1266 lines
43 KiB
C++
1266 lines
43 KiB
C++
/*
|
|
* yosys -- Yosys Open SYnthesis Suite
|
|
*
|
|
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "kernel/yosys.h"
|
|
|
|
USING_YOSYS_NAMESPACE
|
|
PRIVATE_NAMESPACE_BEGIN
|
|
|
|
struct rules_t
|
|
{
|
|
struct portinfo_t {
|
|
int group, index, dupidx;
|
|
int wrmode, enable, transp, clocks, clkpol;
|
|
|
|
SigBit sig_clock;
|
|
SigSpec sig_addr, sig_data, sig_en;
|
|
bool effective_clkpol;
|
|
bool make_transp;
|
|
bool make_outreg;
|
|
int mapped_port;
|
|
};
|
|
|
|
struct bram_t {
|
|
IdString name;
|
|
int variant;
|
|
|
|
int groups, abits, dbits, init;
|
|
vector<int> ports, wrmode, enable, transp, clocks, clkpol;
|
|
|
|
void dump_config() const
|
|
{
|
|
log(" bram %s # variant %d\n", log_id(name), variant);
|
|
log(" init %d\n", init);
|
|
log(" abits %d\n", abits);
|
|
log(" dbits %d\n", dbits);
|
|
log(" groups %d\n", groups);
|
|
|
|
log(" ports "); for (int v : ports) log("%4d", v); log("\n");
|
|
log(" wrmode"); for (int v : wrmode) log("%4d", v); log("\n");
|
|
log(" enable"); for (int v : enable) log("%4d", v); log("\n");
|
|
log(" transp"); for (int v : transp) log("%4d", v); log("\n");
|
|
log(" clocks"); for (int v : clocks) log("%4d", v); log("\n");
|
|
log(" clkpol"); for (int v : clkpol) log("%4d", v); log("\n");
|
|
log(" endbram\n");
|
|
}
|
|
|
|
void check_vectors() const
|
|
{
|
|
if (groups != GetSize(ports)) log_error("Bram %s variant %d has %d groups but only %d entries in 'ports'.\n", log_id(name), variant, groups, GetSize(ports));
|
|
if (groups != GetSize(wrmode)) log_error("Bram %s variant %d has %d groups but only %d entries in 'wrmode'.\n", log_id(name), variant, groups, GetSize(wrmode));
|
|
if (groups != GetSize(enable)) log_error("Bram %s variant %d has %d groups but only %d entries in 'enable'.\n", log_id(name), variant, groups, GetSize(enable));
|
|
if (groups != GetSize(transp)) log_error("Bram %s variant %d has %d groups but only %d entries in 'transp'.\n", log_id(name), variant, groups, GetSize(transp));
|
|
if (groups != GetSize(clocks)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clocks'.\n", log_id(name), variant, groups, GetSize(clocks));
|
|
if (groups != GetSize(clkpol)) log_error("Bram %s variant %d has %d groups but only %d entries in 'clkpol'.\n", log_id(name), variant, groups, GetSize(clkpol));
|
|
}
|
|
|
|
vector<portinfo_t> make_portinfos() const
|
|
{
|
|
vector<portinfo_t> portinfos;
|
|
for (int i = 0; i < groups; i++)
|
|
for (int j = 0; j < ports[i]; j++) {
|
|
portinfo_t pi;
|
|
pi.group = i;
|
|
pi.index = j;
|
|
pi.dupidx = 0;
|
|
pi.wrmode = wrmode[i];
|
|
pi.enable = enable[i];
|
|
pi.transp = transp[i];
|
|
pi.clocks = clocks[i];
|
|
pi.clkpol = clkpol[i];
|
|
pi.mapped_port = -1;
|
|
pi.make_transp = false;
|
|
pi.make_outreg = false;
|
|
pi.effective_clkpol = false;
|
|
portinfos.push_back(pi);
|
|
}
|
|
return portinfos;
|
|
}
|
|
|
|
void find_variant_params(dict<IdString, Const> &variant_params, const bram_t &other) const
|
|
{
|
|
log_assert(name == other.name);
|
|
|
|
if (groups != other.groups)
|
|
log_error("Bram %s variants %d and %d have different values for 'groups'.\n", log_id(name), variant, other.variant);
|
|
|
|
if (abits != other.abits)
|
|
variant_params["\\CFG_ABITS"] = abits;
|
|
if (dbits != other.dbits)
|
|
variant_params["\\CFG_DBITS"] = dbits;
|
|
if (init != other.init)
|
|
variant_params["\\CFG_INIT"] = init;
|
|
|
|
for (int i = 0; i < groups; i++)
|
|
{
|
|
if (ports[i] != other.ports[i])
|
|
log_error("Bram %s variants %d and %d have different number of %c-ports.\n", log_id(name), variant, other.variant, 'A'+i);
|
|
if (wrmode[i] != other.wrmode[i])
|
|
variant_params[stringf("\\CFG_WRMODE_%c", 'A' + i)] = wrmode[i];
|
|
if (enable[i] != other.enable[i])
|
|
variant_params[stringf("\\CFG_ENABLE_%c", 'A' + i)] = enable[i];
