ s/\)/\\\)/g;
#print "$tmp\n";
if ($line =~ m/$tmp\s*([0-9E\-+.]+)/i) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{$tmpkw} = $1;
my @tempdata = split /\./,$rpt_ptr->{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{$tmpkw};
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{$tmpkw} = join('.',$tempdata[0],$tempdata[1]);
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{power}->{$tmpkw} =~ s/0$//;
}
}
}
close(VSTATS);
}
# Extract AAPack stats
sub extract_aapack_stats($ $ $ $ $)
{
my ($tag,$bm,$vstats,$type,$keywords) = @_;
my ($line,$tmp);
open (VSTATS, "< $vstats") or die "Fail to open $vstats!\n";
while(defined($line = <VSTATS>)) {
chomp $line;
#$line =~ s/\s//g;
foreach my $tmpkw(@{$keywords}) {
$tmp = $tmpkw;
$tmp =~ s/\(/\\\(/g;
$tmp =~ s/\)/\\\)/g;
if ($line =~ m/\s*([0-9E\-+.]+)\s+of\s+type\s+$tmpkw/i) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{$tmpkw} = $1;
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{$tmpkw} =~ s/\.$//;
}
}
}
close(VSTATS);
}
# Extract min_channel_width VPR stats
sub extract_min_chan_width_vpr_stats($ $ $ $ $ $)
{
my ($tag,$bm,$vstats,$type,$min_route_chan_width,$parse_results) = @_;
my ($line,$tmp, $min_chan_width, $chan_width_tag);
my @keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
if ("on" eq $min_route_chan_width) {
$tmp = "Best routing used a channel width factor of";
$chan_width_tag = "min_route_chan_width";
} else {
$tmp = "Circuit successfully routed with a channel width factor of";
$chan_width_tag = "fix_route_chan_width";
}
$tmp =~ s/\s//g;
open (VSTATS, "< $vstats") or die "ERROR: Fail to open $vstats!\n";
while(defined($line = <VSTATS>)) {
chomp $line;
if (($line =~ m/\s+([0-9]+)\s+of\s+type\s+names/i)
&&(1 == $parse_results)) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{LUTs} = $1;
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{LUTs} =~ s/\.$//;
}
$line =~ s/\s//g;
if ($line =~ m/$tmp\s*([0-9E\-+.]+)/i) {
$min_chan_width = $1;
$min_chan_width =~ s/\.$//;
if (1 == $parse_results) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{$chan_width_tag} = $min_chan_width;
}
}
}
close(VSTATS);
return $min_chan_width;
}
# Extract VPR stats
sub extract_vpr_stats($ $ $ $)
{
my ($tag,$bm,$vstats,$type) = @_;
my ($line,$tmp);
my @keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
open (VSTATS, "< $vstats") or die "Fail to open $vstats!\n";
while(defined($line = <VSTATS>)) {
chomp $line;
if ($line =~ m/\s+([0-9]+)\s+of\s+type\s+names/i) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{LUTs} = $1;
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{LUTs} =~ s/\.$//;
}
$line =~ s/\s//g;
foreach my $tmpkw(@keywords) {
$tmp = $tmpkw;
$tmp =~ s/\s//g;
$tmp =~ s/\(/\\\(/g;
$tmp =~ s/\)/\\\)/g;
#print "$tmp\n";
if ($line =~ m/$tmp\s*([0-9E\-+.]+)/i) {
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{$tmpkw} = $1;
$rpt_h{$tag}->{$bm}->{$opt_ptr->{N_val}}->{$type}->{$tmpkw} =~ s/\.$//;
}
}
}
close(VSTATS);
}
sub gen_odin2_config_xml($ $ $ $ $ $) {
my ($config_xml, $odin2_verilog, $odin2_blif_out, $vpr_arch, $mem_size, $min_hard_adder_size) = @_;
# Open a filehandle
my ($XMLFH) = (FileHandle->new);
if ($XMLFH->open("> $config_xml")) {
print "INFO: auto generating configuration XML for ODIN_II($config_xml) ...\n";
} else {
die "ERROR: fail to auto generate configuration XML for ODIN_II($config_xml) ...\n";
}
# Output the standard format (refer to VTR_flow script)
print $XMLFH "<config>\n";
print $XMLFH " <verilog_files>\n";
print $XMLFH " <verilog_file>$odin2_verilog</verilog_file>\n";
print $XMLFH " </verilog_files>\n";
print $XMLFH " <output>\n";
print $XMLFH " <output_type>blif</output_type>\n";
print $XMLFH " <output_path_and_name>$odin2_blif_out</output_path_and_name>\n";
print $XMLFH " <target>\n";
print $XMLFH " <arch_file>$vpr_arch</arch_file>\n";
print $XMLFH " </target>\n";
print $XMLFH " </output>\n";
print $XMLFH " <optimizations>\n";
print $XMLFH " <multiply size=\"3\" fixed=\"1\" fracture=\"0\" padding=\"-1\"/>\n";
print $XMLFH " <memory split_memory_width=\"1\" split_memory_depth=\"$mem_size\"/>\n";
print $XMLFH " <adder size=\"0\" threshold_size=\"$min_hard_adder_size\"/>\n";
print $XMLFH " </optimizations>\n";
print $XMLFH " <debug_outputs>\n";
print $XMLFH " <debug_output_path>.</debug_output_path>\n";
print $XMLFH " <output_ast_graphs>1</output_ast_graphs>\n";
print $XMLFH " <output_netlist_graphs>1</output_netlist_graphs>\n";
print $XMLFH " </debug_outputs>\n";
print $XMLFH "</config>\n";
close($XMLFH);
}
sub run_odin2($ $ $) {
my ($config_xml, $carry_chain_support, $log) = @_;
my ($odin2_dir, $odin2_name) = &split_prog_path($conf_ptr->{dir_path}->{odin2_path}->{val});
my ($options) = ("");
if ("on" eq $carry_chain_support) {
$options = $options." -Z";
}
chdir $odin2_dir;
system("./$odin2_name -c $config_xml $options > $log");
chdir $cwd;
}
sub run_pro_blif_3arg($ $ $) {
my ($abc_blif_out_bak, $abc_blif_out, $initial_blif) = @_;
my ($pro_blif_path) = ($conf_ptr->{dir_path}->{script_base}->{val});
$pro_blif_path =~ s/\/$//g;
$pro_blif_path = $pro_blif_path . "/pro_blif.pl";
`perl $pro_blif_path -i $abc_blif_out_bak -o $abc_blif_out -initial_blif $initial_blif`;
if (!(-e $abc_blif_out)) {
die "ERROR: Fail pro_blif.pl for benchmark $abc_blif_out.\n";
}
return;
}
sub run_pro_blif($ $) {
my ($abc_blif_out_bak, $abc_blif_out) = @_;
my ($pro_blif_path) = ($conf_ptr->{dir_path}->{script_base}->{val});
$pro_blif_path =~ s/\/$//g;
$pro_blif_path = $pro_blif_path . "/pro_blif.pl";
`perl $pro_blif_path -i $abc_blif_out_bak -o $abc_blif_out -add_default_clk`;
if (!(-e $abc_blif_out)) {
die "ERROR: Fail pro_blif.pl for benchmark $abc_blif_out.\n";
}
return;
}
# Run Acitivity Estimation
sub run_ace($ $ $ $) {
my ($mpack_vpr_blif,$act_file,$ace_new_blif,$log) = @_;
my ($ace_dir,$ace_name) = &split_prog_path($conf_ptr->{dir_path}->{ace_path}->{val});
my ($ace_customized_opts) = ("");
if ("on" eq $opt_ptr->{ace_d}) {
$ace_customized_opts .= " -d $opt_ptr->{ace_d_val}";
}
if ("on" eq $opt_ptr->{ace_p}) {
$ace_customized_opts .= " -p $opt_ptr->{ace_p_val}";
}
print "Entering $ace_dir\n";
chdir $ace_dir;
system("./$ace_name -b $mpack_vpr_blif -o $act_file -n $ace_new_blif -c clk $ace_customized_opts >> $log");
if (!(-e $ace_new_blif)) {
die "ERROR: Fail ACE for benchmark $mpack_vpr_blif.\n";
}
print "Leaving $ace_dir\n";
chdir $cwd;
}
# Run Icarus Verilog Simulation
sub run_icarus_verilog($ $ $ $ $)
{
my ($log_file, $compiled_file, $tb_top, $netlists_path, $include_netlists) = @_;
# Compile and launch simulation
system("iverilog -o $compiled_file $netlists_path$include_netlists -s $tb_top");
system("vvp $compiled_file >> $log_file"); # no -j option but could be added to speed-up the process
# Checking simulation results
open(F, $log_file);
my @lines=<F>;
close F;
my $keyword = "Succeed";
my $results = grep($keyword, @lines);
if($results >= 1){
print "\nVerification succeed!\n\n";
} else {
my $keyword = "Failed";
my $results = grep($keyword, @lines);
if($results >= 1){
print "\nVerification failed\n\n";
} else {
die "\nERROR: Simulation didn't start\n\n";
}
}
return;
}
# Run netlists verification using Icarus Simulator
sub run_netlists_verification($)
{
my ($benchmark) = @_;
my $log_file = "$benchmark"."_sim.log";
my $compiled_file = "compiled_"."$benchmark";
my $include_netlists = "$benchmark"."_include_netlists.v";
my $tb_top_formal = "$benchmark"."_top_formal_verification_random_tb";
my $tb_top_autochecked = "$benchmark"."_autocheck_top_tb";
my $netlists_path = "$opt_ptr->{vpr_fpga_verilog_dir_val}"."/SRC/";
system("rm -f $log_file");
system("rm -f $compiled_file");
if("on" eq $opt_ptr->{vpr_fpga_verilog_include_icarus_simulator}){
if("on" eq $opt_ptr->{vpr_fpga_verilog_print_autocheck_top_testbench}){
if("on" eq $opt_ptr->{vpr_fpga_verilog_formal_verification_top_netlist}){ # Preprogramed FPGA netlist chosen if available to speed-up the process
&run_icarus_verilog($log_file, $compiled_file, $tb_top_formal, $netlists_path, $include_netlists);
} else {
&run_icarus_verilog($log_file, $compiled_file, $tb_top_autochecked, $netlists_path, $include_netlists);
}
} else {
die "ERROR: Cannot run netlist verification without \"-vpr_fpga_verilog_print_autocheck_top_testbench\" token.\n";
}
} else {
die "ERROR: Cannot run netlist verification without \"-vpr_fpga_verilog_include_icarus_simulator\" token.\n";
}
return;
}
sub run_std_vpr($ $ $ $ $ $ $ $ $)
{
my ($blif,$bm,$arch,$net,$place,$route,$fix_chan_width,$log,$act_file) = @_;
my ($vpr_dir,$vpr_name) = &split_prog_path($conf_ptr->{dir_path}->{vpr_path}->{val});
my ($power_opts);
if ("on" eq $opt_ptr->{power}) {
$power_opts = "--power --activity_file $act_file --tech_properties $conf_ptr->{flow_conf}->{power_tech_xml}->{val}";
} else {
$power_opts = "";
}
my ($packer_opts) = ("");
if ("on" eq $opt_ptr->{vpr_timing_pack_off}) {
$packer_opts = "--timing_driven_clustering off";
}
my ($chan_width_opt) = ("");
if (($fix_chan_width > 0)||($fix_chan_width == 0)) {
$chan_width_opt = "-route_chan_width $fix_chan_width";
}
if ("on" eq $opt_ptr->{vpr_use_tileable_route_chan_width}) {
$chan_width_opt = $chan_width_opt." --use_tileable_route_chan_width";
}
# FPGA SPICE options
my ($vpr_spice_opts) = ("");
if (("on" eq $opt_ptr->{power})&&("on" eq $opt_ptr->{vpr_fpga_spice})) {
$vpr_spice_opts = "--fpga_spice";
if ("on" eq $opt_ptr->{vpr_fpga_x2p_signal_density_weight}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_x2p_signal_density_weight $opt_ptr->{vpr_fpga_x2p_signal_density_weight_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_x2p_sim_window_size}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_x2p_sim_window_size $opt_ptr->{vpr_fpga_x2p_sim_window_size_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_x2p_compact_routing_hierarchy}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_x2p_compact_routing_hierarchy";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_sim_mt_num}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_sim_mt_num $opt_ptr->{vpr_fpga_spice_sim_mt_num_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_simulator_path}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_simulator_path $opt_ptr->{vpr_fpga_spice_simulator_path_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_component_tb}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_lut_testbench";
