OpenFPGA/ace2/SRC/ace.c

447 lines
9.8 KiB
C

#include <stdio.h>
#include <inttypes.h>
#include "ace.h"
#include "io_ace.h"
#include "blif.h"
#include "cycle.h"
#include "sim.h"
#include "bdd.h"
#include "depth.h"
#include "cube.h"
// ABC Headers
#include "base/abc/abc.h"
#include "base/main/main.h"
#include "base/io/ioAbc.h"
//#include "vecInt.h"
void print_status(Abc_Ntk_t * ntk);
void alloc_and_init_activity_info(Abc_Ntk_t * ntk);
void ace_update_latch_probs(Abc_Ntk_t * ntk);
void print_node_bdd(Abc_Ntk_t * ntk);
void print_nodes(Vec_Ptr_t * nodes);
int ace_calc_activity(Abc_Ntk_t * ntk, int num_vectors, char * clk_name);
st__table * ace_info_hash_table;
void print_status(Abc_Ntk_t * ntk) {
int i;
Abc_Obj_t * obj;
Abc_NtkForEachNode(ntk, obj, i)
{
Ace_Obj_Info_t * info = Ace_ObjInfo(obj);
switch (info->status) {
case ACE_UNDEF:
printf("%d: UNDEFINED\n", i);
break;
case ACE_DEF:
printf("%d: DEFINED\n", i);
break;
case ACE_SIM:
printf("%d: SIM\n", i);
break;
case ACE_NEW:
printf("%d: NEW\n", i);
break;
case ACE_OLD:
printf("%d: OLD\n", i);
break;
default:
printf("Invalid ABC object info status");
exit(1);
}
}
}
void alloc_and_init_activity_info(Abc_Ntk_t * ntk) {
Vec_Ptr_t * node_vec;
Abc_Obj_t * obj_ptr;
int i;
node_vec = Abc_NtkDfsSeq(ntk);
Vec_PtrForEachEntry(Abc_Obj_t*, node_vec, obj_ptr, i)
{
Ace_Obj_Info_t * info = Ace_ObjInfo(obj_ptr);
info->values = NULL;
info->status = ACE_UNDEF;
info->num_toggles = 0;
info->num_ones = 0;
}
Vec_PtrFree(node_vec);
}
void ace_update_latch_probs(Abc_Ntk_t * ntk) {
Abc_Obj_t * obj_ptr;
Abc_Obj_t * fanin_ptr;
Abc_Obj_t * fanout_ptr;
Ace_Obj_Info_t * fanin_info;
Ace_Obj_Info_t * fanout_info;
int i;
Abc_NtkForEachLatch(ntk, obj_ptr, i)
{
fanin_ptr = Abc_ObjFanin0(obj_ptr);
fanout_ptr = Abc_ObjFanout0(obj_ptr);
fanin_info = Ace_ObjInfo(fanin_ptr);
fanout_info = Ace_ObjInfo(fanout_ptr);
fanout_info->static_prob = fanin_info->static_prob;
fanout_info->switch_prob = fanin_info->switch_prob;
fanout_info->status = fanin_info->status;
}
}
void print_node_bdd(Abc_Ntk_t * ntk) {
Abc_Obj_t * obj;
int i;
Abc_NtkForEachNode(ntk, obj, i)
{
DdNode * node = (DdNode*) obj->pData;
printf("Object: %d\n", obj->Id);
fflush(0);
//printf("Fanin: %d\n", Abc_ObjFaninNum(obj)); fflush(0);
while (1) {
if (node == Cudd_ReadOne((DdManager*)ntk->pManFunc)) {
//printf("one!\n");
break;
} else if (node == Cudd_ReadLogicZero((DdManager*)ntk->pManFunc)) {
//printf("zero!\n");
break;
}
printf("\tVar: %hd (%08" PRIXPTR ")\n", Cudd_Regular(node)->index,
(uintptr_t) node);
fflush(0);
DdNode * first_node;
DdGen* gen = Cudd_FirstNode((DdManager*) ntk->pManFunc, node, &first_node);
Cudd_GenFree(gen);
node = Cudd_E(node);
}
}
}
void print_nodes(Vec_Ptr_t * nodes) {
Abc_Obj_t * obj;
int i;
printf("Printing Nodes\n");
Vec_PtrForEachEntry(Abc_Obj_t*, nodes, obj, i)
{
printf("\t%d. %d-%d-%s\n", i, Abc_ObjId(obj), Abc_ObjType(obj),
Abc_ObjName(obj));
}
fflush(0);
}
int ace_calc_activity(Abc_Ntk_t * ntk, int num_vectors, char * clk_name) {
int error = 0;
Vec_Ptr_t * nodes_all;
Vec_Ptr_t * nodes_logic;
Vec_Ptr_t * next_state_node_vec;
Vec_Ptr_t * latches_in_cycles_vec;
Abc_Obj_t * obj;
int i, j;
