OpenFPGA/vpr7_x2p/vpr/SRC/device/mux_utils.cpp

234 lines
8.9 KiB
C++

/**************************************************
* This file includes a series of most utilized functions
* that are used to implement a multiplexer
*************************************************/
#include <cmath>
#include "spice_types.h"
#include "util.h"
#include "vtr_assert.h"
#include "mux_utils.h"
/* Validate the number of inputs for a multiplexer implementation,
* the minimum supported size is 2
* otherwise, there is no need for a MUX
*/
bool valid_mux_implementation_num_inputs(const size_t& mux_size) {
return (2 <= mux_size);
}
/**************************************************
* Find the actual number of datapath inputs for a multiplexer implementation
* 1. if there are no requirements on constant inputs, mux_size is the actual one
* 2. if there exist constant inputs, mux_size should minus 1
* This function is mainly used to recover the number of datapath inputs
* for MUXGraphs which is a generic representation without labelling datapath inputs
*************************************************/
size_t find_mux_num_datapath_inputs(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Should be either MUX or LUT
* LUTs do have an tree-like MUX, but there is no need for a constant input!
*/
VTR_ASSERT ((SPICE_MODEL_MUX == circuit_lib.model_type(circuit_model))
|| (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) );
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
return mux_size;
}
if (true == circuit_lib.mux_add_const_input(circuit_model)) {
return mux_size - 1;
}
return mux_size;
}
/**************************************************
* Find the actual number of inputs for a multiplexer implementation
* 1. if there are no requirements on constant inputs, mux_size is the actual one
* 2. if there exist constant inputs, mux_size should plus 1
*************************************************/
size_t find_mux_implementation_num_inputs(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Should be either MUX or LUT
* LUTs do have an tree-like MUX, but there is no need for a constant input!
*/
VTR_ASSERT ((SPICE_MODEL_MUX == circuit_lib.model_type(circuit_model))
|| (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) );
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
return mux_size;
}
if (true == circuit_lib.mux_add_const_input(circuit_model)) {
return mux_size + 1;
}
return mux_size;
}
/**************************************************
* Find the structure for a multiplexer implementation
* 1. In most cases, the structure should follow the
* mux_structure defined by users in the CircuitLibrary
* 2. However, a special case may apply when mux_size is 2
* In such case, we will force a TREE structure
* regardless of users' specification as this is the
* most efficient structure
*************************************************/
enum e_spice_model_structure find_mux_implementation_structure(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size) {
/* Ensure the mux size is valid ! */
VTR_ASSERT(valid_mux_implementation_num_inputs(mux_size));
/* Branch on the mux sizes */
if (2 == mux_size) {
/* Tree-like is the best structure of CMOS MUX2 */
if (SPICE_MODEL_DESIGN_CMOS == circuit_lib.design_tech_type(circuit_model)) {
return SPICE_MODEL_STRUCTURE_TREE;
}
VTR_ASSERT_SAFE(SPICE_MODEL_DESIGN_RRAM == circuit_lib.design_tech_type(circuit_model));
/* One-level is the best structure of RRAM MUX2 */
return SPICE_MODEL_STRUCTURE_ONELEVEL;
}
return circuit_lib.mux_structure(circuit_model);
}
/**************************************************
* Find the number of levels for a tree-like multiplexer implementation
*************************************************/
size_t find_treelike_mux_num_levels(const size_t& mux_size) {
/* Do log2(mux_size), have a basic number */
size_t level = (size_t)(log((double)mux_size)/log(2.));
/* Fix the error, i.e. mux_size=5, level = 2, we have to complete */
while (mux_size > pow(2.,(double)level)) {
level++;
}
return level;
}
/**************************************************
* Find the number of inputs for majority of branches
* in a multi-level multiplexer implementation
*************************************************/
size_t find_multilevel_mux_branch_num_inputs(const size_t& mux_size,
const size_t& mux_level) {
/* Special Case: mux_size = 2 */
if (2 == mux_size) {
return mux_size;
}
if (1 == mux_level) {
return mux_size;
}
if (2 == mux_level) {
size_t num_input_per_unit = (size_t)sqrt(mux_size);
while ( num_input_per_unit * num_input_per_unit < mux_size) {
num_input_per_unit++;
}
return num_input_per_unit;
}
VTR_ASSERT_SAFE(2 < mux_level);
size_t num_input_per_unit = 2;
while (pow((double)num_input_per_unit, (double)mux_level) < mux_size) {
num_input_per_unit++;
}
if (!valid_mux_implementation_num_inputs(num_input_per_unit)) {
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d]) Number of inputs of each basis should be at least 2!\n",
__FILE__, __LINE__);
exit(1);
}
return num_input_per_unit;
}
/**************************************************
* Build a location map for intermediate buffers
* that may appear at the multiplexing structure of a LUT
* Here is a tricky thing:
* By default, the first and last stage should not exist any intermediate buffers
* For example:
* There are 5 stages in a 4-stage multiplexer is available for buffering
* but only 3 stages [1,2,3] are intermedate buffers
* and these are users' specification
*
* +-------+ +-------+ +-------+ +-------+
* location | stage | location | stage | location | stage | location | stage | location
* [0] | [0] | [1] | [1] | [2] | [2] | [3] | [3] | [5]
* +-------+ +-------+ +-------+ +-------+
*
* We will check if the length of location map matches the number of
* multiplexer levels. And then complete a location map
* for the given multiplexers
*************************************************/
std::vector<bool> build_mux_intermediate_buffer_location_map(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& num_mux_levels) {
/* Deposite a default location map */
std::vector<bool> location_map(num_mux_levels, false);
std::string location_map_str;
/* ONLY for LUTs: intermediate buffers may exist if specified */
if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) {
location_map_str = circuit_lib.lut_intermediate_buffer_location_map(circuit_model);
}
/* If no location map is specified, we can return here */
if (location_map_str.empty()) {
return location_map;
}
/* Check if the user-defined location map matches the number of mux levels*/
VTR_ASSERT(num_mux_levels - 2 == location_map_str.length());
/* Apply the location_map string to the intermediate stages of multiplexers */
for (size_t i = 0; i < location_map_str.length(); ++i) {
/* '1' indicates that an intermediate buffer is needed at the location */
if ('1' == location_map_str[i]) {
location_map[i + 1] = true;
}
}
return location_map;
}
/**************************************************
* Convert a linked list of MUX architecture to MuxLibrary
* TODO: this function will be deleted when MUXLibrary fully
* replace legacy data structures
*************************************************/
MuxLibrary convert_mux_arch_to_library(const CircuitLibrary& circuit_lib, t_llist* muxes_head) {
t_llist* temp = muxes_head;
MuxLibrary mux_lib;
/* Walk through the linked list */
while(temp) {
VTR_ASSERT_SAFE(NULL != temp->dptr);
t_spice_mux_model* cur_spice_mux_model = (t_spice_mux_model*)(temp->dptr);
/* Bypass the spice models who has a user-defined subckt */
if (NULL != cur_spice_mux_model->spice_model->verilog_netlist) {
/* Move on to the next*/
temp = temp->next;
continue;
}
/* Build a MUX graph for the model */
/* Find the circuit model id by the name */
CircuitModelId circuit_model = circuit_lib.model(cur_spice_mux_model->spice_model->name);
mux_lib.add_mux(circuit_lib, circuit_model, cur_spice_mux_model->size);
/* Move on to the next*/
temp = temp->next;
}
return mux_lib;
}