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_hardlogic_testbench";
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_pb_mux_testbench";
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_cb_mux_testbench";
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_sb_mux_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_grid_tb}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_grid_testbench";
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_cb_testbench";
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_sb_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_top_tb}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_print_top_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_leakage_only}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_leakage_only";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_parasitic_net_estimation_off}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_parasitic_net_estimation off";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_testbench_load_extraction_off}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_testbench_load_extraction off";
}
}
# FPGA Verilog options
if (("on" eq $opt_ptr->{power})&&("on" eq $opt_ptr->{vpr_fpga_verilog})) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog";
if ("on" eq $opt_ptr->{vpr_fpga_verilog_dir}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_dir $opt_ptr->{vpr_fpga_verilog_dir_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_top_tb}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_top_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_input_blif_tb}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_input_blif_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_autocheck_top_testbench}) {
if($verilog_benchmark eq undef){
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_autocheck_top_testbench $conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$bm/$bm.v";
} else {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_autocheck_top_testbench $verilog_benchmark";
}
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_include_timing}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_include_timing";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_include_signal_init}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_include_signal_init";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_formal_verification_top_netlist}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_formal_verification_top_netlist";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_modelsim_autodeck}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_modelsim_autodeck $opt_ptr->{vpr_fpga_verilog_print_modelsim_autodeck_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_include_icarus_simulator}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_include_icarus_simulator";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_report_timing_tcl}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_report_timing_tcl";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_report_timing_rpt_path}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_report_timing_rpt_path $opt_ptr->{vpr_fpga_verilog_report_timing_rpt_path_val}";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_sdc_pnr}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_sdc_pnr";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_user_defined_template}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_user_defined_template";
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog_print_sdc_analysis}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog_print_sdc_analysis";
}
}
# FPGA Bitstream Generator Options
if ("on" eq $opt_ptr->{vpr_fpga_bitstream_generator}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_bitstream_generator";
}
if (("on" eq $opt_ptr->{vpr_fpga_x2p_rename_illegal_port})
|| ("on" eq $opt_ptr->{vpr_fpga_spice})
|| ("on" eq $opt_ptr->{vpr_fpga_verilog})) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_x2p_rename_illegal_port";
}
my ($other_opt) = ("");
if ("on" eq $opt_ptr->{vpr_place_clb_pin_remap}) {
$other_opt = "--place_clb_pin_remap ";
}
if ("on" eq $opt_ptr->{vpr_route_breadthfirst}) {
$other_opt .= "--router_algorithm breadth_first ";
}
if ("on" eq $opt_ptr->{vpr_max_router_iteration}) {
$other_opt .= "--max_router_iterations $opt_ptr->{vpr_max_router_iteration_val} ";
}
chdir $vpr_dir;
print "Entering $vpr_dir\n";
print "./$vpr_name $arch $blif --net_file $net --place_file $place --route_file $route --full_stats --nodisp $power_opts $packer_opts $chan_width_opt $vpr_spice_opts $other_opt > $log\n";
system("./$vpr_name $arch $blif --net_file $net --place_file $place --route_file $route --full_stats --nodisp $power_opts $packer_opts $chan_width_opt $vpr_spice_opts $other_opt > $log");
#open(F, $log);
#my @lines=<F>;
#close F;
#my @results = grep(" ", @lines);
#if($#results >= 1){
# foreach my $line (0..$#results){
# print "$results[$line]\n";
# }
#}
#if ("on" eq $opt_ptr->{vpr_fpga_verilog_dir}) {
# opendir my($dh), $opt_ptr->{vpr_fpga_verilog_dir_val} or die "\nFolder not created!!\n\n";
# my @files = readdir $dh;
# closedir $dh;
# foreach my $file (0..$#files){
# print "$files[$file]\t";
# }
# print "\n";
#}
chdir $cwd;
}
sub run_vpr_route($ $ $ $ $ $ $ $ $)
{
my ($blif,$bm,$arch,$net,$place,$route,$fix_chan_width,$log,$act_file) = @_;
my ($vpr_dir,$vpr_name) = &split_prog_path($conf_ptr->{dir_path}->{vpr_path}->{val});
my ($power_opts);
if ("on" eq $opt_ptr->{power}) {
$power_opts = "--power --activity_file $act_file --tech_properties $conf_ptr->{flow_conf}->{power_tech_xml}->{val}";
} else {
$power_opts = "";
}
my ($chan_width_opt) = ("");
if (($fix_chan_width > 0)||($fix_chan_width == 0)) {
$chan_width_opt = "--route_chan_width $fix_chan_width";
}
if ("on" eq $opt_ptr->{vpr_use_tileable_route_chan_width}) {
$chan_width_opt = $chan_width_opt." --use_tileable_route_chan_width";
}
my ($vpr_spice_opts) = ("");
if (("on" eq $opt_ptr->{power})&&("on" eq $opt_ptr->{vpr_fpga_spice})) {
$vpr_spice_opts = "--fpga_spice";
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_cbsbtb}) {
$vpr_spice_opts = $vpr_spice_opts." --print_spice_cb_mux_testbench";
$vpr_spice_opts = $vpr_spice_opts." --print_spice_sb_mux_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_pbtb}) {
$vpr_spice_opts = $vpr_spice_opts." --print_spice_pb_mux_testbench";
$vpr_spice_opts = $vpr_spice_opts." --print_spice_lut_testbench";
$vpr_spice_opts = $vpr_spice_opts." --print_spice_hardlogic_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_gridtb}) {
$vpr_spice_opts = $vpr_spice_opts." --print_spice_grid_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_print_toptb}) {
$vpr_spice_opts = $vpr_spice_opts." --print_spice_top_testbench";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_leakage_only}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_leakage_only";
}
if ("on" eq $opt_ptr->{vpr_fpga_spice_parasitic_net_estimation_off}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_spice_parasitic_net_estimation_off";
}
}
if ("on" eq $opt_ptr->{vpr_fpga_verilog}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_verilog";
if ("on" eq $opt_ptr->{vpr_fpga_x2p_rename_illegal_port}) {
$vpr_spice_opts = $vpr_spice_opts." --fpga_x2p_rename_illegal_port";
}
}
my ($other_opt) = ("");
if ("on" eq $opt_ptr->{vpr_max_router_iteration}) {
$other_opt .= "--max_router_iterations $opt_ptr->{vpr_max_router_iteration_val} ";
}
if ("on" eq $opt_ptr->{vpr_route_breadthfirst}) {
$other_opt .= "--router_algorithm breadth_first ";
}
chdir $vpr_dir;
print "Entering $vpr_dir\n";
print "./$vpr_name $arch $blif --route --blif_file $blif --net_file $net --place_file $place --route_file $route --full_stats --nodisp $power_opts $chan_width_opt $vpr_spice_opts $other_opt > $log\n";
system("./$vpr_name $arch $blif --route --blif_file $blif --net_file $net --place_file $place --route_file $route --full_stats --nodisp $power_opts $chan_width_opt $vpr_spice_opts $other_opt > $log");
print "\n";
chdir $cwd;
}
sub run_mpack1_vpr($ $ $ $ $ $ $)
{
my ($blif,$arch,$net,$place,$route,$log,$act_file) = @_;
my ($vpr_dir,$vpr_name) = &split_prog_path($conf_ptr->{dir_path}->{vpr_path}->{val});
my ($power_opts) = ("");
if ("on" eq $opt_ptr->{power}) {
$power_opts = "--power --activity_file $act_file --tech_properties $conf_ptr->{flow_conf}->{power_tech_xml}->{val}";
}
chdir $vpr_dir;
system("./$vpr_name $arch $blif --net_file $net --place_file $place --route_file $route --place --route --full_stats --nodisp $power_opts > $log");
chdir $cwd;
}
sub run_mpack2_vpr($ $ $ $ $ $ $)
{
my ($blif,$arch,$net,$place,$route,$min_chan_width,$log) = @_;
my ($vpr_dir,$vpr_name) = &split_prog_path($conf_ptr->{dir_path}->{vpr_path}->{val});
my ($power_opts) = ("");
if ("on" eq $opt_ptr->{power}) {
# $power_opts = "--power --activity_file $act_file --tech_properties $conf_ptr->{flow_conf}->{power_tech_xml}->{val}";
}
my ($chan_width_opt) = ("");
if (($min_chan_width > 0)||($min_chan_width == 0)) {
$min_chan_width = int($min_chan_width*1.2);
if (0 != $min_chan_width%2) {
$min_chan_width += 1;
}
$chan_width_opt = "-route_chan_width $min_chan_width";
}
chdir $vpr_dir;
system("./$vpr_name $arch $blif --net_file $net --place_file $place --route_file $route --place --route --full_stats --nodisp $power_opts $chan_width_opt > $log");
chdir $cwd;
}
sub run_aapack($ $ $ $)
