OpenFPGA/vpr7_x2p/vpr/SRC/device/mux_graph.cpp

1119 lines
37 KiB
C++

/**************************************************
* This file includes member functions for the
* data structures in mux_graph.h
*************************************************/
#include <cmath>
#include <map>
#include <algorithm>
#include "util.h"
#include "vtr_assert.h"
#include "mux_utils.h"
#include "mux_graph.h"
/**************************************************
* Member functions for the class MuxGraph
*************************************************/
/**************************************************
* Public Constructors
*************************************************/
/* Create an object based on a Circuit Model which is MUX */
MuxGraph::MuxGraph(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Build the graph for a given multiplexer model */
build_mux_graph(circuit_lib, circuit_model, mux_size);
}
/**************************************************
* Private Constructors
*************************************************/
/* Create an empty graph */
MuxGraph::MuxGraph() {
return;
}
/**************************************************
* Public Accessors : Aggregates
*************************************************/
//Accessors
MuxGraph::node_range MuxGraph::nodes() const {
return vtr::make_range(node_ids_.begin(), node_ids_.end());
}
/* Find the non-input nodes */
std::vector<MuxNodeId> MuxGraph::non_input_nodes() const {
/* Must be an valid graph */
VTR_ASSERT_SAFE(valid_mux_graph());
std::vector<MuxNodeId> node_list;
/* Build the node list, level by level */
for (size_t level = 0; level < num_node_levels(); ++level) {
for (size_t node_type = 0; node_type < size_t(NUM_MUX_NODE_TYPES); ++node_type) {
/* Bypass any nodes which are not OUTPUT and INTERNAL */
if (size_t(MUX_INPUT_NODE) == node_type) {
continue;
}
/* Reach here, this is either an OUTPUT or INTERNAL node */
for (auto node : node_lookup_[level][node_type]) {
node_list.push_back(node);
}
}
}
return node_list;
}
MuxGraph::edge_range MuxGraph::edges() const {
return vtr::make_range(edge_ids_.begin(), edge_ids_.end());
}
MuxGraph::mem_range MuxGraph::memories() const {
return vtr::make_range(mem_ids_.begin(), mem_ids_.end());
}
std::vector<size_t> MuxGraph::levels() const {
std::vector<size_t> graph_levels;
for (size_t lvl = 0; lvl < num_levels(); ++lvl) {
graph_levels.push_back(lvl);
}
return graph_levels;
}
std::vector<size_t> MuxGraph::node_levels() const {
std::vector<size_t> graph_levels;
for (size_t lvl = 0; lvl < num_node_levels(); ++lvl) {
graph_levels.push_back(lvl);
}
return graph_levels;
}
/**************************************************
* Public Accessors: Data query
*************************************************/
/* Find the number of inputs in the MUX graph */
size_t MuxGraph::num_inputs() const {
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* Sum up the number of INPUT nodes in each level */
size_t num_inputs = 0;
for (auto node_per_level : node_lookup_) {
num_inputs += node_per_level[MUX_INPUT_NODE].size();
}
return num_inputs;
}
/* Return the node ids of all the inputs of the multiplexer */
std::vector<MuxNodeId> MuxGraph::inputs() const {
std::vector<MuxNodeId> input_nodes;
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* Add the input nodes in each level */
for (auto node_per_level : node_lookup_) {
input_nodes.insert(input_nodes.end(), node_per_level[MUX_INPUT_NODE].begin(), node_per_level[MUX_INPUT_NODE].end());
}
return input_nodes;
}
/* Find the number of outputs in the MUX graph */
size_t MuxGraph::num_outputs() const {
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* Sum up the number of INPUT nodes in each level */
size_t num_outputs = 0;
for (auto node_per_level : node_lookup_) {
num_outputs += node_per_level[MUX_OUTPUT_NODE].size();
}
return num_outputs;
}
/* Return the node ids of all the outputs of the multiplexer */
std::vector<MuxNodeId> MuxGraph::outputs() const {
std::vector<MuxNodeId> output_nodes;
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* Add the output nodes in each level */
for (auto node_per_level : node_lookup_) {