Ace_Obj_Info_t * info;
//Build BDD
Abc_NtkSopToBdd(ntk);
nodes_all = Abc_NtkDfsSeq(ntk);
nodes_logic = Abc_NtkDfs(ntk, TRUE);
//print_nodes(nodes_logic);
Vec_PtrForEachEntry(Abc_Obj_t*, nodes_all, obj, i)
{
info = Ace_ObjInfo(obj);
info->status = ACE_UNDEF;
}
Abc_NtkForEachPi(ntk, obj, i)
{
info = Ace_ObjInfo(obj);
if (strcmp(Abc_ObjName(obj), clk_name) != 0) {
assert(info->static_prob >= 0 && info->static_prob <= 1.0);
assert(info->switch_prob >= 0 && info->switch_prob <= 1.0);
assert(info->switch_act >= 0 && info->switch_act <= 1.0);
assert(info->switch_prob <= 2.0 * (1.0 - info->static_prob));
assert(info->switch_prob <= 2.0 * info->static_prob);
}
info->status = ACE_DEF;
}
latches_in_cycles_vec = latches_in_cycles(ntk);
printf("%d/%d latches are part of cycle(s)\n", latches_in_cycles_vec->nSize,
Abc_NtkLatchNum(ntk));
fflush(0);
//if (latches_in_cycles_vec->nSize)
if (TRUE) {
//print_status(ntk);
printf("Stage 1: Simulating Probabilities...\n");
fflush(0);
next_state_node_vec = Abc_NtkDfsSeq(ntk);
//print_nodes(next_state_node_vec);
ace_sim_activities(ntk, next_state_node_vec, num_vectors, 0.05);
//ace_sim_activities(ntk, nodes_logic, num_vectors, 0.05);
ace_update_latch_probs(ntk);
Vec_PtrFree(next_state_node_vec);
}
//print_status(ntk);
printf("Stage 2: Computing Probabilities...\n");
fflush(0);
// Currently this stage does nothing
#if 0
ace_bdd_get_literals (ntk, &leaves, &literals);
i = 0;
while(1)
{
//printf("Calc Iteration = %d\n", i++); fflush(0);
if (ace_bdd_build_network_bdds(ntk, leaves, literals, ACE_MAX_BDD_SIZE, ACE_MIN_BDD_PROB) < 1)
{
break;
}
ace_update_latch_static_probs(ntk);
ace_update_latch_switch_probs(ntk);
}
st__free_table(leaves);
Vec_PtrFree(literals);
#endif
/*------------- Computing Register Output Activities. ---------------------*/
printf("Stage 3: Computing Register Output Activities...\n");
fflush(0);
Abc_NtkForEachLatchOutput(ntk, obj, i)
{
Ace_Obj_Info_t * info2 = Ace_ObjInfo(obj);
info2->switch_act = info2->switch_prob;
assert(info2->switch_act >= 0.0);
}
Abc_NtkForEachPi(ntk, obj, i)
{
assert(Ace_ObjInfo(obj)->switch_act >= 0.0);
}
/*------------- Calculate switching activities. ---------------------*/
printf("Stage 4: Computing Switching Activities...\n");
fflush(0);
/* Do latches first, then logic after */
Vec_PtrForEachEntry(Abc_Obj_t*, nodes_all, obj, i)
{
Ace_Obj_Info_t * info2 = Ace_ObjInfo(obj);
switch (Abc_ObjType(obj)) {
case ABC_OBJ_PI:
if (strcmp(Abc_ObjName(obj), clk_name) == 0) {
info2->switch_act = 2;
info2->switch_prob = 1;
info2->static_prob = 0.5;
} else {
info2->switch_act = info2->switch_prob;
}
break;
case ABC_OBJ_BO:
case ABC_OBJ_LATCH:
info2->switch_act = info2->switch_prob;
break;
default:
break;
}
}
Vec_PtrForEachEntry(Abc_Obj_t*, nodes_logic, obj, i)
{
Ace_Obj_Info_t * info2 = Ace_ObjInfo(obj);
//Ace_Obj_Info_t * fanin_info2;
assert(Abc_ObjType(obj) == ABC_OBJ_NODE);
if (Abc_ObjFaninNum(obj) < 1) {
info2->switch_act = 0.0;
continue;
} else {
Vec_Ptr_t * literals = Vec_PtrAlloc(0);
Abc_Obj_t * fanin;
assert(obj->Type == ABC_OBJ_NODE);
Abc_ObjForEachFanin(obj, fanin, j)
{
Vec_PtrPush(literals, fanin);
}