{
my ($blif,$arch,$net,$aapack_log) = @_;
my ($vpr_dir,$vpr_name) = &split_prog_path($conf_ptr->{dir_path}->{vpr_path}->{val});
chdir $vpr_dir;
system("./$vpr_name $arch $blif --net_file $net --pack --timing_analysis off --nodisp > $aapack_log");
chdir $cwd;
}
sub run_m2net_pack_arch($ $ $ $ $ $)
{
my ($m2net_conf,$mpack1_rpt,$pack_arch,$N,$I,$m2net_pack_arch_log) = @_;
my ($m2net_dir,$m2net_name) = &split_prog_path($conf_ptr->{dir_path}->{m2net_path}->{val});
chdir $m2net_dir;
system("perl $m2net_name -conf $m2net_conf -mpack1_rpt $mpack1_rpt -mode pack_arch -N $N -I $I -arch_file_pack $pack_arch > $m2net_pack_arch_log");
chdir $cwd;
}
sub run_m2net_m2net($ $ $ $ $)
{
my ($m2net_conf,$mpack1_rpt,$aapack_net,$vpr_net,$vpr_arch,$N,$I,$m2net_m2net_log) = @_;
my ($m2net_dir,$m2net_name) = &split_prog_path($conf_ptr->{dir_path}->{m2net_path}->{val});
chdir $m2net_dir;
my ($power_opt) = ("");
if ("on" eq $opt_ptr->{power}) {
$power_opt = "-power";
}
system("perl $m2net_name -conf $m2net_conf -mpack1_rpt $mpack1_rpt -mode m2net -N $N -I $I -net_file_in $aapack_net -net_file_out $vpr_net -arch_file_vpr $vpr_arch $power_opt > $m2net_m2net_log");
chdir $cwd;
}
sub run_cirkit_mig_mccl_map($ $ $) {
my ($bm,$blif_out,$log) = @_;
my ($bm_aig, $bm_v) = ($blif_out, $blif_out);
my ($abc_cmd_log, $cirkit_cmd_log) = ($blif_out, $blif_out);
$bm_aig =~ s/blif$/aig/;
$bm_v =~ s/blif$/v/;
$abc_cmd_log =~ s/\.blif$/_abc.cmd/g;
$cirkit_cmd_log =~ s/\.blif$/_cirkit.cmd/g;
# Get ABC path
my ($abc_dir,$abc_name) = &split_prog_path($conf_ptr->{dir_path}->{abc_path}->{val});
# Get Cirkit path
my ($cirkit_dir,$cirkit_name) = &split_prog_path($conf_ptr->{dir_path}->{cirkit_path}->{val});
my ($lut_num) = $opt_ptr->{K_val};
# Before we run this blif, identify it is a combinational or sequential
my ($abc_seq_optimize) = ("");
if (("on" eq $opt_ptr->{abc_scl})&&("seq" eq &check_blif_type($bm))) {
($abc_seq_optimize) = ("scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;scleanup;");
}
my ($fpga_synthesis_method) = ("if");
#my ($fpga_synthesis_method) = ("fpga");
my ($ABC_CMD_FH) = (FileHandle->new);
if ($ABC_CMD_FH->open("> $abc_cmd_log")) {
print "INFO: auto generating cmds for ABC ($abc_cmd_log) ...\n";
} else {
die "ERROR: fail to auto generating cmds for ABC ($abc_cmd_log) ...\n";
}
# Output the standard format (refer to VTR_flow script)
print $ABC_CMD_FH "read_blif $bm; strash; write $bm_aig; quit;\n";
close($ABC_CMD_FH);
# Run ABC to rewrite blif to AIG in verilog format
chdir $abc_dir;
system("./$abc_name -F $abc_cmd_log > $log");
if (!(-e $bm_aig)) {
die "ERROR: Fail ABC for benchmark $bm.\n";
}
my ($CIRKIT_CMD_FH) = (FileHandle->new);
if ($CIRKIT_CMD_FH->open("> $cirkit_cmd_log")) {
print "INFO: auto generating cmds for Cirkit ($cirkit_cmd_log) ...\n";
} else {
die "ERROR: fail to auto generating cmds for Cirkit ($cirkit_cmd_log) ...\n";
}
# Output the standard format (refer to VTR_flow script)
print $CIRKIT_CMD_FH "read_aiger $bm_aig; xmglut -k 4; write_verilog -x $bm_v; read_verilog -x --as_mig $bm_v; fpga --blif_name $blif_out; quit;\n";
close($CIRKIT_CMD_FH);
chdir $cirkit_dir;
# Run FPGA ABC
system("./$cirkit_name -f $cirkit_cmd_log >> $log");
if (!(-e $blif_out)) {
die "ERROR: Fail Cirkit for benchmark $bm.\n";
}
chdir $cwd;
}
sub init_fpga_spice_task($) {
my ($task_file) = @_;
my ($task_dir_path, $task_filename) = &split_prog_path($task_file);
&generate_path($task_dir_path);
# Open the task file handler
my ($TASKFH) = (FileHandle->new);
if ($TASKFH->open("> $task_file")) {
print "Initializing FPGA SPICE task file($task_file)...\n";
} else {
die "ERROR: fail to create task file ($task_file)!\n";
}
print $TASKFH "# FPGA SPICE TASKs to run\n";
print $TASKFH "# Task line format:\n";
print $TASKFH "# <benchmark_name>,<blif_prefix>,<spice_dir>\n";
# Close the file handler
close($TASKFH);
}
# Print a line into task file which contains task info of FPGA SPICE.
sub output_fpga_spice_task($ $ $ $) {
my ($task_file, $benchmark, $blif_name, $rpt_dir) = @_;
my ($blif_path, $blif_prefix, $spice_dir);
# Open the task file handler
my ($TASKFH) = (FileHandle->new);
if ($TASKFH->open(">> $task_file")) {
} else {
die "ERROR: fail to generate a line for task($benchmark) in task file ($task_file) ...\n";
}
($blif_path,$blif_prefix) = &split_prog_path($blif_name);
$blif_prefix =~ s/\.blif$//;
$spice_dir = $rpt_dir;
$spice_dir =~ s/\/$//;
$spice_dir = $spice_dir."/spice_netlists/";
# Output a line
print $TASKFH "# TaskInfo: $benchmark\n";
print $TASKFH "$benchmark,$blif_prefix,$spice_dir\n";
# Close the file handler
close($TASKFH);
}
sub run_ace_in_flow($ $ $ $ $ $ $) {
my ($prefix, $abc_blif_out, $act_file,$ace_new_blif,$ace_log) = @_;
if ("on" eq $opt_ptr->{power}) {
if ("on" eq $opt_ptr->{black_box_ace}) {
my ($tmp_blif) = ($prefix."_ace_new.blif");
&black_box_blif($abc_blif_out,$tmp_blif);
&run_ace($tmp_blif,$act_file,$ace_new_blif ,$ace_log);
} else {
&run_ace($abc_blif_out,$act_file,$ace_new_blif,$ace_log);
}
#&run_pro_blif($ace_new_blif, $abc_blif_out);
}
if (("on" eq $opt_ptr->{power})&&(!(-e $act_file))) {
die "ERROR: Fail ACE2 for benchmark $act_file.\n";
}
}
sub run_vpr_in_flow($ $ $ $ $ $ $ $ $ $ $ $) {
my ($tag, $benchmark,$benchmark_file, $abc_blif_out, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results) = @_;
if ("on" eq $opt_ptr->{min_route_chan_width}) {
&run_std_vpr($abc_blif_out,$benchmark,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,-1,$vpr_log.".min_chan_width",$act_file);
# Get the Minimum channel width
my ($min_chan_width) = (&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val}, $opt_ptr->{min_route_chan_width}, $parse_results));
$min_chan_width = int($min_chan_width*$opt_ptr->{min_route_chan_width_val});
if (0 != $min_chan_width%2) {
$min_chan_width += 1;
}
# Remove previous route results
if (-e $vpr_route) {
system("rm $vpr_route");
}
# Keep increase min_chan_width until route success
# Extract data from VPR stats
#&run_std_vpr($abc_blif_out,$benchmark,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,$min_chan_width,$vpr_log,$act_file);
while (1) {
&run_vpr_route($abc_blif_out,$benchmark,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,$min_chan_width,$vpr_reroute_log,$act_file);
# TODO: Only run the routing stage
if (-e $vpr_route) {
print "INFO: try route_chan_width($min_chan_width) success!\n";
last; #Jump out
} elsif ($max_route_width_retry < $min_chan_width) {
# I set a threshold of 1000 as it is the limit of VPR
die "ERROR: Route Fail for $abc_blif_out with a min_chan_width of $min_chan_width!\n";
} else {
print "INFO: try route_chan_width($min_chan_width) failed! Retry with +2...\n";
$min_chan_width += 2;
}
}
if (1 == $parse_results) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val}, "off", $parse_results);
&extract_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val});
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
}
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
my ($fix_chan_width) = ($benchmarks_ptr->{$benchmark_file}->{fix_route_chan_width});
# Remove previous route results
if (-e $vpr_route) {
system("rm $vpr_route");
}
# Keep increase min_chan_width until route success
&run_std_vpr($abc_blif_out,$benchmark,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,$fix_chan_width,$vpr_log,$act_file);
while (1) {
# TODO: Only run the routing stage
if (-e $vpr_route) {
print "INFO: try route_chan_width($fix_chan_width) success!\n";
last; #Jump out
} elsif ($max_route_width_retry < $fix_chan_width) {
# I set a threshold of 1000 as it is the limit of VPR
die "ERROR: Route Fail for $abc_blif_out with a min_chan_width of $fix_chan_width!\n";
} else {
print "INFO: try route_chan_width($fix_chan_width) failed! Retry with +2...\n";
$fix_chan_width += 2;
&run_vpr_route($abc_blif_out,$benchmark,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,$fix_chan_width,$vpr_reroute_log,$act_file);
}
}
# Extract data from VPR stats
if (1 == $parse_results) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val}, "off", $parse_results);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
if (-e $vpr_reroute_log) {
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
}
}
} else {
&run_std_vpr($abc_blif_out,$benchmark,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,-1,$vpr_log,$act_file);
if (!(-e $vpr_route)) {
die "ERROR: Route Fail for $abc_blif_out!\n";
}
# Get the Minimum channel width
my ($min_chan_width) = (&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"on",$parse_results));
if (1 == $parse_results) {
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
}
}
# Extract data from VPR Power stats
if (("on" eq $opt_ptr->{power})
&&(1 == $parse_results)) {
&extract_vpr_power_esti($tag,$abc_blif_out,$benchmark,$opt_ptr->{K_val});
}
return;
}
sub run_mig_mccl_flow($ $ $ $) {
my ($tag,$benchmark_file,$vpr_arch, $parse_results) = @_;
my ($benchmark, $rpt_dir,$prefix);
my ($cirkit_bm,$cirkit_blif_out,$cirkit_log,$cirkit_blif_out_bak);
$benchmark = $benchmark_file;
$benchmark =~ s/\.blif$//g;
# Run Standard flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$cirkit_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$cirkit_blif_out = "$prefix"."cirkit.blif";
$cirkit_blif_out_bak = "$prefix"."cirkit_bak.blif";
$cirkit_log = "$prefix"."cirkit.log";
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
&run_cirkit_mig_mccl_map($cirkit_bm,$cirkit_blif_out,$cirkit_log);
if (!(-e $cirkit_blif_out)) {
die "ERROR: Fail Cirkit for benchmark $cirkit_blif_out.\n";
}
#`perl pro_blif.pl -i $abc_blif_out_bak -o $abc_blif_out`;
#if (!(-e $abc_blif_out)) {
# die "ERROR: Fail pro_blif.pl for benchmark $abc_blif_out.\n";
#}
&run_ace_in_flow($prefix, $cirkit_blif_out, $act_file, $ace_new_blif, $ace_log);
&run_vpr_in_flow($tag, $benchmark, $benchmark_file, $cirkit_blif_out, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results);
return;
}