output_nodes.insert(output_nodes.end(), node_per_level[MUX_OUTPUT_NODE].begin(), node_per_level[MUX_OUTPUT_NODE].end());
}
return output_nodes;
}
/* Find the edge between two MUX nodes */
std::vector<MuxEdgeId> MuxGraph::find_edges(const MuxNodeId& from_node, const MuxNodeId& to_node) const {
std::vector<MuxEdgeId> edges;
VTR_ASSERT(valid_node_id(from_node));
VTR_ASSERT(valid_node_id(to_node));
for (const auto& edge : node_out_edges_[from_node]) {
for (const auto& cand : edge_sink_nodes_[edge]) {
if (cand == to_node) {
/* This is the wanted edge, add to list */
edges.push_back(edge);
}
}
}
return edges;
}
/* Find the number of levels in the MUX graph */
size_t MuxGraph::num_levels() const {
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
/* The num_levels by definition excludes the level for outputs, so a deduection is applied */
return node_lookup_.size() - 1;
}
/* Find the actual number of levels in the MUX graph */
size_t MuxGraph::num_node_levels() const {
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
return node_lookup_.size();
}
/* Find the number of configuration memories in the MUX graph */
size_t MuxGraph::num_memory_bits() const {
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_mux_graph());
return mem_ids_.size();
}
/* Find the number of SRAMs at a level in the MUX graph */
size_t MuxGraph::num_memory_bits_at_level(const size_t& level) const {
/* need to check if the graph is valid or not */
VTR_ASSERT_SAFE(valid_level(level));
VTR_ASSERT_SAFE(valid_mux_graph());
return mem_lookup_[level].size();
}
/* Find the number of nodes at a given level in the MUX graph */
size_t MuxGraph::num_nodes_at_level(const size_t& level) const {
/* validate the level numbers */
VTR_ASSERT_SAFE(valid_level(level));
VTR_ASSERT_SAFE(valid_mux_graph());
size_t num_nodes = 0;
for (size_t node_type = 0; node_type < size_t(NUM_MUX_NODE_TYPES); ++node_type) {
num_nodes += node_lookup_[level][node_type].size();
}
return num_nodes;
}
/* Find the level of a node */
size_t MuxGraph::node_level(const MuxNodeId& node) const {
/* validate the node */
VTR_ASSERT(valid_node_id(node));
return node_levels_[node];
}
/* Find the index of a node at its level */
size_t MuxGraph::node_index_at_level(const MuxNodeId& node) const {
/* validate the node */
VTR_ASSERT(valid_node_id(node));
return node_ids_at_level_[node];
}
/* Find the input edges for a node */
std::vector<MuxEdgeId> MuxGraph::node_in_edges(const MuxNodeId& node) const {
/* validate the node */
VTR_ASSERT(valid_node_id(node));
return node_in_edges_[node];
}
/* Find the input nodes for a edge */
std::vector<MuxNodeId> MuxGraph::edge_src_nodes(const MuxEdgeId& edge) const {
/* validate the edge */
VTR_ASSERT(valid_edge_id(edge));
return edge_src_nodes_[edge];
}
/* Find the mem that control the edge */
MuxMemId MuxGraph::find_edge_mem(const MuxEdgeId& edge) const {
/* validate the edge */
VTR_ASSERT(valid_edge_id(edge));
return edge_mem_ids_[edge];
}
/* Identify if the edge is controlled by the inverted output of a mem */
bool MuxGraph::is_edge_use_inv_mem(const MuxEdgeId& edge) const {
/* validate the edge */
VTR_ASSERT(valid_edge_id(edge));
return edge_inv_mem_[edge];
}
/* Find the sizes of each branch of a MUX */
std::vector<size_t> MuxGraph::branch_sizes() const {
std::vector<size_t> branch;
/* Visit each internal nodes/output nodes and find the the number of incoming edges */
for (auto node : node_ids_ ) {
/* Bypass input nodes */
if ( (MUX_OUTPUT_NODE != node_types_[node])
&& (MUX_INTERNAL_NODE != node_types_[node]) ) {
continue;
}
size_t branch_size = node_in_edges_[node].size();
/* make sure the branch size is valid */
VTR_ASSERT_SAFE(valid_mux_implementation_num_inputs(branch_size));
/* Nodes with the same number of incoming edges, indicate the same size of branch circuit */
std::vector<size_t>::iterator it;
it = std::find(branch.begin(), branch.end(), branch_size);
/* if already exists a branch with the same size, skip updating the vector */
if (it != branch.end()) {
continue;
}
branch.push_back(branch_size);
}
/* Sort the branch by size */
std::sort(branch.begin(), branch.end());
return branch;
}
/* Find the sizes of each branch of a MUX at a given level */