|
|
if (transp[i] != other.transp[i])
|
|
variant_params[stringf("\\CFG_TRANSP_%c", 'A' + i)] = transp[i];
|
|
if (clocks[i] != other.clocks[i])
|
|
variant_params[stringf("\\CFG_CLOCKS_%c", 'A' + i)] = clocks[i];
|
|
if (clkpol[i] != other.clkpol[i])
|
|
variant_params[stringf("\\CFG_CLKPOL_%c", 'A' + i)] = clkpol[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
struct match_t {
|
|
IdString name;
|
|
dict<string, int> min_limits, max_limits;
|
|
bool or_next_if_better, make_transp, make_outreg;
|
|
char shuffle_enable;
|
|
};
|
|
|
|
dict<IdString, vector<bram_t>> brams;
|
|
vector<match_t> matches;
|
|
|
|
std::ifstream infile;
|
|
vector<string> tokens;
|
|
vector<string> labels;
|
|
int linecount;
|
|
|
|
void syntax_error()
|
|
{
|
|
if (tokens.empty())
|
|
log_error("Unexpected end of rules file in line %d.\n", linecount);
|
|
log_error("Syntax error in rules file line %d.\n", linecount);
|
|
}
|
|
|
|
bool next_line()
|
|
{
|
|
string line;
|
|
while (std::getline(infile, line)) {
|
|
tokens.clear();
|
|
labels.clear();
|
|
linecount++;
|
|
for (string tok = next_token(line); !tok.empty(); tok = next_token(line)) {
|
|
if (tok[0] == '@') {
|
|
labels.push_back(tok.substr(1));
|
|
continue;
|
|
}
|
|
if (tok[0] == '#')
|
|
break;
|
|
tokens.push_back(tok);
|
|
}
|
|
if (!tokens.empty())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool parse_single_int(const char *stmt, int &value)
|
|
{
|
|
if (GetSize(tokens) == 2 && tokens[0] == stmt) {
|
|
value = atoi(tokens[1].c_str());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool parse_int_vect(const char *stmt, vector<int> &value)
|
|
{
|
|
if (GetSize(tokens) >= 2 && tokens[0] == stmt) {
|
|
value.resize(GetSize(tokens)-1);
|
|
for (int i = 1; i < GetSize(tokens); i++)
|
|
value[i-1] = atoi(tokens[i].c_str());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void parse_bram()
|
|
{
|
|
IdString bram_name = RTLIL::escape_id(tokens[1]);
|
|
|
|
if (GetSize(tokens) != 2)
|
|
syntax_error();
|
|
|
|
vector<vector<string>> lines_nolabels;
|
|
std::map<string, vector<vector<string>>> lines_labels;
|
|
|
|
while (next_line())
|
|
{
|
|
if (GetSize(tokens) == 1 && tokens[0] == "endbram")
|
|
break;
|
|
if (labels.empty())
|
|
lines_nolabels.push_back(tokens);
|
|
for (auto lab : labels)
|
|
lines_labels[lab].push_back(tokens);
|
|
}
|
|
|
|
std::map<string, vector<vector<string>>> variant_lines;
|
|
|
|
if (lines_labels.empty())
|
|
variant_lines[""] = lines_nolabels;
|
|
for (auto &it : lines_labels) {
|
|
variant_lines[it.first] = lines_nolabels;
|
|
variant_lines[it.first].insert(variant_lines[it.first].end(), it.second.begin(), it.second.end());
|
|
}
|
|
|
|
for (auto &it : variant_lines)
|
|
{
|
|
bram_t data;
|
|
data.name = bram_name;
|
|
data.variant = GetSize(brams[data.name]) + 1;
|
|
data.groups = 0;
|
|
data.abits = 0;
|
|
data.dbits = 0;
|
|
data.init = 0;
|
|
|
|
for (auto &line_tokens : it.second)
|
|
{
|
|
tokens = line_tokens;
|
|
|
|
if (parse_single_int("groups", data.groups))
|
|
continue;
|
|
|
|
if (parse_single_int("abits", data.abits))
|
|
continue;
|
|
|
|
if (parse_single_int("dbits", data.dbits))
|
|
continue;
|
|
|
|
if (parse_single_int("init", data.init))
|
|
continue;
|
|
|
|
if (parse_int_vect("ports", data.ports))
|
|
continue;
|
|
|
|
if (parse_int_vect("wrmode", data.wrmode))
|
|
continue;
|
|
|
|
if (parse_int_vect("enable", data.enable))
|
|
continue;
|
|
|
|
if (parse_int_vect("transp", data.transp))
|
|
continue;
|
|
|
|
if (parse_int_vect("clocks", data.clocks))
|
|
continue;
|
|
|
|
if (parse_int_vect("clkpol", data.clkpol))
|
|
continue;
|
|
|
|
syntax_error();
|
|
}
|
|
|
|
data.check_vectors();
|
|
brams[data.name].push_back(data);
|
|
}
|
|
}
|
|
|
|
void parse_match()
|
|
{
|
|
if (GetSize(tokens) != 2)
|
|
syntax_error();
|
|
|
|
match_t data;
|
|