# Run Yosys-VPR flow
sub run_yosys_vpr_flow($ $ $ $ $)
{
my ($tag,$benchmark_file,$vpr_arch,$flow_enhance, $parse_results) = @_;
my ($benchmark, $rpt_dir, $prefix);
my ($yosys_bm,$yosys_blif_out,$yosys_log,$yosys_blif_out_bak);
my @tokens = split('/', $benchmark_file);
$benchmark = $tokens[0];
# Prepare for the output folder
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
# Adapt paths on architecture file
`perl rewrite_path_in_file.pl -i $vpr_arch`;
# Run Yosys flow
$yosys_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark_file";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$yosys_blif_out = "$prefix"."yosys.blif";
$yosys_log = "$prefix"."yosys.log";
&run_yosys_fpgamap($benchmark, $yosys_bm, $yosys_blif_out, $yosys_log);
# Files for ace
my ($act_file,$ace_new_blif,$ace_log, $corrected_ace_blif) = ("$rpt_dir/$benchmark".".act","$rpt_dir/$benchmark"."ace.blif","$prefix"."ace.log","$rpt_dir/$benchmark".".blif");
&run_ace_in_flow($prefix, $yosys_blif_out, $act_file, $ace_new_blif, $ace_log);
&run_pro_blif_3arg($ace_new_blif, $corrected_ace_blif, $yosys_blif_out);
# Files for VPR
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
# Need to add a regenation of the verilog from the optimized blif -> write verilog from blif + correct the name of the verilog for the testbench
$verilog_benchmark = &run_rewrite_verilog($corrected_ace_blif, $rpt_dir, $benchmark, $benchmark, $yosys_log);
&run_vpr_in_flow($tag, $benchmark, $benchmark_file, $corrected_ace_blif, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results);
if("on" eq $opt_ptr->{end_flow_with_test}) {
&run_netlists_verification($benchmark);
}
return;
}
# Parse Yosys-VPR flow
sub parse_yosys_vpr_flow_results($ $ $ $)
{
my ($tag,$benchmark_file,$vpr_arch,$flow_enhance) = @_;
my ($benchmark, $rpt_dir, $prefix);
my ($yosys_bm,$yosys_blif_out,$yosys_log,$yosys_blif_out_bak);
my @tokens = split('/', $benchmark_file);
$benchmark = $tokens[0];
# Prepare for the output folder
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
# Run Yosys flow
$yosys_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark_file";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$yosys_blif_out = "$rpt_dir/$benchmark".".blif";
$yosys_log = "$prefix"."yosys.log";
# Files for ace
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
# Files for VPR
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val},"on",1);
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val});
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
if (-e $vpr_reroute_log) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
}
} else {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"on",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
}
# Extract data from VPR Power stats
if ("on" eq $opt_ptr->{power}) {
&extract_vpr_power_esti($tag,$yosys_blif_out,$benchmark,$opt_ptr->{K_val});
}
# TODO: HOW TO DEAL WITH SPICE NETLISTS???
# Output a file contain information of SPICE Netlists
if ("on" eq $opt_ptr->{vpr_fpga_spice}) {
&output_fpga_spice_task("$opt_ptr->{vpr_fpga_spice_val}"."_$tag.txt", $benchmark, $yosys_blif_out, $rpt_dir);
}
return;
}
sub run_standard_flow($ $ $ $ $)
{
my ($tag,$benchmark_file,$vpr_arch,$flow_enhance, $parse_results) = @_;
my ($benchmark, $rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log,$abc_blif_out_bak);
my ($mpack_blif_out,$mpack_stats,$mpack_log);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
$benchmark = $benchmark_file;
$benchmark =~ s/\.blif$//g;
# Run Standard flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_blif_out_bak = "$prefix"."abc_bak.blif";
$abc_log = "$prefix"."abc.log";
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
if ("abc_black_box" eq $flow_enhance) {
my ($pre_abc_blif) = ("$prefix"."pre_abc.blif");
&run_pro_blif($abc_bm, $pre_abc_blif);
&run_abc_bb_fpgamap($pre_abc_blif,$abc_blif_out_bak,$abc_log);
} elsif ("classic" eq $flow_enhance) {
&run_abc_fpgamap($abc_bm,$abc_blif_out_bak,$abc_log);
}
&run_pro_blif($abc_blif_out_bak, $abc_blif_out);
&run_ace_in_flow($prefix, $abc_blif_out, $act_file, $ace_new_blif, $ace_log);
&run_vpr_in_flow($tag, $benchmark, $benchmark_file, $abc_blif_out, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results);
return;
}
sub parse_standard_flow_results($ $ $ $)
{
my ($tag,$benchmark_file,$vpr_arch,$flow_enhance) = @_;
my ($rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log);
my ($mpack_blif_out,$mpack_stats,$mpack_log);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.blif$//g;
# Run Standard flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_log = "$prefix"."abc.log";
if ("abc_black_box" eq $flow_enhance) {
rename $abc_blif_out,"$abc_blif_out".".bak";
} elsif ("classic" eq $flow_enhance) {
}
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val},"on",1);
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val});
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
if (-e $vpr_reroute_log) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
}
} else {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"on",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
}
# Extract data from VPR Power stats
if ("on" eq $opt_ptr->{power}) {
&extract_vpr_power_esti($tag,$abc_blif_out,$benchmark,$opt_ptr->{K_val});
}
# TODO: HOW TO DEAL WITH SPICE NETLISTS???
# Output a file contain information of SPICE Netlists
if ("on" eq $opt_ptr->{vpr_fpga_spice}) {
&output_fpga_spice_task("$opt_ptr->{vpr_fpga_spice_val}"."_standard.txt", $benchmark, $abc_blif_out, $rpt_dir);
}
return;
}
sub run_mpack2_flow($ $ $ $)
{
my ($tag,$benchmark_file,$mpack2_arch,$parse_results) = @_;
my ($rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log,$abc_blif_out_bak);
my ($mpack2_blif_out,$mpack2_vpr_net,$mpack2_stats,$mpack2_log,$mpack2_vpr_arch);
my ($vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log,$act_file);
# Check necessary options
if (!($opt_ptr->{N_val})) {
die "ERROR: (mpack2_flow) -N should be specified!\n";
}
if (!($opt_ptr->{K_val})) {
die "ERROR: (mpack2_flow) -K should be specified!\n";
}
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.blif$//g;
# Run MPACK2-oriented flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_blif_out_bak = "$prefix"."abc_bak.blif";
$abc_log = "$prefix"."abc.log";
# RUN ABC
#&run_abc_libmap($abc_bm,"$abc_blif_out\.bak",$abc_log);
&run_abc_fpgamap($abc_bm,$abc_blif_out_bak,$abc_log);
# Pre-process the blif netlist
#`perl convert_blif.pl -i $abc_blif_out\.bak -o $abc_blif_out\.conv`;
`perl pro_blif.pl -i $abc_blif_out_bak -o $abc_blif_out`;
# RUN MPACK2
$mpack2_blif_out = "$prefix"."mpack2.blif";
$mpack2_vpr_net = "$prefix"."mpack2.net";
$mpack2_stats = "$prefix"."mpack2.stats";
$mpack2_log = "$prefix"."mpack2.log";
$mpack2_vpr_arch = "$prefix"."mpack2_vpr_arch.xml";
&run_mpack2($abc_blif_out,$mpack2_blif_out,$mpack2_arch,$mpack2_vpr_net,$mpack2_stats,$mpack2_vpr_arch,$mpack2_log);
# Extract data from MPACK stats
if (1 == $parse_results) {
&extract_mpack2_stats($tag,$benchmark,$mpack2_stats);
}
# RUN VPR
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
&run_mpack2_vpr($mpack2_blif_out,$mpack2_vpr_arch,$mpack2_vpr_net,$vpr_place,$vpr_route,-1,$vpr_log.".min_chan_width");
# Get the Minimum channel width
my ($min_chan_width) = (&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val}, $opt_ptr->{min_route_chan_width}, $parse_results));
$min_chan_width = int($min_chan_width*$opt_ptr->{min_route_chan_width_val});
if (0 != $min_chan_width%2) {
$min_chan_width += 1;
}
# Remove previous route results
system("rm $vpr_route");
# Keep increase min_chan_width until route success
# Extract data from VPR stats
while (1) {
&run_vpr_route($mpack2_blif_out,$benchmark,$mpack2_vpr_arch,$mpack2_vpr_net,$vpr_place,$vpr_route,$min_chan_width,$vpr_reroute_log,$act_file);
if (-e $vpr_route) {
print "INFO: try route_chan_width($min_chan_width) Success!\n";
last; #Jump out
} else {
print "INFO: try route_chan_width($min_chan_width) failed! Retry with +2...\n";
$min_chan_width += 2;
}
}
# Extract data from VPR stats
if (1 == $parse_results) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val}, "off", $parse_results);
&extract_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val});
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
}
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
my ($fix_chan_width) = ($benchmarks_ptr->{$benchmark_file}->{fix_route_chan_width});
# Remove previous route results
if (-e $vpr_route) {
system("rm $vpr_route");
}
# Keep increase min_chan_width until route success
# Extract data from VPR stats
&run_mpack2_vpr($mpack2_blif_out,$mpack2_vpr_arch,$mpack2_vpr_net,$vpr_place,$vpr_route,$fix_chan_width,$vpr_log);
while (1) {
if (-e $vpr_route) {
print "INFO: try route_chan_width($fix_chan_width) success!\n";
last; #Jump out
} else {
print "INFO: try route_chan_width($fix_chan_width) failed! Retry with +2...\n";
$fix_chan_width += 2;
&run_vpr_route($mpack2_blif_out,$benchmark,$mpack2_vpr_arch,$mpack2_vpr_net,$vpr_place,$vpr_route,$fix_chan_width,$vpr_reroute_log,$act_file);
}
}
if (1 == $parse_results) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val}, "off", $parse_results);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
if (-e $vpr_reroute_log) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val}, "off", $parse_results);
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
}
}
} else {
&run_mpack2_vpr($mpack2_blif_out,$mpack2_vpr_arch,$mpack2_vpr_net,$vpr_place,$vpr_route,-1,$vpr_log);
if (!(-e $vpr_route)) {
die "ERROR: Route Fail for $mpack2_blif_out!\n";
}
my ($min_chan_width) = (&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val}, $parse_results));
# Extract data from VPR stats
if (1 == $parse_results) {
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
}
}
return;
}
sub parse_mpack2_flow_results($ $ $)
{
my ($tag,$benchmark_file,$mpack2_arch) = @_;