std::vector<size_t> MuxGraph::branch_sizes(const size_t& level) const {
std::vector<size_t> branch;
/* Visit each internal nodes/output nodes and find the the number of incoming edges */
for (auto node : node_ids_ ) {
/* Bypass input nodes */
if ( (MUX_OUTPUT_NODE != node_types_[node])
&& (MUX_INTERNAL_NODE != node_types_[node]) ) {
continue;
}
/* Bypass nodes that is not at the level */
if ( level != node_levels_[node]) {
continue;
}
size_t branch_size = node_in_edges_[node].size();
/* make sure the branch size is valid */
VTR_ASSERT_SAFE(valid_mux_implementation_num_inputs(branch_size));
/* Nodes with the same number of incoming edges, indicate the same size of branch circuit */
std::vector<size_t>::iterator it;
it = std::find(branch.begin(), branch.end(), branch_size);
/* if already exists a branch with the same size, skip updating the vector */
if (it != branch.end()) {
continue;
}
branch.push_back(branch_size);
}
/* Sort the branch by size */
std::sort(branch.begin(), branch.end());
return branch;
}
/* Build a subgraph from the given node
* The strategy is very simple, we just
* extract a 1-level graph from here
*/
MuxGraph MuxGraph::subgraph(const MuxNodeId& root_node) const {
/* Validate the node */
VTR_ASSERT_SAFE(this->valid_node_id(root_node));
/* Generate an empty graph */
MuxGraph mux_graph;
/* A map to record node-to-node mapping from origin graph to subgraph */
std::map<MuxNodeId, MuxNodeId> node2node_map;
/* A map to record edge-to-edge mapping from origin graph to subgraph */
std::map<MuxEdgeId, MuxEdgeId> edge2edge_map;
/* Add output nodes to subgraph */
MuxNodeId to_node_subgraph = mux_graph.add_node(MUX_OUTPUT_NODE);
mux_graph.node_levels_[to_node_subgraph] = 1;
mux_graph.node_ids_at_level_[to_node_subgraph] = 0;
mux_graph.node_output_ids_[to_node_subgraph] = MuxOutputId(0);
/* Update the node-to-node map */
node2node_map[root_node] = to_node_subgraph;
/* Add input nodes and edges to subgraph */
size_t input_cnt = 0;
for (auto edge_origin : this->node_in_edges_[root_node]) {
VTR_ASSERT_SAFE(1 == edge_src_nodes_[edge_origin].size());
/* Add nodes */
MuxNodeId from_node_origin = this->edge_src_nodes_[edge_origin][0];
MuxNodeId from_node_subgraph = mux_graph.add_node(MUX_INPUT_NODE);
/* Configure the nodes */
mux_graph.node_levels_[from_node_subgraph] = 0;
mux_graph.node_ids_at_level_[from_node_subgraph] = input_cnt;
mux_graph.node_input_ids_[from_node_subgraph] = MuxInputId(input_cnt);
input_cnt++;
/* Update the node-to-node map */
node2node_map[from_node_origin] = from_node_subgraph;
/* Add edges */
MuxEdgeId edge_subgraph = mux_graph.add_edge(node2node_map[from_node_origin], node2node_map[root_node]);
edge2edge_map[edge_origin] = edge_subgraph;
/* Configure edges */
mux_graph.edge_models_[edge_subgraph] = this->edge_models_[edge_origin];
mux_graph.edge_inv_mem_[edge_subgraph] = this->edge_inv_mem_[edge_origin];
}
/* A map to record mem-to-mem mapping from origin graph to subgraph */
std::map<MuxMemId, MuxMemId> mem2mem_map;
/* Add memory bits and configure edges */
for (auto edge_origin : this->node_in_edges_[root_node]) {
MuxMemId mem_origin = this->edge_mem_ids_[edge_origin];
/* Try to find if the mem is already in the list */
std::map<MuxMemId, MuxMemId>::iterator it = mem2mem_map.find(mem_origin);
if (it != mem2mem_map.end()) {
/* Found, we skip mem addition. But make sure we have a valid one */
VTR_ASSERT_SAFE(MuxMemId::INVALID() != mem2mem_map[mem_origin]);
/* configure the edge */
mux_graph.edge_mem_ids_[edge2edge_map[edge_origin]] = mem2mem_map[mem_origin];
continue;
}
/* Not found, we add a memory bit and record in the mem-to-mem map */
MuxMemId mem_subgraph = mux_graph.add_mem();
mux_graph.set_mem_level(mem_subgraph, 0);
mem2mem_map[mem_origin] = mem_subgraph;
/* configure the edge */
mux_graph.edge_mem_ids_[edge2edge_map[edge_origin]] = mem_subgraph;
}
/* Since the graph is finalized, it is time to build the fast look-up */
mux_graph.build_node_lookup();
mux_graph.build_mem_lookup();
return mux_graph;
}
/* Generate MUX graphs for its branches
* Similar to the branch_sizes() method,
* we search all the internal nodes and
* find out what are the input sizes of
* the branches.
