OpenFPGA/libs/libvtrutil/src/vtr_math.h

136 lines
3.3 KiB
C++

#ifndef VTR_MATH_H
#define VTR_MATH_H
#include <map>
#include <cmath>
#include "vtr_assert.h"
namespace vtr {
/*********************** Math operations *************************************/
int ipow(int base, int exp);
template<typename X, typename Y>
Y linear_interpolate_or_extrapolate(const std::map<X, Y>* xy_map, X requested_x);
constexpr int nint(float val) { return static_cast<int>(val + 0.5); }
//Returns a 'safe' ratio which evaluates to zero if the denominator is zero
template<typename T>
T safe_ratio(T numerator, T denominator) {
if (denominator == T(0)) {
return 0;
}
return numerator / denominator;
}
template<typename InputIterator>
double median(InputIterator first, InputIterator last) {
auto len = std::distance(first, last);
auto iter = first + len / 2;
if (len % 2 == 0) {
return (*iter + *(iter + 1)) / 2;
} else {
return *iter;
}
}
template<typename Container>
double median(Container c) {
return median(std::begin(c), std::end(c));
}
template<typename InputIterator>
double geomean(InputIterator first, InputIterator last, double init = 1.) {
//Compute the geometric mean of the elments in range [first, last)
//
//To avoid potential round-off issues we transform the standard formula:
//
// geomean = ( v_1 * v_2 * ... * v_n) ^ (1/n)
//
//by taking the log:
//
// geomean = exp( (1 / n) * (log(v_1) + log(v_2) + ... + log(v_n)))
double log_sum = std::log(init);
size_t n = 0;
for (auto iter = first; iter != last; ++iter) {
log_sum += std::log(*iter);
n += 1;
}
VTR_ASSERT(n > 0.);
return std::exp((1. / n) * log_sum);
}
template<typename Container>
double geomean(Container c) {
return geomean(std::begin(c), std::end(c));
}
template<typename InputIterator>
double arithmean(InputIterator first, InputIterator last, double init = 0.) {
double sum = init;
size_t n = 0;
for (auto iter = first; iter != last; ++iter) {
sum += *iter;
n += 1;
}
VTR_ASSERT(n > 0.);
return sum / n;
}
template<typename Container>
double arithmean(Container c) {
return arithmean(std::begin(c), std::end(c));
}
//Return the greatest common divisor of x and y
// Note that T should be an integral type
template<typename T>
static T gcd(T x, T y) {
static_assert(std::is_integral<T>::value, "T must be integral");
//Euclidean algorithm
if (y == 0) {
return x;
}
return gcd(y, x % y);
}
//Return the least common multiple of x and y
// Note that T should be an integral type
template<typename T>
T lcm(T x, T y) {
static_assert(std::is_integral<T>::value, "T must be integral");
if (x == 0 && y == 0) {
return 0;
} else {
return (x / gcd(x, y)) * y;
}
}
constexpr double DEFAULT_REL_TOL = 1e-9;
constexpr double DEFAULT_ABS_TOL = 0;
template<class T>
bool isclose(T a, T b, T rel_tol, T abs_tol) {
if (std::isinf(a) && std::isinf(b)) return (std::signbit(a) == std::signbit(b));
if (std::isnan(a) && std::isnan(b)) return false;
T abs_largest = std::max(std::abs(a), std::abs(b));
return std::abs(a - b) <= std::max(rel_tol * abs_largest, abs_tol);
}
template<class T>
bool isclose(T a, T b) {
return isclose<T>(a, b, DEFAULT_REL_TOL, DEFAULT_ABS_TOL);
}
} // namespace vtr
#endif