my ($rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log);
my ($mpack2_blif_out,$mpack2_vpr_net,$mpack2_stats,$mpack2_log,$mpack2_vpr_arch);
my ($vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
# Check necessary options
if (!($opt_ptr->{N_val})) {
die "ERROR: (mpack2_flow) -N should be specified!\n";
}
if (!($opt_ptr->{K_val})) {
die "ERROR: (mpack2_flow) -K should be specified!\n";
}
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.blif$//g;
# Run MPACK2-oriented flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_log = "$prefix"."abc.log";
# Pre-process the blif netlist
# RUN MPACK2
$mpack2_blif_out = "$prefix"."mpack2.blif";
$mpack2_vpr_net = "$prefix"."mpack2.net";
$mpack2_stats = "$prefix"."mpack2.stats";
$mpack2_log = "$prefix"."mpack2.log";
$mpack2_vpr_arch = "$prefix"."mpack2_vpr_arch.xml";
# Extract data from MPACK stats
&extract_mpack2_stats($tag,$benchmark,$mpack2_stats);
# RUN VPR
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val},"on",1);
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val});
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
if (-e $vpr_reroute_log) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
} else {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"off",1);
}
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
} else {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val}, "on", 1);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
}
return;
}
sub run_mpack1_flow($ $ $)
{
my ($tag,$benchmark_file, $parse_results) = @_;
my ($rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_log);
my ($I_val,$M_val,$N_val) = ($opt_ptr->{I_val},$opt_ptr->{M_val},$opt_ptr->{N_val});
my ($m2net_conf) = ($conf_ptr->{flow_conf}->{m2net_conf}->{val});
my ($cell_size) = (2);
if ($I_val) {
} else {
$I_val = int($cell_size*$M_val*($N_val+1)/2);
print "INFO: I isn't defined. Auto-sized to 2*M*(N+1)/2 = $I_val\n";
}
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.blif$//g;
# Run MPACK1-oriented flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."M$M_val\_"."N$N_val\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_log = "$prefix"."abc.log";
&run_abc_libmap($abc_bm,"$abc_blif_out\.bak",$abc_log);
`perl pro_blif.pl -i "$abc_blif_out\.bak" -o $abc_blif_out`;
my ($mpack1_pack_blif_out) = ("$prefix"."_matrix.blif");
my ($mpack1_vpr_blif_out) = ("$prefix"."_formatted.blif");
my ($mpack1_rpt) = ("$prefix"."_mapped.net");
my ($mpack1_log) = ("$prefix"."mpack1p5.log");
&run_mpack1p5("$abc_blif_out","$prefix",$M_val,$cell_size,$mpack1_log);
# Extract data from MPACK stats
if (1 == $parse_results) {
&extract_mpack1_stats($tag,$benchmark,$mpack1_log);
}
# Generate Architecture XML
my ($aapack_arch) = ("$prefix"."aapack_arch.xml");
my ($m2net_pack_arch_log) = ("$prefix"."m2net_pack_arch.log");
&run_m2net_pack_arch($m2net_conf,$mpack1_rpt,$aapack_arch,$N_val,$I_val,$m2net_pack_arch_log);
# Run AAPACK
my ($aapack_log) = ("$prefix"."aapack.log");
my ($aapack_net) = ("$prefix"."aapack.net");
&run_aapack($mpack1_pack_blif_out,$aapack_arch,$aapack_net,$aapack_log);
my @aapack_stats = ("MATRIX");
if (1 == $parse_results) {
&extract_aapack_stats($tag,$benchmark,$aapack_log,$M_val,\@aapack_stats);
}
$vpr_net = "$prefix"."mpack.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
# Run m2net.pl
my ($vpr_arch) = ("$prefix"."vpr_arch.xml");
my ($m2net_m2net_log) = ("$prefix"."m2net_m2net.log");
&run_m2net_m2net($m2net_conf,$mpack1_rpt,$aapack_net,$vpr_net,$vpr_arch,$N_val,$I_val,$m2net_m2net_log);
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace_new.blif","$prefix"."ace.log");
# Turn on Power Estimation and Run ace
if ("on" eq $opt_ptr->{power}) {
&run_ace($mpack1_vpr_blif_out,$act_file,$ace_new_blif,$ace_log);
}
&run_mpack1_vpr($mpack1_vpr_blif_out,$vpr_arch,$vpr_net,$vpr_place,$vpr_route,$vpr_log,$act_file);
if (!(-e $vpr_route)) {
die "ERROR: Route Fail for $mpack1_vpr_blif_out!\n";
}
# Extract data from VPR stats
if (1 == $parse_results) {
&extract_vpr_stats($tag,$benchmark,$vpr_log,$M_val);
}
if (("on" eq $opt_ptr->{power})
&&(1 == $parse_results)) {
&extract_vpr_power_esti($tag,$mpack1_vpr_blif_out,$benchmark,$M_val);
}
}
sub parse_mpack1_flow_results($ $) {
my ($tag,$benchmark_file) = @_;
my ($rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_log);
my ($I_val,$M_val,$N_val) = ($opt_ptr->{I_val},$opt_ptr->{M_val},$opt_ptr->{N_val});
my ($m2net_conf) = ($conf_ptr->{flow_conf}->{m2net_conf}->{val});
my ($cell_size) = (2);
if ($I_val) {
} else {
$I_val = int($cell_size*$M_val*($N_val+1)/2);
print "INFO: I isn't defined. Auto-sized to 2*M*(N+1)/2 = $I_val\n";
}
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.blif$//g;
# Run MPACK1-oriented flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".blif";
$prefix = "$rpt_dir/$benchmark\_"."M$M_val\_"."N$N_val\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_log = "$prefix"."abc.log";
my ($mpack1_pack_blif_out) = ("$prefix"."_matrix.blif");
my ($mpack1_vpr_blif_out) = ("$prefix"."_formatted.blif");
my ($mpack1_rpt) = ("$prefix"."_mapped.net");
my ($mpack1_log) = ("$prefix"."mpack1p5.log");
# Extract data from MPACK stats
&extract_mpack1_stats($tag,$benchmark,$mpack1_log);
# Generate Architecture XML
my ($aapack_arch) = ("$prefix"."aapack_arch.xml");
my ($m2net_pack_arch_log) = ("$prefix"."m2net_pack_arch.log");
# Run AAPACK
my ($aapack_log) = ("$prefix"."aapack.log");
my ($aapack_net) = ("$prefix"."aapack.net");
my @aapack_stats = ("MATRIX");
&extract_aapack_stats($tag,$benchmark,$aapack_log,$M_val,\@aapack_stats);
$vpr_net = "$prefix"."mpack.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
# Run m2net.pl
my ($vpr_arch) = ("$prefix"."vpr_arch.xml");
my ($m2net_m2net_log) = ("$prefix"."m2net_m2net.log");
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace_new.blif","$prefix"."ace.log");
# Extract data from VPR stats
&extract_vpr_stats($tag,$benchmark,$vpr_log,$M_val);
if ("on" eq $opt_ptr->{power}) {
&extract_vpr_power_esti($tag,$mpack1_vpr_blif_out,$benchmark,$M_val);
}
}
sub run_vtr_flow($ $ $ $) {
my ($tag,$benchmark_file,$vpr_arch,$parse_results) = @_;
my ($rpt_dir,$prefix);
my ($min_hard_adder_size, $mem_size, $odin2_verilog, $odin2_config, $odin2_log);
my ($abc_bm,$abc_blif_out,$abc_log,$abc_blif_out_bak);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
# The input of VTR flow is verilog file
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.v$//g;
# Run Verilog To Routiing flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
# ODIN II output blif
$odin2_verilog = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".v";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
# ODIN II config XML
$odin2_config = "$prefix"."odin2_config.xml";
$odin2_log = "$prefix"."odin2.log";
# ODIN II output blif
$abc_bm = "$prefix"."odin2.blif";
# ABC II output blif
$abc_blif_out = "$prefix"."abc.blif";
$abc_blif_out_bak = "$prefix"."abc_bak.blif";
$abc_log = "$prefix"."abc.log";
# Initialize min_hard_adder_size
$min_hard_adder_size = 1; # Default value
if ("on" eq $opt_ptr->{min_hard_adder_size}) {
if (1 > $opt_ptr->{min_hard_adder_size_val}) {
die "ERROR: Invalid min_hard_adder_size($opt_ptr->{min_hard_adder_size})!Should be no less than 1!";
} else {
$min_hard_adder_size = $opt_ptr->{min_hard_adder_size_val};
}
}
# TODO: Initialize the mem_size by parsing the ARCH XML?
if ("on" eq $opt_ptr->{mem_size}) {
$mem_size = $opt_ptr->{mem_size_val};
} else {
die "ERROR: -mem_size is mandatory when vtr flow is chosen!\n";
}
# Auto-generate a configuration XML for ODIN2
&gen_odin2_config_xml($odin2_config, $odin2_verilog, $abc_bm, $vpr_arch, $mem_size, $min_hard_adder_size);
# RUN ODIN II
&run_odin2($odin2_config, "off", $odin2_log);
if (!(-e $abc_bm)) {
die "ERROR: Fail ODIN II for benchmark $benchmark.\n";
}
# RUN ABC
&run_abc_bb_fpgamap($abc_bm,$abc_blif_out_bak,$abc_log);
&run_pro_blif($abc_blif_out_bak, $abc_blif_out);
# Run ABC
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
&run_ace_in_flow($prefix, $abc_blif_out,$act_file,$ace_new_blif,$ace_log);
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
# Run VPR
&run_vpr_in_flow($tag, $benchmark, $benchmark_file, $abc_blif_out, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results);
return;
}
sub parse_vtr_flow_results($ $ $) {
my ($tag,$benchmark,$vpr_arch) = @_;
my ($min_hard_adder_size, $mem_size, $odin2_verilog, $odin2_config, $odin2_log);
my ($rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log);
my ($mpack_blif_out,$mpack_stats,$mpack_log);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
$benchmark =~ s/\.v$//g;
# Run Standard flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
# ODIN II output blif
$odin2_verilog = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".v";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
# ODIN II config XML
$odin2_config = "$prefix"."odin2_config.xml";
$odin2_log = "$prefix"."odin2.log";
# ODIN II output blif
$abc_bm = "$prefix"."odin2.blif";
# ABC output blif
$abc_blif_out = "$prefix"."abc.blif";
$abc_log = "$prefix"."abc.log";
rename $abc_blif_out,"$abc_blif_out".".bak";
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val},"on",1);
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_log.".min_chan_width",$opt_ptr->{K_val});
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
if (-e $vpr_reroute_log) {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val},"off",1);
&extract_vpr_stats($tag,$benchmark,$vpr_reroute_log,$opt_ptr->{K_val});
} else {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val},"off",1);
}
} else {
&extract_min_chan_width_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val}, "on", 1);
&extract_vpr_stats($tag,$benchmark,$vpr_log,$opt_ptr->{K_val});
}
# Extract data from VPR Power stats
if ("on" eq $opt_ptr->{power}) {
&extract_vpr_power_esti($tag,$abc_blif_out,$benchmark,$opt_ptr->{K_val});