* Then we extract unique subgraphs and return
*/
std::vector<MuxGraph> MuxGraph::build_mux_branch_graphs() const {
std::map<size_t, bool> branch_done; /* A map showing the status of graph generation */
std::vector<MuxGraph> branch_graphs;
/* Visit each internal nodes/output nodes and find the the number of incoming edges */
for (auto node : node_ids_ ) {
/* Bypass input nodes */
if ( (MUX_OUTPUT_NODE != node_types_[node])
&& (MUX_INTERNAL_NODE != node_types_[node]) ) {
continue;
}
size_t branch_size = node_in_edges_[node].size();
/* make sure the branch size is valid */
VTR_ASSERT_SAFE(valid_mux_implementation_num_inputs(branch_size));
/* check if the branch have been done in sub-graph extraction! */
std::map<size_t, bool>::iterator it = branch_done.find(branch_size);
/* if it is done, we can skip */
if (it != branch_done.end()) {
VTR_ASSERT(branch_done[branch_size]);
continue;
}
/* Generate a subgraph and push back */
branch_graphs.push_back(subgraph(node));
/* Mark it is done for this branch size */
branch_done[branch_size] = true;
}
return branch_graphs;
}
/* Get the input id of a given node */
MuxInputId MuxGraph::input_id(const MuxNodeId& node_id) const {
/* Validate node id */
VTR_ASSERT(valid_node_id(node_id));
/* Must be an input */
VTR_ASSERT(MUX_INPUT_NODE == node_types_[node_id]);
return node_input_ids_[node_id];
}
/* Identify if the node is an input of the MUX */
bool MuxGraph::is_node_input(const MuxNodeId& node_id) const {
/* Validate node id */
VTR_ASSERT(true == valid_node_id(node_id));
return (MUX_INPUT_NODE == node_types_[node_id]);
}
/* Get the output id of a given node */
MuxOutputId MuxGraph::output_id(const MuxNodeId& node_id) const {
/* Validate node id */
VTR_ASSERT(valid_node_id(node_id));
/* Must be an output */
VTR_ASSERT(MUX_OUTPUT_NODE == node_types_[node_id]);
return node_output_ids_[node_id];
}
/* Identify if the node is an output of the MUX */
bool MuxGraph::is_node_output(const MuxNodeId& node_id) const {
/* Validate node id */
VTR_ASSERT(true == valid_node_id(node_id));
return (MUX_OUTPUT_NODE == node_types_[node_id]);
}
/* Get the node id of a given input */
MuxNodeId MuxGraph::node_id(const MuxInputId& input_id) const {
/* Use the node_lookup to accelerate the search */
for (const auto& lvl : node_lookup_) {
for (const auto& cand_node : lvl[MUX_INPUT_NODE]) {
if (input_id == node_input_ids_[cand_node]) {
return cand_node;
}
}
}
return MuxNodeId::INVALID();
}
/* Get the node id w.r.t. the node level and node_index at the level
* Return an invalid value if not found
*/
MuxNodeId MuxGraph::node_id(const size_t& node_level, const size_t& node_index_at_level) const {
/* Ensure we have a valid node_look-up */
VTR_ASSERT_SAFE(valid_node_lookup());
MuxNodeId ret_node = MuxNodeId::INVALID();
/* Search in the fast look up */
if (node_level >= node_lookup_.size()) {
return ret_node;
}
size_t node_cnt = 0;
/* Node level is valid, search in the node list */
for (const auto& nodes_by_type : node_lookup_[node_level]) {
/* Search the node_index_at_level of each node */
for (const auto& node : nodes_by_type) {
if (node_index_at_level != node_ids_at_level_[node]) {
continue;
}
/* Find the node, assign value and update the counter */
ret_node = node;
node_cnt++;
}
}
/* We should either find a node or nothing */
VTR_ASSERT((0 == node_cnt) || (1 == node_cnt));
return ret_node;
}
/* Decode memory bits based on an input id */
std::vector<size_t> MuxGraph::decode_memory_bits(const MuxInputId& input_id) const {
/* initialize the memory bits: TODO: support default value */
std::vector<size_t> mem_bits(mem_ids_.size(), 0);
/* valid the input */
VTR_ASSERT_SAFE(valid_input_id(input_id));
/* Route the input to the output and update mem */
MuxNodeId next_node = node_id(input_id);
while ( 0 < node_out_edges_[next_node].size() ) {
VTR_ASSERT_SAFE (1 == node_out_edges_[next_node].size());
MuxEdgeId edge = node_out_edges_[next_node][0];
/* Configure the mem bits:
* if inv_mem is enabled, it means 0 to enable this edge
* otherwise, it is 1 to enable this edge
*/
MuxMemId mem = edge_mem_ids_[edge];
VTR_ASSERT_SAFE (valid_mem_id(mem));
if (true == edge_inv_mem_[edge]) {
mem_bits[size_t(mem)] = 0;