data.name = RTLIL::escape_id(tokens[1]);
|
|
data.or_next_if_better = false;
|
|
data.make_transp = false;
|
|
data.make_outreg = false;
|
|
data.shuffle_enable = 0;
|
|
|
|
while (next_line())
|
|
{
|
|
if (!labels.empty())
|
|
syntax_error();
|
|
|
|
if (GetSize(tokens) == 1 && tokens[0] == "endmatch") {
|
|
matches.push_back(data);
|
|
break;
|
|
}
|
|
|
|
if (GetSize(tokens) == 3 && tokens[0] == "min") {
|
|
data.min_limits[tokens[1]] = atoi(tokens[2].c_str());
|
|
continue;
|
|
}
|
|
|
|
if (GetSize(tokens) == 3 && tokens[0] == "max") {
|
|
data.max_limits[tokens[1]] = atoi(tokens[2].c_str());
|
|
continue;
|
|
}
|
|
|
|
if (GetSize(tokens) == 2 && tokens[0] == "shuffle_enable" && GetSize(tokens[1]) == 1 && 'A' <= tokens[1][0] && tokens[1][0] <= 'Z') {
|
|
data.shuffle_enable = tokens[1][0];
|
|
continue;
|
|
}
|
|
|
|
if (GetSize(tokens) == 1 && tokens[0] == "make_transp") {
|
|
data.make_transp = true;
|
|
continue;
|
|
}
|
|
|
|
if (GetSize(tokens) == 1 && tokens[0] == "make_outreg") {
|
|
data.make_transp = true;
|
|
data.make_outreg = true;
|
|
continue;
|
|
}
|
|
|
|
if (GetSize(tokens) == 1 && tokens[0] == "or_next_if_better") {
|
|
data.or_next_if_better = true;
|
|
continue;
|
|
}
|
|
|
|
syntax_error();
|
|
}
|
|
}
|
|
|
|
void parse(string filename)
|
|
{
|
|
rewrite_filename(filename);
|
|
infile.open(filename);
|
|
linecount = 0;
|
|
|
|
if (infile.fail())
|
|
log_error("Can't open rules file `%s'.\n", filename.c_str());
|
|
|
|
while (next_line())
|
|
{
|
|
if (!labels.empty())
|
|
syntax_error();
|
|
|
|
if (tokens[0] == "bram") {
|
|
parse_bram();
|
|
continue;
|
|
}
|
|
|
|
if (tokens[0] == "match") {
|
|
parse_match();
|
|
continue;
|
|
}
|
|
|
|
syntax_error();
|
|
}
|
|
|
|
infile.close();
|
|
}
|
|
};
|
|
|
|
bool replace_cell(Cell *cell, const rules_t &rules, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
|
|
{
|
|
Module *module = cell->module;
|
|
|
|
auto portinfos = bram.make_portinfos();
|
|
int dup_count = 1;
|
|
|
|
pair<SigBit, bool> make_transp_clk;
|
|
bool enable_make_transp = false;
|
|
int make_transp_enbits = 0;
|
|
|
|
dict<int, pair<SigBit, bool>> clock_domains;
|
|
dict<int, bool> clock_polarities;
|
|
dict<int, bool> read_transp;
|
|
pool<int> clocks_wr_ports;
|
|
pool<int> clkpol_wr_ports;
|
|
int clocks_max = 0;
|
|
int clkpol_max = 0;
|
|
int transp_max = 0;
|
|
|
|
clock_polarities[0] = false;
|
|
clock_polarities[1] = true;
|
|
|
|
for (auto &pi : portinfos) {
|
|
if (pi.wrmode) {
|
|
clocks_wr_ports.insert(pi.clocks);
|
|
if (pi.clkpol > 1)
|
|
clkpol_wr_ports.insert(pi.clkpol);
|
|
}
|
|
clocks_max = max(clocks_max, pi.clocks);
|
|
clkpol_max = max(clkpol_max, pi.clkpol);
|
|
transp_max = max(transp_max, pi.transp);
|
|
}
|
|
|
|
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
|
|
// bram.dump_config();
|
|
|
|
int mem_size = cell->getParam("\\SIZE").as_int();
|
|
int mem_abits = cell->getParam("\\ABITS").as_int();
|
|
int mem_width = cell->getParam("\\WIDTH").as_int();
|
|
// int mem_offset = cell->getParam("\\OFFSET").as_int();
|
|
|
|
bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef();
|
|
vector<Const> initdata;
|
|
|
|
if (cell_init) {
|
|
Const initparam = cell->getParam("\\INIT");
|
|
initdata.reserve(mem_size);
|
|
for (int i=0; i < mem_size; i++)
|
|
initdata.push_back(initparam.extract(mem_width*i, mem_width, State::Sx));
|
|
}
|
|
|
|
int wr_ports = cell->getParam("\\WR_PORTS").as_int();
|
|
auto wr_clken = SigSpec(cell->getParam("\\WR_CLK_ENABLE"));
|
|
auto wr_clkpol = SigSpec(cell->getParam("\\WR_CLK_POLARITY"));
|
|
wr_clken.extend_u0(wr_ports);
|
|
wr_clkpol.extend_u0(wr_ports);
|
|
|
|
SigSpec wr_en = cell->getPort("\\WR_EN");
|
|
SigSpec wr_clk = cell->getPort("\\WR_CLK");
|
|
SigSpec wr_data = cell->getPort("\\WR_DATA");
|
|
SigSpec wr_addr = cell->getPort("\\WR_ADDR");
|
|
|
|