}
# TODO: HOW TO DEAL WITH SPICE NETLISTS???
# Output a file contain information of SPICE Netlists
if ("on" eq $opt_ptr->{vpr_fpga_spice}) {
&output_fpga_spice_task("$opt_ptr->{vpr_fpga_spice_val}"."_vtr.txt", $benchmark, $abc_blif_out, $rpt_dir);
}
return;
}
# VTR_MCCL_flow:
# Differences from vtr_flow:
# 1. Need to turn off the carry-chain support for ODIN II
# 2. Use Carry-chain detection and Carry-chain LUTs pre-mapping in ABC scripts
sub run_vtr_mccl_flow($ $ $ $) {
my ($tag,$benchmark_file,$vpr_arch,$parse_results) = @_;
my ($rpt_dir,$prefix);
my ($min_hard_adder_size, $mem_size, $odin2_verilog, $odin2_config, $odin2_log);
my ($abc_bm,$abc_blif_out,$abc_log,$abc_blif_out_bak);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
my ($odin2_carry_chain_support) = ("on");
# The input of VTR flow is verilog file
my ($benchmark) = ($benchmark_file);
$benchmark =~ s/\.v$//g;
# Run Verilog To Routiing flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
# ODIN II output blif
$odin2_verilog = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".v";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
# ODIN II config XML
$odin2_config = "$prefix"."odin2_config.xml";
$odin2_log = "$prefix"."odin2.log";
# ODIN II output blif
$abc_bm = "$prefix"."odin2.blif";
# ABC II output blif
$abc_blif_out = "$prefix"."abc.blif";
$abc_blif_out_bak = "$prefix"."abc_bak.blif";
$abc_log = "$prefix"."abc.log";
# Initialize min_hard_adder_size
$min_hard_adder_size = 1; # Default value
if ("on" eq $opt_ptr->{min_hard_adder_size}) {
if (1 > $opt_ptr->{min_hard_adder_size_val}) {
die "ERROR: Invalid min_hard_adder_size($opt_ptr->{min_hard_adder_size})!Should be no less than 1!";
} else {
$min_hard_adder_size = $opt_ptr->{min_hard_adder_size_val};
}
}
# TODO: Initialize the mem_size by parsing the ARCH XML?
if ("on" eq $opt_ptr->{mem_size}) {
$mem_size = $opt_ptr->{mem_size_val};
} else {
die "ERROR: -mem_size is mandatory when vtr flow is chosen!\n";
}
# Auto-generate a configuration XML for ODIN2
&gen_odin2_config_xml($odin2_config, $odin2_verilog, $abc_bm, $vpr_arch, $mem_size, $min_hard_adder_size);
if ("on" eq $opt_ptr->{odin2_carry_chain_support}) {
$odin2_carry_chain_support = ("on");
}
# RUN ODIN II
&run_odin2($odin2_config, $odin2_carry_chain_support, $odin2_log);
if (!(-e $abc_bm)) {
die "ERROR: Fail ODIN II for benchmark $benchmark.\n";
}
# RUN ABC
&run_abc_mccl_fpgamap($abc_bm,$abc_blif_out_bak,$abc_log);
&run_pro_blif($abc_blif_out_bak, $abc_blif_out);
# Run ACE
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
&run_ace_in_flow($prefix,i $abc_blif_out,$act_file,$ace_new_blif,$ace_log);
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
# Run VPR
&run_vpr_in_flow($tag, $benchmark, $benchmark_file, $abc_blif_out, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results);
return;
}
sub run_mccl_flow($ $ $ $ $)
{
my ($tag,$benchmark_file,$vpr_arch,$flow_enhance, $parse_results) = @_;
my ($benchmark, $rpt_dir,$prefix);
my ($abc_bm,$abc_blif_out,$abc_log,$abc_blif_out_bak);
my ($mpack_blif_out,$mpack_stats,$mpack_log);
my ($vpr_net,$vpr_place,$vpr_route,$vpr_reroute_log,$vpr_log);
$benchmark = $benchmark_file;
$benchmark =~ s/\.v$//g; # We use verilog format in mccl
# Run Standard flow
$rpt_dir = "$conf_ptr->{dir_path}->{rpt_dir}->{val}"."/$benchmark/$tag";
&generate_path($rpt_dir);
$abc_bm = "$conf_ptr->{dir_path}->{benchmark_dir}->{val}"."/$benchmark".".v";
$prefix = "$rpt_dir/$benchmark\_"."K$opt_ptr->{K_val}\_"."N$opt_ptr->{N_val}\_";
$abc_blif_out = "$prefix"."abc.blif";
$abc_blif_out_bak = "$prefix"."abc_bak.blif";
$abc_log = "$prefix"."abc.log";
# RUN ABC
&run_abc_mccl_fpgamap($abc_bm,$abc_blif_out_bak,$abc_log);
&run_pro_blif($abc_blif_out_bak, $abc_blif_out);
# Run ACE
my ($act_file,$ace_new_blif,$ace_log) = ("$prefix"."ace.act","$prefix"."ace.blif","$prefix"."ace.log");
&run_ace_in_flow($prefix,i $abc_blif_out,$act_file,$ace_new_blif,$ace_log);
$vpr_net = "$prefix"."vpr.net";
$vpr_place = "$prefix"."vpr.place";
$vpr_route = "$prefix"."vpr.route";
$vpr_log = "$prefix"."vpr.log";
$vpr_reroute_log = "$prefix"."vpr_reroute.log";
# Run VPR
&run_vpr_in_flow($tag, $benchmark, $benchmark_file, $abc_blif_out, $vpr_arch, $act_file, $vpr_net, $vpr_place, $vpr_route, $vpr_log, $vpr_reroute_log, $parse_results);
return;
}
sub run_benchmark_selected_flow($ $ $)
{
my ($flow_type,$benchmark, $parse_results) = @_;
if ($flow_type eq "standard") {
&run_standard_flow("standard",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val},"classic", $parse_results);
} elsif ($flow_type eq "mpack2") {
&run_mpack2_flow("mpack2",$benchmark,$conf_ptr->{flow_conf}->{mpack2_arch}->{val}, $parse_results);
} elsif ($flow_type eq "mpack1") {
&run_mpack1_flow("mpack1",$benchmark, $parse_results);
} elsif ($flow_type eq "vtr_standard") {
&run_standard_flow("vtr_standard",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val},"abc_black_box", $parse_results);
} elsif ($flow_type eq "vtr") {
&run_vtr_flow("vtr",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val}, $parse_results);
} elsif ($flow_type eq "vtr_mccl") {
&run_vtr_mccl_flow("vtr_mccl",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val}, $parse_results);
} elsif ($flow_type eq "mccl") {
&run_mccl_flow("mccl",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val}, $parse_results);
} elsif ($flow_type eq "mig_mccl") {
&run_mig_mccl_flow("mig_mccl",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val}, $parse_results);
} elsif ($flow_type eq "yosys_vpr") {
&run_yosys_vpr_flow("yosys_vpr",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val}, "classic", $parse_results);
} else {
die "ERROR: unsupported flow type ($flow_type) is chosen!\n";
}
return;
}
sub parse_benchmark_selected_flow($ $) {
my ($flow_type,$benchmark) = @_;
if ($flow_type eq "standard") {
&parse_standard_flow_results("standard",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val},"classic");
} elsif ($flow_type eq "mpack2") {
&parse_mpack2_flow_results("mpack2",$benchmark,$conf_ptr->{flow_conf}->{mpack2_arch}->{val});
} elsif ($flow_type eq "mpack1") {
&parse_mpack1_flow_results("mpack1",$benchmark);
} elsif ($flow_type eq "vtr_standard") {
&parse_standard_flow_results("vtr_standard",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val},"abc_black_box");
} elsif ($flow_type eq "vtr") {
&parse_vtr_flow_results("vtr", $benchmark, $conf_ptr->{flow_conf}->{vpr_arch}->{val});
} elsif ($flow_type eq "vtr_mccl") {
&parse_vtr_flow_results("vtr_mccl", $benchmark, $conf_ptr->{flow_conf}->{vpr_arch}->{val});
} elsif ($flow_type eq "mccl") {
&parse_standard_flow_results("mccl", $benchmark, $conf_ptr->{flow_conf}->{vpr_arch}->{val}, "abc_black_box");
} elsif ($flow_type eq "mig_mccl") {
&parse_standard_flow_results("mig_mccl", $benchmark, $conf_ptr->{flow_conf}->{vpr_arch}->{val}, "abc_black_box");
} elsif ($flow_type eq "yosys_vpr") {
&parse_yosys_vpr_flow_results("yosys_vpr",$benchmark,$conf_ptr->{flow_conf}->{vpr_arch}->{val},"abc_black_box");
} else {
die "ERROR: unsupported flow type ($flow_type) is chosen!\n";
}
}
# Run EDA flow
sub run_flows() {
my @flows = split('\|',$conf_ptr->{flow_conf}->{flow_type}->{val});
# Run Benchmark one by one
foreach my $benchmark(@benchmark_names) {
foreach my $flow_to_run(@flows) {
if (("off" eq $selected_flows{$flow_to_run}->{flow_status})
||("done" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status})) {
next;
}
print "FLOW TO RUN: $flow_to_run, Benchmark: $benchmark\n";
&run_benchmark_selected_flow($flow_to_run,$benchmark, 0);
# Mark finished benchmarks
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "done";
}
}
&parse_flows_benchmarks_results();
}
# Run EDA flow with multi task support
sub multitask_run_flows() {
my @flows = split('\|',$conf_ptr->{flow_conf}->{flow_type}->{val});
# Run Benchmark one by one
foreach my $benchmark(@benchmark_names) {
foreach my $flow_to_run(@flows) {
if (("off" eq $selected_flows{$flow_to_run}->{flow_status})
||("running" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status})
||("done" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status})) {
next;
}
print "FLOW TO RUN: $flow_to_run, Benchmark: $benchmark\n";
# Mutli thread push
if ("on" eq $opt_ptr->{multi_task}) {
my $pid = fork();
if (defined $pid) {
if ($pid) {
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "running";
&run_benchmark_selected_flow($flow_to_run,$benchmark, 1);
# Mark finished benchmarks
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "done";
} else {
exit;
}
} else {
print "INFO: fail to create a thread for ";
print "FLOW TO RUN: $flow_to_run, Benchmark: $benchmark\n";
print "Relauch later...\n";
}
} else {
&run_benchmark_selected_flow($flow_to_run,$benchmark, 1);
# Mark finished benchmarks
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "done";
}
}
}
return;
}
# Run EDA flow with multi thread support
sub multithread_run_flows($) {
my ($num_threads) = @_;
my @flows = split('\|',$conf_ptr->{flow_conf}->{flow_type}->{val});
# Evaluate include threads ok
my ($can_use_threads) = (eval 'use threads; 1');
if (!($can_use_threads)) {
die "ERROR: cannot use threads package in Perl! Please check the installation of package...\n";
}
# Lauch threads up to the limited number of threads number
if ($num_threads < 2) {
$num_threads = 2;
}
my ($num_thread_running) = (0);
# Iterate until all the tasks has been assigned, finished
while (1 != &check_all_flows_all_benchmarks_done()) {
foreach my $benchmark(@benchmark_names) {
foreach my $flow_to_run(@flows) {
# Bypass unselected flows or finished job
if (("off" eq $selected_flows{$flow_to_run}->{flow_status})
||("done" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status})) {
next;