} else {
mem_bits[size_t(mem)] = 1;
}
/* each edge must have 1 fan-out */
VTR_ASSERT_SAFE (1 == edge_sink_nodes_[edge].size());
/* Visit the next node */
next_node = edge_sink_nodes_[edge][0];
}
/* valid the output */
VTR_ASSERT_SAFE(MUX_OUTPUT_NODE == node_types_[next_node]);
VTR_ASSERT_SAFE(valid_output_id(node_output_ids_[next_node]));
return mem_bits;
}
/**************************************************
* Private mutators: basic operations
*************************************************/
/* Add a unconfigured node to the MuxGraph */
MuxNodeId MuxGraph::add_node(const enum e_mux_graph_node_type& node_type) {
MuxNodeId node = MuxNodeId(node_ids_.size());
/* Push to the node list */
node_ids_.push_back(node);
/* Resize the other node-related vectors */
node_types_.push_back(node_type);
node_input_ids_.push_back(MuxInputId::INVALID());
node_output_ids_.push_back(MuxOutputId::INVALID());
node_levels_.push_back(-1);
node_ids_at_level_.push_back(-1);
node_in_edges_.emplace_back();
node_out_edges_.emplace_back();
return node;
}
/* Add a edge connecting two nodes */
MuxEdgeId MuxGraph::add_edge(const MuxNodeId& from_node, const MuxNodeId& to_node) {
MuxEdgeId edge = MuxEdgeId(edge_ids_.size());
/* Push to the node list */
edge_ids_.push_back(edge);
/* Resize the other node-related vectors */
edge_models_.push_back(CircuitModelId::INVALID());
edge_mem_ids_.push_back(MuxMemId::INVALID());
edge_inv_mem_.push_back(false);
/* update the edge-node connections */
VTR_ASSERT(valid_node_id(from_node));
edge_src_nodes_.emplace_back();
edge_src_nodes_[edge].push_back(from_node);
node_out_edges_[from_node].push_back(edge);
VTR_ASSERT(valid_node_id(to_node));
edge_sink_nodes_.emplace_back();
edge_sink_nodes_[edge].push_back(to_node);
node_in_edges_[to_node].push_back(edge);
return edge;
}
/* Add a memory bit to the MuxGraph */
MuxMemId MuxGraph::add_mem() {
MuxMemId mem = MuxMemId(mem_ids_.size());
/* Push to the node list */
mem_ids_.push_back(mem);
mem_levels_.push_back(size_t(-1));
/* Resize the other node-related vectors */
return mem;
}
/* Configure the level of a memory */
void MuxGraph::set_mem_level(const MuxMemId& mem, const size_t& level) {
/* Make sure we have valid edge and mem */
VTR_ASSERT( valid_mem_id(mem) );
mem_levels_[mem] = level;
}
/* Link an edge to a memory bit */
void MuxGraph::set_edge_mem_id(const MuxEdgeId& edge, const MuxMemId& mem) {
/* Make sure we have valid edge and mem */
VTR_ASSERT( valid_edge_id(edge) && valid_mem_id(mem) );
edge_mem_ids_[edge] = mem;
}
/**************************************************
* Private mutators: graph builders
*************************************************/
/* Build a graph for a multi-level multiplexer implementation
* support both generic multi-level and tree-like multiplexers
*
* a N:1 multi-level MUX
* ----------------------
*
* input_node --->+
* |
* input_node --->|
* |--->+
* ... | |
* | |
* input_node --->+ |---> ...
* |
* ... --->+ --->+
* |
* ... ... |---> output_node
* |
* ... --->+ --->+
* |
* input_node --->+ |---> ...
* | |
* input_node --->| |
* |--->+
* ... |
* |
* input_node --->+
*
* tree-like multiplexer graph will look like:
* --------------------------------------------
*
* input_node --->+
* |--->+
* input_node --->+ |---> ...
* |
* --->+ --->+
* ... ... ... |----> output_node
* ... --->+ --->+
* |---> ...
* input_node --->+ |
* |--->+
* input_node --->+
*
*/
void MuxGraph::build_multilevel_mux_graph(const size_t& mux_size,
const size_t& num_levels, const size_t& num_inputs_per_branch,
const CircuitModelId& pgl_model) {
/* Make sure mux_size for each branch is valid */
VTR_ASSERT(valid_mux_implementation_num_inputs(num_inputs_per_branch));
/* In regular cases, there is 1 mem bit for each input of a branch */
size_t num_mems_per_level = num_inputs_per_branch;
/* For 2-input branch, only 1 mem bit is needed for each level! */
if (2 == num_inputs_per_branch) {
num_mems_per_level = 1;
}
/* Number of memory bits is definite, add them */
for (size_t ilvl = 0; ilvl < num_levels; ++ilvl) {
for (size_t imem = 0; imem < num_mems_per_level; ++imem) {
MuxMemId mem = add_mem();
mem_levels_[mem] = ilvl;
}
}
/* Create a fast node lookup locally.