int rd_ports = cell->getParam("\\RD_PORTS").as_int();
|
|
auto rd_clken = SigSpec(cell->getParam("\\RD_CLK_ENABLE"));
|
|
auto rd_clkpol = SigSpec(cell->getParam("\\RD_CLK_POLARITY"));
|
|
auto rd_transp = SigSpec(cell->getParam("\\RD_TRANSPARENT"));
|
|
rd_clken.extend_u0(rd_ports);
|
|
rd_clkpol.extend_u0(rd_ports);
|
|
rd_transp.extend_u0(rd_ports);
|
|
|
|
SigSpec rd_en = cell->getPort("\\RD_EN");
|
|
SigSpec rd_clk = cell->getPort("\\RD_CLK");
|
|
SigSpec rd_data = cell->getPort("\\RD_DATA");
|
|
SigSpec rd_addr = cell->getPort("\\RD_ADDR");
|
|
|
|
if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && wr_ports > 0)
|
|
{
|
|
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
|
|
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
|
|
|
|
// extract unshuffled data/enable bits
|
|
|
|
std::vector<SigSpec> old_wr_en;
|
|
std::vector<SigSpec> old_wr_data;
|
|
std::vector<SigSpec> old_rd_data;
|
|
|
|
for (int i = 0; i < wr_ports; i++) {
|
|
old_wr_en.push_back(wr_en.extract(i*mem_width, mem_width));
|
|
old_wr_data.push_back(wr_data.extract(i*mem_width, mem_width));
|
|
}
|
|
|
|
for (int i = 0; i < rd_ports; i++)
|
|
old_rd_data.push_back(rd_data.extract(i*mem_width, mem_width));
|
|
|
|
// analyze enable structure
|
|
|
|
std::vector<SigSpec> en_order;
|
|
dict<SigSpec, vector<int>> bits_wr_en;
|
|
|
|
for (int i = 0; i < mem_width; i++) {
|
|
SigSpec sig;
|
|
for (int j = 0; j < wr_ports; j++)
|
|
sig.append(old_wr_en[j][i]);
|
|
if (bits_wr_en.count(sig) == 0)
|
|
en_order.push_back(sig);
|
|
bits_wr_en[sig].push_back(i);
|
|
}
|
|
|
|
// re-create memory ports
|
|
|
|
std::vector<SigSpec> new_wr_en(GetSize(old_wr_en));
|
|
std::vector<SigSpec> new_wr_data(GetSize(old_wr_data));
|
|
std::vector<SigSpec> new_rd_data(GetSize(old_rd_data));
|
|
std::vector<std::vector<State>> new_initdata;
|
|
std::vector<int> shuffle_map;
|
|
|
|
if (cell_init)
|
|
new_initdata.resize(mem_size);
|
|
|
|
for (auto &it : en_order)
|
|
{
|
|
auto &bits = bits_wr_en.at(it);
|
|
int buckets = (GetSize(bits) + bucket_size - 1) / bucket_size;
|
|
int fillbits = buckets*bucket_size - GetSize(bits);
|
|
SigBit fillbit;
|
|
|
|
for (int i = 0; i < GetSize(bits); i++) {
|
|
for (int j = 0; j < wr_ports; j++) {
|
|
new_wr_en[j].append(old_wr_en[j][bits[i]]);
|
|
new_wr_data[j].append(old_wr_data[j][bits[i]]);
|
|
fillbit = old_wr_en[j][bits[i]];
|
|
}
|
|
for (int j = 0; j < rd_ports; j++)
|
|
new_rd_data[j].append(old_rd_data[j][bits[i]]);
|
|
if (cell_init) {
|
|
for (int j = 0; j < mem_size; j++)
|
|
new_initdata[j].push_back(initdata[j][bits[i]]);
|
|
}
|
|
shuffle_map.push_back(bits[i]);
|
|
}
|
|
|
|
for (int i = 0; i < fillbits; i++) {
|
|
for (int j = 0; j < wr_ports; j++) {
|
|
new_wr_en[j].append(fillbit);
|
|
new_wr_data[j].append(State::S0);
|
|
}
|
|
for (int j = 0; j < rd_ports; j++)
|
|
new_rd_data[j].append(State::Sx);
|
|
if (cell_init) {
|
|
for (int j = 0; j < mem_size; j++)
|
|
new_initdata[j].push_back(State::Sx);
|
|
}
|
|
shuffle_map.push_back(-1);
|
|
}
|
|
}
|
|
|
|
log(" Results of bit order shuffling:");
|
|
for (int v : shuffle_map)
|
|
log(" %d", v);
|
|
log("\n");
|
|
|
|
// update mem_*, wr_*, and rd_* variables
|
|
|
|
mem_width = GetSize(new_wr_en.front());
|
|
wr_en = SigSpec(0, wr_ports * mem_width);
|
|
wr_data = SigSpec(0, wr_ports * mem_width);
|
|
rd_data = SigSpec(0, rd_ports * mem_width);
|
|
|
|
for (int i = 0; i < wr_ports; i++) {
|
|
wr_en.replace(i*mem_width, new_wr_en[i]);
|
|
wr_data.replace(i*mem_width, new_wr_data[i]);
|
|
}
|
|
|
|
for (int i = 0; i < rd_ports; i++)
|
|
rd_data.replace(i*mem_width, new_rd_data[i]);
|
|
|
|
if (cell_init) {
|
|
for (int i = 0; i < mem_size; i++)
|
|
initdata[i] = Const(new_initdata[i]);
|
|
}
|
|
}
|
|
|
|
// assign write ports
|
|
pair<SigBit, bool> wr_clkdom;
|
|
for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < wr_ports; cell_port_i++)