}
# Check if the thread is still not start, running, or finished.
my ($thr_id) = ($selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{thread_id});
if ($thr_id) {
# Check if there is any error
if ($thr_id->error()) {
die "Thread(ID:$thr_id) exit abnormally!\n";
}
# We have a thread id, check running or finished
if ($thr_id->is_running()) {
# Update status
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "running";
}
if ($thr_id->is_joinable()) {
$num_thread_running--;
$thr_id->join(); # Join the thread results
# Update status
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "done";
print "FLOW: $flow_to_run, Benchmark: $benchmark, Finished!\n";
print "INFO: current running thread number = $num_thread_running.\n";
&print_jobs_status();
}
} else {
# Not start a thread for this task,
if (($num_thread_running == $num_threads)
||($num_thread_running > $num_threads)) {
next;
}
#if there are still threads available, we try to start one
# Mutli thread push
my $thr_new = threads->create(\&run_benchmark_selected_flow,$flow_to_run,$benchmark, 0);
# We have a valid thread...
if ($thr_new) {
print "INFO: a new thread is lauched!\n";
print "FLOW RUNNING: $flow_to_run, Benchmark: $benchmark\n";
# Check if it is running...
if ($thr_new->is_running()) {
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "running";
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{thread_id} = $thr_new;
$num_thread_running++;
print "INFO: current running thread number = $num_thread_running.\n";
&print_jobs_status();
}
# Check if it is detached...
if ($thr_new->is_joinable()) {
# Mark finished benchmarks
$num_thread_running--;
$thr_new->join(); # Join the thread results
$selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status} = "done";
print "FLOW: $flow_to_run, Benchmark: $benchmark, Finished!\n";
print "INFO: current running thread number = $num_thread_running.\n";
&print_jobs_status();
}
} else {
# Fail to create a new thread, wait...
print "INFO: Fail to alloc a new thread, wait...!";
}
}
}
}
}
&print_jobs_status();
&parse_flows_benchmarks_results();
return;
}
sub parse_flows_benchmarks_results() {
# Parse all the results
foreach my $benchmark(@benchmark_names) {
foreach my $flow_to_run(@supported_flows) {
# Bypass unselected flows or finished job
if (("on" eq $selected_flows{$flow_to_run}->{flow_status})
&&("done" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status})) {
&parse_benchmark_selected_flow($flow_to_run, $benchmark);
}
}
}
return;
}
sub print_jobs_status() {
my ($num_jobs_running, $num_jobs_to_run, $num_jobs_finish, $num_jobs) = (0, 0, 0, 0);
foreach my $benchmark(@benchmark_names) {
foreach my $flow_to_run(@supported_flows) {
if ("on" eq $selected_flows{$flow_to_run}->{flow_status}) {
# Count the number of jobs
$num_jobs++;
# Count to do jobs
if ("off" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status}) {
$num_jobs_to_run++;
next;
}
# Count running jobs
if ("running" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status}) {
$num_jobs_running++;
next;
}
# Count finished jobs
if ("done" eq $selected_flows{$flow_to_run}->{benchmarks}->{$benchmark}->{status}) {
$num_jobs_finish++;
next;
}
}
}
}
if ($num_jobs == ($num_jobs_running + $num_jobs_finish + $num_jobs_to_run)) {
print "Jobs Progress: (Finish rate = ".sprintf("%.2f",100*$num_jobs_finish/$num_jobs) ."%)\n";
print "Total No. of Jobs: $num_jobs.\n";
print "No. of Running Jobs: $num_jobs_running.\n";
print "No. of Finished Jobs: $num_jobs_finish.\n";
print "No. of To Run Jobs: $num_jobs_to_run.\n";
} else {
print "Internal problem: num_jobs($num_jobs) != num_jobs_running($num_jobs_running)\n";
print " +num_jobs_finish($num_jobs_finish)\n";
die " +num_jobs_to_run($num_jobs_to_run)\n";
}
return;
}
sub check_all_flows_all_benchmarks_done() {
my ($all_done) = (1);
foreach my $flow_to_run(@supported_flows) {
if ("off" eq $selected_flows{$flow_to_run}->{flow_status}) {
next;
}
if (1 != &check_flow_all_benchmarks_done($flow_to_run)) {
$all_done = 0;
last;
}
}
return $all_done;
}
sub check_flow_all_benchmarks_done($) {
my ($flow_name) = @_;
my ($all_done) = (0);
# If this flow has not been chosen, return 0
if ("off" eq $selected_flows{$flow_name}->{flow_status}) {
return $all_done;
} elsif ("on" eq $selected_flows{$flow_name}->{flow_status}) {
$all_done = 1;
}
# Check if every benchmark has finished in this flow.
foreach my $bm(@benchmark_names) {
if ("done" ne $selected_flows{$flow_name}->{benchmarks}->{$bm}->{status}) {
$all_done = 0;
last;
}
}
return $all_done;
}
sub gen_csv_rpt_vtr_flow($ $)
{
my ($tag,$CSVFH) = @_;
my ($tmp,$ikw,$tmpkw);
my @keywords;
my ($K_val,$N_val) = ($opt_ptr->{K_val},$opt_ptr->{N_val});
# adapt to matlab format if the option is enabled
if ("on" eq $opt_ptr->{matlab_rpt}) {
# Print the data name
print $CSVFH "$opt_ptr->{matlab_rpt_val} = [\n";
# We will set the stats line to be commented
print $CSVFH "%";
}
# Print out Standard Stats First
print $CSVFH "$tag";
print $CSVFH ",LUTs";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",min_route_chan_width";
print $CSVFH ",fix_route_chan_width";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",fix_route_chan_width";
} else {
print $CSVFH ",min_route_chan_width";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
print $CSVFH ",Total Power,Total Dynamic Power,Total Leakage Power";
}
print $CSVFH "\n";
# Check log/stats one by one
foreach $tmp(@benchmark_names) {
$tmp =~ s/\.v$//g;
print $CSVFH "$tmp";
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{LUTs}";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} else {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
}
#foreach $tmpkw(@keywords) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{$keywords[$ikw]}";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{$keywords[$ikw]}";
}
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{total}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{dynamic}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{leakage}";
}
# For matlab script, we end with a semicolumn to be compatiable to matlab
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH ";\n";
} else {
print $CSVFH "\n";
}
}
# For matlab script, we end with ];
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "];\n";
}
}
sub gen_csv_rpt_yosys_vpr_flow($ $)
{
my ($tag,$CSVFH) = @_;
my ($tmp,$ikw,$tmpkw);
my @keywords;
my ($K_val,$N_val) = ($opt_ptr->{K_val},$opt_ptr->{N_val});
# adapt to matlab format if the option is enabled
if ("on" eq $opt_ptr->{matlab_rpt}) {
# Print the data name
print $CSVFH "$opt_ptr->{matlab_rpt_val} = [\n";
# We will set the stats line to be commented
print $CSVFH "%";
}
# Print out Standard Stats First
print $CSVFH "$tag";
print $CSVFH ",LUTs";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",min_route_chan_width";
print $CSVFH ",fix_route_chan_width";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",fix_route_chan_width";
} else {
print $CSVFH ",min_route_chan_width";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
print $CSVFH ",Total Power,Total Dynamic Power,Total Leakage Power";
}
print $CSVFH "\n";
# Check log/stats one by one
foreach $tmp(@benchmark_names) {
my @tokens = split('/', $tmp);
$tmp = $tokens[0];
# For matlab script, we use {} for string
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "{'$tmp'}";
} else {
print $CSVFH "$tmp";
}
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{LUTs}";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} else {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
}
#foreach $tmpkw(@keywords) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{$keywords[$ikw]}";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{$keywords[$ikw]}";
}
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{total}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{dynamic}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{leakage}";
}
# For matlab script, we end with a semicolumn to be compatiable to matlab
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH ";\n";
} else {
print $CSVFH "\n";
}
}
# For matlab script, we end with ];
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "];\n";
}
}
sub gen_csv_rpt_standard_flow($ $)
{
my ($tag,$CSVFH) = @_;
my ($tmp,$ikw,$tmpkw);
my @keywords;
my ($K_val,$N_val) = ($opt_ptr->{K_val},$opt_ptr->{N_val});
# adapt to matlab format if the option is enabled
if ("on" eq $opt_ptr->{matlab_rpt}) {
# Print the data name
print $CSVFH "$opt_ptr->{matlab_rpt_val} = [\n";
# We will set the stats line to be commented
print $CSVFH "%";
}
# Print out Standard Stats First
print $CSVFH "$tag";
print $CSVFH ",LUTs";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",min_route_chan_width";
print $CSVFH ",fix_route_chan_width";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",fix_route_chan_width";
} else {
print $CSVFH ",min_route_chan_width";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
print $CSVFH ",Total Power,Total Dynamic Power,Total Leakage Power";
}
print $CSVFH "\n";
# Check log/stats one by one
foreach $tmp(@benchmark_names) {
$tmp =~ s/\.blif$//g;
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "{'$tmp'}";
} else {
print $CSVFH "$tmp";
}
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{LUTs}";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} else {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