* Only used for building the graph
* it sorts the nodes by levels and ids at each level
*/
std::vector<std::vector<MuxNodeId>> node_lookup; /* [num_levels][num_nodes_per_level] */
node_lookup.resize(num_levels + 1);
/* Number of outputs is definite, add and configure */
MuxNodeId output_node = add_node(MUX_OUTPUT_NODE);
node_levels_[output_node] = num_levels;
node_ids_at_level_[output_node] = 0;
node_output_ids_[output_node] = MuxOutputId(0);
/* Update node lookup */
node_lookup[num_levels].push_back(output_node);
/* keep a list of node ids which can be candidates for input nodes */
std::vector<MuxNodeId> input_node_ids;
/* Add internal nodes level by level,
* we start from the last level, following a strategy like tree growing
*/
for (size_t lvl = num_levels - 1; ; --lvl) {
/* Expand from the existing nodes
* Last level should expand from output_node
* Other levels will expand from internal nodes!
*/
size_t node_cnt_per_level = 0; /* A counter to record node indices at each level */
for (MuxNodeId seed_node : node_lookup[lvl + 1]) {
/* Add a new node and connect to seed_node, until we reach the num_inputs_per_branch */
for (size_t i = 0; i < num_inputs_per_branch; ++i) {
/* We deposite a type of INTERNAL_NODE,
* later it will be configured to INPUT if it is in the input list
*/
MuxNodeId expand_node = add_node(MUX_INTERNAL_NODE);
/* Node level is deterministic */
node_levels_[expand_node] = lvl;
node_ids_at_level_[expand_node] = node_cnt_per_level;
/* update level node counter */
node_cnt_per_level++;
/* Create an edge and connect the two nodes */
MuxEdgeId edge = add_edge(expand_node, seed_node);
/* Configure the edge */
edge_models_[edge] = pgl_model;
/* Memory id depends on the level and offset in the current branch
* if number of inputs per branch is 2, it indicates a tree-like multiplexer,
* every two edges will share one memory bit
* otherwise, each edge corresponds to a memory bit
*/
if ( 2 == num_inputs_per_branch) {
MuxMemId mem_id = MuxMemId(lvl);
set_edge_mem_id(edge, mem_id);
/* If this is a second edge in the branch, we will assign it to an inverted edge */
if (0 != i % num_inputs_per_branch) {
edge_inv_mem_[edge] = true;
}
} else {
MuxMemId mem_id = MuxMemId( lvl * num_inputs_per_branch + i );
set_edge_mem_id(edge, mem_id);
}
/* Update node lookup */
node_lookup[lvl].push_back(expand_node);
/* Push the node to input list, and then remove the seed_node from the list */
input_node_ids.push_back(expand_node);
/* Remove the node if the seed node is the list */
std::vector<MuxNodeId>::iterator it = find(input_node_ids.begin(), input_node_ids.end(), seed_node);
if (it != input_node_ids.end()) {
input_node_ids.erase(it);
}
/* Check the number of input nodes, if already meet the demand, we can finish here */
if (mux_size != input_node_ids.size()) {
continue; /* We need more inputs, keep looping */
}
/* The graph is done, we configure the input nodes and then we can return */
/* We must be in level 0 !*/
VTR_ASSERT( 0 == lvl ) ;
for (MuxNodeId input_node : input_node_ids) {
node_types_[input_node] = MUX_INPUT_NODE;
}
/* Sort the nodes by the levels and offset */
size_t input_cnt = 0;
for (auto lvl_nodes : node_lookup) {
for (MuxNodeId cand_node : lvl_nodes) {
if (MUX_INPUT_NODE != node_types_[cand_node]) {
continue;
}
/* Update the input node ids */
node_input_ids_[cand_node] = MuxInputId(input_cnt);
/* Update the counter */
input_cnt++;
}
}
/* Make sure we visited all the inputs in the cache */
VTR_ASSERT(input_cnt == input_node_ids.size());
/* Finish building the graph for a multi-level multiplexer */
return;
}
}
}
/* Finish building the graph for a multi-level multiplexer */
}
/* Build the graph for a given one-level multiplexer implementation
* a N:1 one-level MUX
*
* input_node --->+
* |
* input_node --->|
* |--> output_node
* ... |
* |
* input_node --->+
*/
void MuxGraph::build_onelevel_mux_graph(const size_t& mux_size,
const CircuitModelId& pgl_model) {
/* Make sure mux_size is valid */
VTR_ASSERT(valid_mux_implementation_num_inputs(mux_size));
/* We definitely know how many nodes we need,
* N inputs, 1 output and 0 internal nodes
*/
MuxNodeId output_node = add_node(MUX_OUTPUT_NODE);
node_levels_[output_node] = 1;
node_ids_at_level_[output_node] = 0;
node_output_ids_[output_node] = MuxOutputId(0);