|
|
{
|
|
bool clken = wr_clken[cell_port_i] == State::S1;
|
|
bool clkpol = wr_clkpol[cell_port_i] == State::S1;
|
|
SigBit clksig = wr_clk[cell_port_i];
|
|
|
|
pair<SigBit, bool> clkdom(clksig, clkpol);
|
|
if (!clken)
|
|
clkdom = pair<SigBit, bool>(State::S1, false);
|
|
wr_clkdom = clkdom;
|
|
log(" Write port #%d is in clock domain %s%s.\n",
|
|
cell_port_i, clkdom.second ? "" : "!",
|
|
clken ? log_signal(clkdom.first) : "~async~");
|
|
|
|
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
|
|
{
|
|
auto &pi = portinfos[bram_port_i];
|
|
make_transp_enbits = pi.enable;
|
|
make_transp_clk = clkdom;
|
|
|
|
if (pi.wrmode != 1)
|
|
skip_bram_wport:
|
|
continue;
|
|
|
|
if (clken) {
|
|
if (pi.clocks == 0) {
|
|
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
|
|
goto skip_bram_wport;
|
|
}
|
|
if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) {
|
|
log(" Bram port %c%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1);
|
|
goto skip_bram_wport;
|
|
}
|
|
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
|
|
log(" Bram port %c%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1);
|
|
goto skip_bram_wport;
|
|
}
|
|
} else {
|
|
if (pi.clocks != 0) {
|
|
log(" Bram port %c%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1);
|
|
goto skip_bram_wport;
|
|
}
|
|
}
|
|
|
|
SigSpec sig_en;
|
|
SigBit last_en_bit = State::S1;
|
|
for (int i = 0; i < mem_width; i++) {
|
|
if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
|
|
last_en_bit = wr_en[i + cell_port_i*mem_width];
|
|
sig_en.append(last_en_bit);
|
|
}
|
|
if (last_en_bit != wr_en[i + cell_port_i*mem_width]) {
|
|
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
|
|
goto skip_bram_wport;
|
|
}
|
|
}
|
|
|
|
log(" Mapped to bram port %c%d.\n", pi.group + 'A', pi.index + 1);
|
|
pi.mapped_port = cell_port_i;
|
|
|
|
if (clken) {
|
|
clock_domains[pi.clocks] = clkdom;
|
|
clock_polarities[pi.clkpol] = clkdom.second;
|
|
pi.sig_clock = clkdom.first;
|
|
pi.effective_clkpol = clkdom.second;
|
|
}
|
|
|
|
pi.sig_en = sig_en;
|
|
pi.sig_addr = wr_addr.extract(cell_port_i*mem_abits, mem_abits);
|
|
pi.sig_data = wr_data.extract(cell_port_i*mem_width, mem_width);
|
|
|
|
bram_port_i++;
|
|
goto mapped_wr_port;
|
|
}
|
|
|
|
log(" Failed to map write port #%d.\n", cell_port_i);
|
|
return false;
|
|
mapped_wr_port:;
|
|
}
|
|
|
|
// housekeeping stuff for growing more read ports and restarting read port assignments
|
|
|
|
int grow_read_ports_cursor = -1;
|
|
bool try_growing_more_read_ports = false;
|
|
auto backup_clock_domains = clock_domains;
|
|
auto backup_clock_polarities = clock_polarities;
|
|
|
|
if (0) {
|
|
grow_read_ports:;
|
|
vector<rules_t::portinfo_t> new_portinfos;
|
|
for (auto &pi : portinfos) {
|
|
if (pi.wrmode == 0) {
|
|
pi.mapped_port = -1;
|
|
pi.sig_clock = SigBit();
|
|
pi.sig_addr = SigSpec();
|
|
pi.sig_data = SigSpec();
|
|
pi.sig_en = SigSpec();
|
|
pi.make_outreg = false;
|
|
pi.make_transp = false;
|
|
}
|
|
new_portinfos.push_back(pi);
|
|
if (pi.dupidx == dup_count-1) {
|
|
if (pi.clocks && !clocks_wr_ports[pi.clocks])
|
|
pi.clocks += clocks_max;
|
|
if (pi.clkpol > 1 && !clkpol_wr_ports[pi.clkpol])
|
|
pi.clkpol += clkpol_max;
|
|
if (pi.transp > 1)
|
|
pi.transp += transp_max;
|
|
pi.dupidx++;
|
|
new_portinfos.push_back(pi);
|
|
}
|
|
}
|
|
try_growing_more_read_ports = false;
|
|
portinfos.swap(new_portinfos);
|
|
clock_domains = backup_clock_domains;
|
|
clock_polarities = backup_clock_polarities;
|
|
dup_count++;
|
|
}
|
|
|
|
read_transp.clear();
|
|
read_transp[0] = false;
|
|
read_transp[1] = true;
|
|
|
|
// assign read ports
|
|
|
|
for (int cell_port_i = 0; cell_port_i < rd_ports; cell_port_i++)
|
|
{
|
|
bool clken = rd_clken[cell_port_i] == State::S1;
|
|
bool clkpol = rd_clkpol[cell_port_i] == State::S1;
|
|