info2->switch_act = ace_bdd_calc_switch_act((DdManager*)ntk->pManFunc, obj,
literals);
Vec_PtrFree(literals);
}
assert(info2->switch_act >= 0);
}
Vec_PtrFree(nodes_logic);
Vec_PtrFree(latches_in_cycles_vec);
return error;
}
Ace_Obj_Info_t * Ace_ObjInfo(Abc_Obj_t * obj) {
Ace_Obj_Info_t * info;
if (st__lookup(ace_info_hash_table, (char *) obj, (char **) &info)) {
return info;
}
assert(0);
return NULL;
}
void prob_epsilon_fix(double * d) {
if (*d < 0) {
assert(*d > 0 - EPSILON);
*d = 0;
} else if (*d > 1) {
assert(*d < 1 + EPSILON);
*d = 1.;
}
}
int main(int argc, char * argv[]) {
FILE * BLIF = NULL;
FILE * IN_ACT = NULL;
FILE * OUT_ACT = stdout;
ace_pi_format_t pi_format = ACE_CODED;
double p, d;
int i;
int depth;
int error = 0;
Abc_Frame_t * pAbc;
Abc_Ntk_t * ntk;
Abc_Obj_t * obj;
int seed = 0;
p = ACE_PI_STATIC_PROB;
d = ACE_PI_SWITCH_PROB;
char blif_file_name[BLIF_FILE_NAME_LEN];
char new_blif_file_name[BLIF_FILE_NAME_LEN];
char* clk_name = NULL;
ace_io_parse_argv(argc, argv, &BLIF, &IN_ACT, &OUT_ACT, blif_file_name,
new_blif_file_name, &pi_format, &p, &d, &seed, &clk_name);
srand(seed);
pAbc = Abc_FrameGetGlobalFrame();
ntk = Io_Read(blif_file_name, IO_FILE_BLIF, 1, 0);
assert(ntk);
printf("Objects in network: %d\n", Abc_NtkObjNum(ntk));
printf("PIs in network: %d\n", Abc_NtkPiNum(ntk));
printf("POs in network: %d\n", Abc_NtkPoNum(ntk));
printf("Nodes in network: %d\n", Abc_NtkNodeNum(ntk));
printf("Latches in network: %d\n", Abc_NtkLatchNum(ntk));
if (!Abc_NtkIsAcyclic(ntk)) {
printf("Circuit has combinational loops\n");
exit(0);
}
// Alloc Aux Info Array
// Full Allocation
Ace_Obj_Info_t * info = (Ace_Obj_Info_t*) calloc(Abc_NtkObjNum(ntk), sizeof(Ace_Obj_Info_t));
ace_info_hash_table = st__init_table(st__ptrcmp, st__ptrhash);
int objNum = 0;
Abc_NtkForEachObj(ntk, obj, i)
{
st__insert(ace_info_hash_table, (char *) obj, (char *) &info[objNum]);
objNum++;
}
// Check Depth
depth = ace_calc_network_depth(ntk);
printf("Max Depth: %d\n", depth);
assert(depth > 0);
alloc_and_init_activity_info(ntk);
switch (pi_format) {
case ACE_CODED:
printf("Input activities will be assumed (%f, %f, %f)...\n",
ACE_PI_STATIC_PROB, ACE_PI_SWITCH_PROB, ACE_PI_SWITCH_ACT);
break;
case ACE_PD:
printf("Input activities will be (%f, %f, %f)...\n", p, d, d);
fflush(0);
break;
case ACE_ACT:
printf("Input activities will be read from an activity file...\n");
break;
case ACE_VEC:
printf("Input activities will be read from a vector file...\n");
break;
default:
printf("Error reading activities.\n");
error = ACE_ERROR;
break;
}
if (!error) {
if (clk_name == NULL) {
// No clocks
printf(
"No clocks detected in blif file. This is not supported.\n");
error = ACE_ERROR;
} else {
printf("Clock detected: %s\n", clk_name);
}
}
// Read Activities
if (!error) {
error = ace_io_read_activity(ntk, IN_ACT, pi_format, p, d, clk_name);
}
if (!error) {
error = ace_calc_activity(ntk, ACE_NUM_VECTORS, clk_name);
}
//Abc_NtkToSop(ntk, 0);
Abc_Ntk_t * new_ntk;
new_ntk = Abc_NtkToNetlist(ntk);
if (!error) {
ace_io_print_activity(ntk, OUT_ACT);
}
if (!error) {
Io_WriteHie(ntk, blif_file_name, new_blif_file_name);
printf("Done\n");
}
fflush(0);
return 0;
}