}
#foreach $tmpkw(@keywords) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{$keywords[$ikw]}";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{$keywords[$ikw]}";
}
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{total}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{dynamic}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{leakage}";
}
# For matlab script, we end with a semicolumn to be compatiable to matlab
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH ";\n";
} else {
print $CSVFH "\n";
}
}
# For matlab script, we end with ];
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "];\n";
}
}
sub gen_csv_rpt_mpack2_flow($ $)
{
my ($tag,$CSVFH) = @_;
my ($tmp,$ikw,$tmpkw);
my @keywords;
my ($K_val,$N_val) = ($opt_ptr->{K_val},$opt_ptr->{N_val});
# adapt to matlab format if the option is enabled
if ("on" eq $opt_ptr->{matlab_rpt}) {
# Print the data name
print $CSVFH "$opt_ptr->{matlab_rpt_val} = [\n";
# We will set the stats line to be commented
print $CSVFH "%";
}
# Print out Mpack stats Second
print $CSVFH "$tag";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",min_route_chan_width";
print $CSVFH ",fix_route_chan_width";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",fix_route_chan_width";
} else {
print $CSVFH ",min_route_chan_width";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{mpack2_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
print $CSVFH ",Total Power,Total Dynamic Power,Total Leakage Power";
}
print $CSVFH "\n";
# Check log/stats one by one
foreach $tmp(@benchmark_names) {
$tmp =~ s/\.blif$//g;
print $CSVFH "$tmp";
if ("on" eq $opt_ptr->{min_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} elsif ("on" eq $opt_ptr->{fix_route_chan_width}) {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{fix_route_chan_width}";
} else {
print $CSVFH ",$rpt_h{$tag}->{$tmp}->{$N_val}->{$K_val}->{min_route_chan_width}";
}
#foreach $tmpkw(@keywords) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{mpack2_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{$keywords[$ikw]}";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{$keywords[$ikw]}";
}
if ("on" eq $opt_ptr->{power}) {
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{$keywords[$ikw]}";
}
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{total}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{dynamic}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$K_val}->{power}->{leakage}";
}
# For matlab script, we end with a semicolumn to be compatiable to matlab
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH ";\n";
} else {
print $CSVFH "\n";
}
}
# For matlab script, we end with ];
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "];\n";
}
}
sub gen_csv_rpt_mpack1_flow($ $)
{
my ($tag,$CSVFH) = @_;
my ($tmp,$ikw,$tmpkw);
my @keywords;
my ($N_val,$M_val) = ($opt_ptr->{N_val},$opt_ptr->{M_val});
# adapt to matlab format if the option is enabled
if ("on" eq $opt_ptr->{matlab_rpt}) {
# Print the data name
print $CSVFH "$opt_ptr->{matlab_rpt_val} = [\n";
# We will set the stats line to be commented
print $CSVFH "%";
}
# Print out Mpack stats Second
print $CSVFH "$tag";
print $CSVFH ",MATRIX";
@keywords = split /\|/,$conf_ptr->{csv_tags}->{mpack_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
# Print Power Tags
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
#foreach $tmpkw(@keywords) {
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
print $CSVFH ",$keywords[$ikw]";
}
print $CSVFH ",Total Power,Total Dynamic Power, Total Leakage Power";
print $CSVFH "\n";
# Check log/stats one by one
foreach $tmp(@benchmark_names) {
$tmp =~ s/\.blif$//g;
print $CSVFH "$tmp";
#foreach $tmpkw(@keywords) {
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{MATRIX}";
@keywords = split /\|/,$conf_ptr->{csv_tags}->{mpack_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{$keywords[$ikw]}";
}
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{$keywords[$ikw]}";
}
# Print Power Results
@keywords = split /\|/,$conf_ptr->{csv_tags}->{vpr_power_tags}->{val};
for($ikw=0; $ikw < ($#keywords+1); $ikw++) {
$tmpkw = $keywords[$ikw];
$tmpkw =~ s/\s//g;
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{power}->{$keywords[$ikw]}";
}
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{power}->{total}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{power}->{dynamic}";
print $CSVFH ",$rpt_ptr->{$tag}->{$tmp}->{$N_val}->{$M_val}->{power}->{leakage}";
# For matlab script, we end with a semicolumn to be compatiable to matlab
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH ";\n";
} else {
print $CSVFH "\n";
}
}
# For matlab script, we end with ];
if ("on" eq $opt_ptr->{matlab_rpt}) {
print $CSVFH "];\n";
}
}
sub init_selected_flows() {
# For each flow type, mark the status to off
foreach my $flow_type(@supported_flows) {
$selected_flows{$flow_type}->{flow_status} = "off";
# For each benchmark, init the status to "off"
foreach my $benchmark(@benchmark_names) {
$selected_flows{$flow_type}->{benchmarks}->{$benchmark}->{status} = "off";
$selected_flows{$flow_type}->{benchmarks}->{$benchmark}->{thread_id} = undef;
}
}
}
sub mark_selected_flows()
{
# Mark what flows are selected
my @flows = split('\|',$conf_ptr->{flow_conf}->{flow_type}->{val});
foreach my $flow_type(@flows) {
if (exists $selected_flows{$flow_type}->{flow_status}) {
$selected_flows{$flow_type}->{flow_status} = "on";
print "INFO: FLOW TYPE: $flow_type is turned $selected_flows{$flow_type}->{flow_status}\n";
# Initial FPGA SPICE TASK FILE
if ("on" eq $opt_ptr->{vpr_fpga_spice}) {
&init_fpga_spice_task($opt_ptr->{vpr_fpga_spice_val}."_$flow_type.txt");
}
} else {
die "ERROR: flow_type: $flow_type is not supported!\n";
}
}
}
sub mark_flows_benchmarks() {
foreach my $flow_type(@supported_flows) {
if ("on" eq $selected_flows{$flow_type}->{flow_status}) {
# For each benchmark, init the status to "off"
foreach my $benchmark(@benchmark_names) {
$selected_flows{$flow_type}->{benchmarks}->{$benchmark}->{status} = "done";
}
}
}
}
sub gen_csv_rpt($)
{
my ($csv_file) = @_;
my ($csv_dir_path, $csv_filename) = &split_prog_path($csv_file);
&generate_path($csv_dir_path);
# Open a filehandle
my ($CSVFH) = (FileHandle->new);
if ($CSVFH->open("> $csv_file")) {
print "INFO: writing CSV report ($csv_file) ...\n";
} else {
die "ERROR: fail to create CSV report ($csv_file) ...\n";
}
foreach my $flow_type(@supported_flows) {
if ($selected_flows{$flow_type}->{flow_status} eq "on") {
# Print the report only all the benchmarks in this flow finished
if ($flow_type eq "standard") {
if (1 == &check_flow_all_benchmarks_done("standard")) {
print "INFO: writing standard flow results ...\n";
&gen_csv_rpt_standard_flow("standard",$CSVFH);
}
} elsif ($flow_type eq "mpack2") {
if (1 == &check_flow_all_benchmarks_done("mpack2")) {
print "INFO: writing mpack2 flow results ...\n";
&gen_csv_rpt_mpack2_flow("mpack2",$CSVFH);
}
} elsif ($flow_type eq "mpack1") {
if (1 == &check_flow_all_benchmarks_done("mpack1")) {
print "INFO: writing mpack1 flow results ...\n";
&gen_csv_rpt_mpack1_flow("mpack1",$CSVFH);
}
} elsif ($flow_type eq "vtr_standard") {
if (1 == &check_flow_all_benchmarks_done("vtr")) {
print "INFO: writing vtr flow results ...\n";
&gen_csv_rpt_standard_flow("vtr_standard",$CSVFH);
}
} elsif ($flow_type eq "vtr") {
if (1 == &check_flow_all_benchmarks_done("vtr")) {
print "INFO: writing vtr flow results ...\n";
&gen_csv_rpt_vtr_flow("vtr",$CSVFH);
}
} elsif ($flow_type eq "vtr_mccl") {
if (1 == &check_flow_all_benchmarks_done("vtr_mccl")) {
print "INFO: writing vtr_mccl flow results ...\n";
&gen_csv_rpt_standard_flow("vtr_mccl",$CSVFH);
}
} elsif ($flow_type eq "mccl") {
if (1 == &check_flow_all_benchmarks_done("mccl")) {
print "INFO: writing mccl flow results ...\n";
&gen_csv_rpt_standard_flow("mccl",$CSVFH);
}
} elsif ($flow_type eq "mig_mccl") {
if (1 == &check_flow_all_benchmarks_done("mig_mccl")) {
print "INFO: writing mig_mccl flow results ...\n";
&gen_csv_rpt_standard_flow("mig_mccl",$CSVFH);
}
} elsif ($flow_type eq "yosys_vpr") {
if (1 == &check_flow_all_benchmarks_done("yosys_vpr")) {
print "INFO: writing yosys_vpr flow results ...\n";
&gen_csv_rpt_yosys_vpr_flow("yosys_vpr",$CSVFH);
}
} else {
die "ERROR: flow_type: $flow_type is not supported!\n";
}
}
}
close($CSVFH);
}
sub remove_designs()
{
if ("on" eq $opt_ptr->{remove_designs}) {
system("rm -rf $conf_ptr->{dir_path}->{rpt_dir}->{val}");
}
}
sub plan_run_flows() {
if ("on" eq $opt_ptr->{multi_task}) {
&multitask_run_flows();
} elsif (("on" eq $opt_ptr->{multi_thread})
&&($opt_ptr->{multi_thread_val} > 1)
&&(0 < $#benchmark_names)) {
&multithread_run_flows($opt_ptr->{multi_thread_val});
} else {
if ("on" eq $opt_ptr->{multi_thread}) {
print "INFO: multi_thread is selected but only 1 processor can be used or 1 benchmark to run...\n";
print "INFO: switch to single thread mode.\n";
}
&run_flows();
}
}
# Main Program
sub main()
{
&opts_read();
&read_conf();
&read_benchmarks();
&init_selected_flows();
&mark_selected_flows();
&check_opts();
if ("on" eq $opt_ptr->{parse_results_only}) {
&mark_flows_benchmarks();
&parse_flows_benchmarks_results();
} else {
&remove_designs();
&plan_run_flows();
}
&gen_csv_rpt($opt_ptr->{rpt_val});
}
&main();
exit(0);