bool transp = rd_transp[cell_port_i] == State::S1;
|
|
SigBit clksig = rd_clk[cell_port_i];
|
|
|
|
if (wr_ports == 0)
|
|
transp = false;
|
|
|
|
pair<SigBit, bool> clkdom(clksig, clkpol);
|
|
if (!clken)
|
|
clkdom = pair<SigBit, bool>(State::S1, false);
|
|
|
|
log(" Read port #%d is in clock domain %s%s.\n",
|
|
cell_port_i, clkdom.second ? "" : "!",
|
|
clken ? log_signal(clkdom.first) : "~async~");
|
|
|
|
for (int bram_port_i = 0; bram_port_i < GetSize(portinfos); bram_port_i++)
|
|
{
|
|
auto &pi = portinfos[bram_port_i];
|
|
|
|
if (pi.wrmode != 0 || pi.mapped_port >= 0)
|
|
skip_bram_rport:
|
|
continue;
|
|
|
|
if (clken) {
|
|
if (pi.clocks == 0) {
|
|
if (match.make_outreg) {
|
|
pi.make_outreg = true;
|
|
goto skip_bram_rport_clkcheck;
|
|
}
|
|
log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
if (clock_domains.count(pi.clocks) && clock_domains.at(pi.clocks) != clkdom) {
|
|
log(" Bram port %c%d.%d is in a different clock domain.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
if (clock_polarities.count(pi.clkpol) && clock_polarities.at(pi.clkpol) != clkpol) {
|
|
log(" Bram port %c%d.%d has incompatible clock polarity.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
if (rd_en[cell_port_i] != State::S1 && pi.enable == 0) {
|
|
log(" Bram port %c%d.%d has no read enable input.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
skip_bram_rport_clkcheck:
|
|
if (read_transp.count(pi.transp) && read_transp.at(pi.transp) != transp) {
|
|
if (match.make_transp && wr_ports <= 1) {
|
|
pi.make_transp = true;
|
|
if (pi.clocks != 0) {
|
|
if (wr_ports == 1 && wr_clkdom != clkdom) {
|
|
log(" Bram port %c%d.%d cannot have soft transparency logic added as read and write clock domains differ.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
enable_make_transp = true;
|
|
}
|
|
} else {
|
|
log(" Bram port %c%d.%d has incompatible read transparency.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
}
|
|
} else {
|
|
if (pi.clocks != 0) {
|
|
log(" Bram port %c%d.%d has incompatible clock type.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
goto skip_bram_rport;
|
|
}
|
|
}
|
|
|
|
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
pi.mapped_port = cell_port_i;
|
|
|
|
if (clken) {
|
|
clock_domains[pi.clocks] = clkdom;
|
|
clock_polarities[pi.clkpol] = clkdom.second;
|
|
if (!pi.make_transp)
|
|
read_transp[pi.transp] = transp;
|
|
pi.sig_clock = clkdom.first;
|
|
pi.sig_en = rd_en[cell_port_i];
|
|
pi.effective_clkpol = clkdom.second;
|
|
}
|
|
|
|
pi.sig_addr = rd_addr.extract(cell_port_i*mem_abits, mem_abits);
|
|
pi.sig_data = rd_data.extract(cell_port_i*mem_width, mem_width);
|
|
|
|
if (grow_read_ports_cursor < cell_port_i) {
|
|
grow_read_ports_cursor = cell_port_i;
|
|
try_growing_more_read_ports = true;
|
|
}
|
|
|
|
goto mapped_rd_port;
|
|
}
|
|
|
|
log(" Failed to map read port #%d.\n", cell_port_i);
|
|
if (try_growing_more_read_ports) {
|
|
log(" Growing more read ports by duplicating bram cells.\n");
|
|
goto grow_read_ports;
|
|
}
|
|
return false;
|
|
mapped_rd_port:;
|
|
}
|
|
|
|
// update properties and re-check conditions
|
|
|
|
if (mode <= 1)
|
|
{
|
|
match_properties["dups"] = dup_count;
|
|
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
|
|
|
|
int cells = ((mem_width + bram.dbits - 1) / bram.dbits) * ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
|
|
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
|
|
|
|
match_properties["dcells"] = ((mem_width + bram.dbits - 1) / bram.dbits);
|
|
match_properties["acells"] = ((mem_size + (1 << bram.abits) - 1) / (1 << bram.abits));
|
|
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
|
|
|
|
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
|
|
match_properties["dups"], match_properties["waste"], match_properties["efficiency"]);
|
|
|
|
for (auto it : match.min_limits) {