for (size_t i = 0; i < mux_size; ++i) {
MuxNodeId input_node = add_node(MUX_INPUT_NODE);
/* All the node belong to level 0 (we have only 1 level) */
node_input_ids_[input_node] = MuxInputId(i);
node_levels_[input_node] = 0;
node_ids_at_level_[input_node] = i;
/* We definitely know how many edges we need,
* the same as mux_size, add a edge connecting two nodes
*/
MuxEdgeId edge = add_edge(input_node, output_node);
/* Configure the edge */
edge_models_[edge] = pgl_model;
/* Create a memory bit*/
MuxMemId mem = add_mem();
mem_levels_[mem] = 0;
/* Link the edge to a memory bit */
set_edge_mem_id(edge, mem);
}
/* Finish building the graph for a one-level multiplexer */
}
/* Convert some internal nodes to be additional outputs
* according to the fracturable LUT port definition
* We will iterate over each output port of a circuit model
* and find the frac_level and output_mask
* Then, the internal nodes at the frac_level will be converted
* to output nodes with a given output_mask
*/
void MuxGraph::add_fracturable_outputs(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model) {
/* Iterate over output ports */
for (const auto& port : circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true)) {
/* Get the fracturable_level */
size_t frac_level = circuit_lib.port_lut_frac_level(port);
/* Bypass invalid frac_level */
if (size_t(-1) == frac_level) {
continue;
}
/* Iterate over output masks */
for (const auto& output_idx : circuit_lib.port_lut_output_masks(port)) {
size_t num_matched_nodes = 0;
/* Iterate over node and find the internal nodes, which match the frac_level and output_idx */
for (const auto& node : node_lookup_[frac_level][MUX_INTERNAL_NODE]) {
if (node_ids_at_level_[node] != output_idx) {
/* Bypass condition */
continue;
}
/* Reach here, this is the node we want
* Convert it to output nodes and update the counter
*/
node_types_[node] = MUX_OUTPUT_NODE;
node_output_ids_[node] = MuxOutputId(num_outputs());
num_matched_nodes++;
}
/* Either find 1 or 0 matched nodes */
if (0 != num_matched_nodes) {
/* We should find only one node that matches! */
VTR_ASSERT(1 == num_matched_nodes);
/* Rebuild the node look-up */
build_node_lookup();
continue; /* Finish here, go to next */
}
/* Sometime the wanted node is already an output, do a double check */
for (const auto& node : node_lookup_[frac_level][MUX_OUTPUT_NODE]) {
if (node_ids_at_level_[node] != output_idx) {
/* Bypass condition */
continue;
}
/* Reach here, this is the node we want
* Just update the counter
*/
num_matched_nodes++;
}
/* We should find only one node that matches! */
VTR_ASSERT(1 == num_matched_nodes);
}
}
}
/* Build the graph for a given multiplexer model */
void MuxGraph::build_mux_graph(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Make sure this model is a MUX */
VTR_ASSERT((SPICE_MODEL_MUX == circuit_lib.model_type(circuit_model))
|| (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) );
/* Make sure mux_size is valid */
VTR_ASSERT(valid_mux_implementation_num_inputs(mux_size));
size_t impl_mux_size = find_mux_implementation_num_inputs(circuit_lib, circuit_model, mux_size);
/* Depends on the mux size, the implemented multiplexer structure may change! */
enum e_spice_model_structure impl_structure = find_mux_implementation_structure(circuit_lib, circuit_model, impl_mux_size);
/* Branch on multiplexer structures, leading to different building strategies */
switch (impl_structure) {
case SPICE_MODEL_STRUCTURE_TREE: {
/* Find the number of levels */
size_t num_levels = find_treelike_mux_num_levels(impl_mux_size);
/* Find the number of inputs per branch, this is not final */
size_t num_inputs_per_branch = 2;
/* Build a multilevel mux graph */
build_multilevel_mux_graph(impl_mux_size, num_levels, num_inputs_per_branch, circuit_lib.pass_gate_logic_model(circuit_model));
break;
}
case SPICE_MODEL_STRUCTURE_ONELEVEL: {
build_onelevel_mux_graph(impl_mux_size, circuit_lib.pass_gate_logic_model(circuit_model));
break;
}
case SPICE_MODEL_STRUCTURE_MULTILEVEL: {
/* Find the number of inputs per branch, this is not final */
size_t num_inputs_per_branch = find_multilevel_mux_branch_num_inputs(impl_mux_size, circuit_lib.mux_num_levels(circuit_model));
/* Build a multilevel mux graph */
build_multilevel_mux_graph(impl_mux_size, circuit_lib.mux_num_levels(circuit_model),
