OpenFPGA/libs/EXTERNAL/capnproto/c++/src/kj/tuple.h

444 lines
18 KiB
C++

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows:
// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
// tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
// in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
//
// Note that:
// - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
// type.
// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
// flattened.
// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
// with type inference and `tuple()`.
#pragma once
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "common.h"
namespace kj {
namespace _ { // private
template <size_t index, typename... T>
struct TypeByIndex_;
template <typename First, typename... Rest>
struct TypeByIndex_<0, First, Rest...> {
typedef First Type;
};
template <size_t index, typename First, typename... Rest>
struct TypeByIndex_<index, First, Rest...>
: public TypeByIndex_<index - 1, Rest...> {};
template <size_t index>
struct TypeByIndex_<index> {
static_assert(index != index, "Index out-of-range.");
};
template <size_t index, typename... T>
using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
// Chose a particular type out of a list of types, by index.
template <size_t... s>
struct Indexes {};
// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
// templates against them and unpack them with '...'.
template <size_t end, size_t... prefix>
struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
template <size_t... prefix>
struct MakeIndexes_<0, prefix...> {
typedef Indexes<prefix...> Type;
};
template <size_t end>
using MakeIndexes = typename MakeIndexes_<end>::Type;
// Equivalent to Indexes<0, 1, 2, ..., end>.
template <typename... T>
class Tuple;
template <size_t index, typename... U>
inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
template <size_t index, typename... U>
inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
template <size_t index, typename... U>
inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
template <uint index, typename T>
struct TupleElement {
// Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
// from a TupleElement for each element, which is more efficient than a recursive definition.
T value;
TupleElement() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY
constexpr inline TupleElement(const T& value): value(value) {}
constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
};
template <uint index, typename T>
struct TupleElement<index, T&> {
// A tuple containing references can be constucted using refTuple().
T& value;
constexpr inline TupleElement(T& value): value(value) {}
};
template <uint index, typename... T>
struct TupleElement<index, Tuple<T...>> {
static_assert(sizeof(Tuple<T...>*) == 0,
"Tuples cannot contain other tuples -- they should be flattened.");
};
template <typename Indexes, typename... Types>
struct TupleImpl;
template <size_t... indexes, typename... Types>
struct TupleImpl<Indexes<indexes...>, Types...>
: public TupleElement<indexes, Types>... {
// Implementation of Tuple. The only reason we need this rather than rolling this into class
// Tuple (below) is so that we can get "indexes" as an unpackable list.
static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
TupleImpl() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY
template <typename... Params>
inline TupleImpl(Params&&... params)
: TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
// Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
// segfaults instead.)
static_assert(sizeof...(params) == sizeof...(indexes),
"Wrong number of parameters to Tuple constructor.");
}
template <typename... U>
constexpr inline TupleImpl(Tuple<U...>&& other)
: TupleElement<indexes, Types>(kj::fwd<U>(getImpl<indexes>(other)))... {}
template <typename... U>
constexpr inline TupleImpl(Tuple<U...>& other)
: TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
template <typename... U>
constexpr inline TupleImpl(const Tuple<U...>& other)
: TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
};
struct MakeTupleFunc;
struct MakeRefTupleFunc;
template <typename... T>
class Tuple {
// The actual Tuple class (used for tuples of size other than 1).
public:
Tuple() KJ_DEFAULT_CONSTRUCTOR_VS2015_BUGGY
template <typename... U>
constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
template <typename... U>
constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
template <typename... U>
constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
private:
template <typename... Params>
constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
template <size_t index, typename... U>
friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
template <size_t index, typename... U>
friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
template <size_t index, typename... U>
friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
friend struct MakeTupleFunc;
friend struct MakeRefTupleFunc;
};
template <>
class Tuple<> {
// Simplified zero-member version of Tuple. In particular this is important to make sure that
// Tuple<>() is constexpr.
};
template <typename T>
class Tuple<T>;
// Single-element tuple should never be used. The public API should ensure this.
template <size_t index, typename... T>
inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
// Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
}
template <size_t index, typename... T>
inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
// Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
}
template <size_t index, typename... T>
inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
// Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
}
template <size_t index, typename T>
inline T&& getImpl(T&& value) {
// Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
// Non-tuples are equivalent to one-element tuples.
static_assert(index == 0, "Tuple element index out-of-bounds.");
return kj::fwd<T>(value);
}
template <typename Func, typename SoFar, typename... T>
struct ExpandAndApplyResult_;
// Template which computes the return type of applying Func to T... after flattening tuples.
// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
template <typename Func, typename First, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
template <typename Func, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>> {
typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
};
template <typename Func, typename... T>
using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
// Computes the expected return type of `expandAndApply()`.
template <typename Func>
inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
return func();
}
template <typename Func, typename First, typename... Rest>
struct ExpandAndApplyFunc {
Func&& func;
First&& first;
ExpandAndApplyFunc(Func&& func, First&& first)
: func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
template <typename... T>
auto operator()(T&&... params)
-> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
}
};
template <typename Func, typename First, typename... Rest>
inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, First, Rest...> {
return expandAndApply(
ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
inline auto expandAndApplyWithIndexes(
Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
inline auto expandAndApplyWithIndexes(
Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
kj::fwd<Rest>(rest)...);
}
struct MakeTupleFunc {
template <typename... Params>
Tuple<Decay<Params>...> operator()(Params&&... params) {
return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
}
template <typename Param>
Decay<Param> operator()(Param&& param) {
return kj::fwd<Param>(param);
}
};
struct MakeRefTupleFunc {
template <typename... Params>
Tuple<Params...> operator()(Params&&... params) {
return Tuple<Params...>(kj::fwd<Params>(params)...);
}
template <typename Param>
Param operator()(Param&& param) {
return kj::fwd<Param>(param);
}
};
} // namespace _ (private)
template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
template <typename T> struct Tuple_<T> { typedef T Type; };
template <typename... T> using Tuple = typename Tuple_<T...>::Type;
// Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
// other than 1 expand to an internal type. Either way, you can construct a Tuple using
// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
// as arguments to a function using `kj::apply(func, myTuple)`.
//
// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
// construct a tuple from other tuples, the elements are flattened and concatenated.
template <typename... Params>
inline auto tuple(Params&&... params)
-> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
// Construct a new tuple from the given values. Any tuples in the argument list will be
// flattened into the result.
return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
}
template <typename... Params>
inline auto refTuple(Params&&... params)
-> decltype(_::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...)) {
// Like tuple(), but if the params include lvalue references, they will be captured as
// references. rvalue references will still be captured as whole values (moved).
return _::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...);
}
template <size_t index, typename Tuple>
inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
// Unpack and return the tuple element at the given index. The index is specified as a template
// parameter, e.g. `kj::get<3>(myTuple)`.
return _::getImpl<index>(kj::fwd<Tuple>(tuple));
}
template <typename Func, typename... Params>
inline auto apply(Func&& func, Params&&... params)
-> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
// Apply a function to some arguments, expanding tuples into separate arguments.
return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
}
template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
template <typename... T> struct TupleSize_<_::Tuple<T...>> {
static constexpr size_t size = sizeof...(T);
};
template <typename T>
constexpr size_t tupleSize() { return TupleSize_<T>::size; }
// Returns size of the tuple T.
template <typename T, typename Tuple>
struct IndexOfType_;
template <typename T, typename Tuple>
struct HasType_ {
static constexpr bool value = false;
};
template <typename T>
struct IndexOfType_<T, T> {
static constexpr size_t value = 0;
};
template <typename T>
struct HasType_<T, T> {
static constexpr bool value = true;
};
template <typename T, typename... U>
struct IndexOfType_<T, _::Tuple<T, U...>> {
static constexpr size_t value = 0;
static_assert(!HasType_<T, _::Tuple<U...>>::value,
"requested type appears multiple times in tuple");
};
template <typename T, typename... U>
struct HasType_<T, _::Tuple<T, U...>> {
static constexpr bool value = true;
};
template <typename T, typename U, typename... V>
struct IndexOfType_<T, _::Tuple<U, V...>> {
static constexpr size_t value = IndexOfType_<T, _::Tuple<V...>>::value + 1;
};
template <typename T, typename U, typename... V>
struct HasType_<T, _::Tuple<U, V...>> {
static constexpr bool value = HasType_<T, _::Tuple<V...>>::value;
};
template <typename T, typename U>
inline constexpr size_t indexOfType() {
static_assert(HasType_<T, U>::value, "type not present");
return IndexOfType_<T, U>::value;
}
template <size_t i, typename T>
struct TypeOfIndex_;
template <typename T>
struct TypeOfIndex_<0, T> {
typedef T Type;
};
template <size_t i, typename T, typename... U>
struct TypeOfIndex_<i, _::Tuple<T, U...>>
: public TypeOfIndex_<i - 1, _::Tuple<U...>> {};
template <typename T, typename... U>
struct TypeOfIndex_<0, _::Tuple<T, U...>> {
typedef T Type;
};
template <size_t i, typename Tuple>
using TypeOfIndex = typename TypeOfIndex_<i, Tuple>::Type;
} // namespace kj