|
|
if (!match_properties.count(it.first))
|
|
log_error("Unknown property '%s' in match rule for bram type %s.\n",
|
|
it.first.c_str(), log_id(match.name));
|
|
if (match_properties[it.first] >= it.second)
|
|
continue;
|
|
log(" Rule for bram type %s rejected: requirement 'min %s %d' not met.\n",
|
|
log_id(match.name), it.first.c_str(), it.second);
|
|
return false;
|
|
}
|
|
for (auto it : match.max_limits) {
|
|
if (!match_properties.count(it.first))
|
|
log_error("Unknown property '%s' in match rule for bram type %s.\n",
|
|
it.first.c_str(), log_id(match.name));
|
|
if (match_properties[it.first] <= it.second)
|
|
continue;
|
|
log(" Rule for bram type %s rejected: requirement 'max %s %d' not met.\n",
|
|
log_id(match.name), it.first.c_str(), it.second);
|
|
return false;
|
|
}
|
|
|
|
if (mode == 1)
|
|
return true;
|
|
}
|
|
|
|
// prepare variant parameters
|
|
|
|
dict<IdString, Const> variant_params;
|
|
for (auto &other_bram : rules.brams.at(bram.name))
|
|
bram.find_variant_params(variant_params, other_bram);
|
|
|
|
// actually replace that memory cell
|
|
|
|
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
|
|
|
|
for (int grid_d = 0; grid_d*bram.dbits < mem_width; grid_d++)
|
|
{
|
|
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
|
|
vector<SigSpec> mktr_wren;
|
|
|
|
if (enable_make_transp) {
|
|
mktr_wraddr = module->addWire(NEW_ID, bram.abits);
|
|
mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
|
|
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
|
|
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
|
|
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
|
|
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
|
|
}
|
|
|
|
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem_size; grid_a++)
|
|
for (int dupidx = 0; dupidx < dup_count; dupidx++)
|
|
{
|
|
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", cell->name.c_str(), grid_d, grid_a, dupidx)), bram.name);
|
|
log(" Creating %s cell at grid position <%d %d %d>: %s\n", log_id(bram.name), grid_d, grid_a, dupidx, log_id(c));
|
|
|
|
for (auto &vp : variant_params)
|
|
c->setParam(vp.first, vp.second);
|
|
|
|
if (cell_init) {
|
|
int init_offset = grid_a*(1 << bram.abits);
|
|
int init_shift = grid_d*bram.dbits;
|
|
int init_size = (1 << bram.abits);
|
|
Const initparam(State::Sx, init_size*bram.dbits);
|
|
for (int i = 0; i < init_size; i++) {
|
|
State padding = State::Sx;
|
|
for (int j = 0; j < bram.dbits; j++)
|
|
if (init_offset+i < GetSize(initdata) && init_shift+j < GetSize(initdata[init_offset+i]))
|
|
initparam[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j];
|
|
else
|
|
initparam[i*bram.dbits+j] = padding;
|
|
}
|
|
c->setParam("\\INIT", initparam);
|
|
}
|
|
|
|
for (auto &pi : portinfos)
|
|
{
|
|
if (pi.dupidx != dupidx)
|
|
continue;
|
|
|
|
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
|
|
const char *pf = prefix.c_str();
|
|
|
|
if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
|
|
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
|
|
if (pi.clkpol > 1 && pi.sig_clock.wire)
|
|
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
|
|
if (pi.transp > 1 && pi.sig_clock.wire)
|
|
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
|
|
}
|
|
|
|
SigSpec addr_ok;
|
|
if (GetSize(pi.sig_addr) > bram.abits) {
|
|
SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
|
|
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
|
|
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
|
|
}
|
|
|
|
if (pi.enable)
|
|
{
|
|
SigSpec sig_en = pi.sig_en;
|
|
|
|
if (pi.wrmode == 1) {
|
|
sig_en.extend_u0((grid_d+1) * pi.enable);
|
|
sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
|
|
}
|
|
|
|
if (!addr_ok.empty())
|
|
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
|
|
|
|
c->setPort(stringf("\\%sEN", pf), sig_en);
|
|