num_inputs_per_branch,
circuit_lib.pass_gate_logic_model(circuit_model));
break;
}
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d]) Invalid multiplexer structure for circuit model (name=%s)!\n",
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
/* Since the graph is finalized, it is time to build the fast look-up */
build_node_lookup();
build_mem_lookup();
/* For fracturable LUTs, we need to add more outputs to the MUX graph */
if ( (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model))
&& (true == circuit_lib.is_lut_fracturable(circuit_model)) ) {
add_fracturable_outputs(circuit_lib, circuit_model);
}
}
/* Build fast node lookup */
void MuxGraph::build_node_lookup() {
/* Invalidate the node lookup if necessary */
invalidate_node_lookup();
/* Find the maximum number of levels */
size_t num_levels = 0;
for (auto node : nodes()) {
num_levels = std::max((int)node_levels_[node], (int)num_levels);
}
/* Resize node_lookup */
node_lookup_.resize(num_levels + 1);
for (size_t lvl = 0; lvl < node_lookup_.size(); ++lvl) {
/* Resize by number of node types */
node_lookup_[lvl].resize(NUM_MUX_NODE_TYPES);
}
/* Fill the node lookup */
for (auto node : nodes()) {
node_lookup_[node_levels_[node]][size_t(node_types_[node])].push_back(node);
}
}
/* Build fast mem lookup */
void MuxGraph::build_mem_lookup() {
/* Invalidate the mem lookup if necessary */
invalidate_mem_lookup();
/* Find the maximum number of levels */
size_t num_levels = 0;
for (auto mem : memories()) {
num_levels = std::max((int)mem_levels_[mem], (int)num_levels);
}
/* Resize mem_lookup */
mem_lookup_.resize(num_levels + 1);
for (auto mem : memories()) {
/* Categorize mem nodes into mem_lookup */
mem_lookup_[mem_levels_[mem]].push_back(mem);
}
}
/* Invalidate (empty) the node fast lookup*/
void MuxGraph::invalidate_node_lookup() {
node_lookup_.clear();
}
/* Invalidate (empty) the mem fast lookup*/
void MuxGraph::invalidate_mem_lookup() {
mem_lookup_.clear();
}
/**************************************************
* Private validators
*************************************************/
/* valid ids */
bool MuxGraph::valid_node_id(const MuxNodeId& node) const {
return size_t(node) < node_ids_.size() && node_ids_[node] == node;
}
bool MuxGraph::valid_edge_id(const MuxEdgeId& edge) const {
return size_t(edge) < edge_ids_.size() && edge_ids_[edge] == edge;
}
bool MuxGraph::valid_mem_id(const MuxMemId& mem) const {
return size_t(mem) < mem_ids_.size() && mem_ids_[mem] == mem;
}
/* validate an input id (from which data path signal will be progagated to the output) */
bool MuxGraph::valid_input_id(const MuxInputId& input_id) const {
for (const auto& lvl : node_lookup_) {
for (const auto& node : lvl[MUX_INPUT_NODE]) {
if (size_t(input_id) > size_t(node_input_ids_[node])) {
return false;
}
}
}
return true;
}
/* validate an output id */
bool MuxGraph::valid_output_id(const MuxOutputId& output_id) const {
for (const auto& lvl : node_lookup_) {
for (const auto& node : lvl[MUX_OUTPUT_NODE]) {
if (size_t(output_id) > size_t(node_output_ids_[node])) {
return false;
}
}
}
return true;
}
bool MuxGraph::valid_level(const size_t& level) const {
return level < num_node_levels();
}
bool MuxGraph::valid_node_lookup() const {
return node_lookup_.empty();
}
/* validate a mux graph and see if it is valid */
bool MuxGraph::valid_mux_graph() const {
/* A valid MUX graph should be
* 1. every node has 1 fan-out except output node
* 2. every input can be routed to the output node
*/
for (const auto& node : nodes()) {
/* output node has 0 fan-out*/
if (MUX_OUTPUT_NODE == node_types_[node]) {
continue;
}
/* other nodes should have 1 fan-out */
if (1 != node_out_edges_[node].size()) {
return false;
}
}
/* Try to route to output */
for (const auto& node : nodes()) {
if (MUX_INPUT_NODE == node_types_[node]) {
MuxNodeId next_node = node;
while ( 0 < node_out_edges_[next_node].size() ) {
MuxEdgeId edge = node_out_edges_[next_node][0];
/* each edge must have 1 fan-out */
if (1 != edge_sink_nodes_[edge].size()) {
return false;
}
next_node = edge_sink_nodes_[edge][0];
}
if (MUX_OUTPUT_NODE != node_types_[next_node]) {
return false;
}
}
}
return true;
}
/**************************************************
* End of Member functions for the class MuxGraph
*************************************************/