|
|
if (pi.wrmode == 1 && enable_make_transp)
|
|
module->connect(mktr_wren[grid_a], sig_en);
|
|
}
|
|
|
|
SigSpec sig_addr = pi.sig_addr;
|
|
sig_addr.extend_u0(bram.abits);
|
|
c->setPort(stringf("\\%sADDR", pf), sig_addr);
|
|
|
|
if (pi.wrmode == 1 && enable_make_transp && grid_a == 0)
|
|
module->connect(mktr_wraddr, sig_addr);
|
|
|
|
SigSpec sig_data = pi.sig_data;
|
|
sig_data.extend_u0((grid_d+1) * bram.dbits);
|
|
sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
|
|
|
|
if (pi.wrmode == 1) {
|
|
c->setPort(stringf("\\%sDATA", pf), sig_data);
|
|
if (enable_make_transp && grid_a == 0)
|
|
module->connect(mktr_wrdata, sig_data);
|
|
} else {
|
|
SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
|
|
c->setPort(stringf("\\%sDATA", pf), bram_dout);
|
|
if (pi.make_outreg && pi.make_transp) {
|
|
log(" Moving output register to address for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
SigSpec sig_addr_q = module->addWire(NEW_ID, bram.abits);
|
|
module->addDff(NEW_ID, pi.sig_clock, sig_addr, sig_addr_q, pi.effective_clkpol);
|
|
c->setPort(stringf("\\%sADDR", pf), sig_addr_q);
|
|
} else if (pi.make_outreg) {
|
|
SigSpec bram_dout_q = module->addWire(NEW_ID, bram.dbits);
|
|
if (!pi.sig_en.empty())
|
|
bram_dout = module->Mux(NEW_ID, bram_dout_q, bram_dout, pi.sig_en);
|
|
module->addDff(NEW_ID, pi.sig_clock, bram_dout, bram_dout_q, pi.effective_clkpol);
|
|
bram_dout = bram_dout_q;
|
|
} else if (pi.make_transp) {
|
|
log(" Adding extra logic for transparent port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
|
|
|
SigSpec transp_en_d = module->Mux(NEW_ID, SigSpec(0, make_transp_enbits),
|
|
mktr_wren[grid_a], module->Eq(NEW_ID, mktr_wraddr, sig_addr));
|
|
|
|
SigSpec transp_en_q = module->addWire(NEW_ID, make_transp_enbits);
|
|
module->addDff(NEW_ID, make_transp_clk.first, transp_en_d, transp_en_q, make_transp_clk.second);
|
|
|
|
for (int i = 0; i < make_transp_enbits; i++) {
|
|
int en_width = bram.dbits / make_transp_enbits;
|
|
SigSpec orig_bram_dout = bram_dout.extract(i * en_width, en_width);
|
|
SigSpec bypass_dout = mktr_wrdata_q.extract(i * en_width, en_width);
|
|
bram_dout.replace(i * en_width, module->Mux(NEW_ID, orig_bram_dout, bypass_dout, transp_en_q[i]));
|
|
}
|
|
}
|
|
|
|
for (int i = bram.dbits-1; i >= 0; i--)
|
|
if (sig_data[i].wire == nullptr) {
|
|
sig_data.remove(i);
|
|
bram_dout.remove(i);
|
|
}
|
|
|
|
SigSpec addr_ok_q = addr_ok;
|
|
if ((pi.clocks || pi.make_outreg) && !addr_ok.empty()) {
|
|
addr_ok_q = module->addWire(NEW_ID);
|
|
if (!pi.sig_en.empty())
|
|
addr_ok = module->Mux(NEW_ID, addr_ok_q, addr_ok, pi.sig_en);
|
|
module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
|
|
}
|
|
|
|
dout_cache[sig_data].first.append(addr_ok_q);
|
|
dout_cache[sig_data].second.append(bram_dout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &it : dout_cache)
|
|
{
|
|
if (it.second.first.empty())
|
|
{
|
|
log_assert(GetSize(it.first) == GetSize(it.second.second));
|
|
module->connect(it.first, it.second.second);
|
|
}
|
|
else
|
|
{
|
|
log_assert(GetSize(it.first)*GetSize(it.second.first) == GetSize(it.second.second));
|
|
module->addPmux(NEW_ID, SigSpec(State::Sx, GetSize(it.first)), it.second.second, it.second.first, it.first);
|
|
}
|
|
}
|
|
|
|
module->remove(cell);
|
|
return true;
|
|
}
|
|
|
|
void handle_cell(Cell *cell, const rules_t &rules)
|
|
{
|
|
log("Processing %s.%s:\n", log_id(cell->module), log_id(cell));
|
|
|
|
bool cell_init = !SigSpec(cell->getParam("\\INIT")).is_fully_undef();
|
|
|
|
dict<string, int> match_properties;
|
|
match_properties["words"] = cell->getParam("\\SIZE").as_int();
|
|
match_properties["abits"] = cell->getParam("\\ABITS").as_int();
|
|
match_properties["dbits"] = cell->getParam("\\WIDTH").as_int();
|
|
match_properties["wports"] = cell->getParam("\\WR_PORTS").as_int();
|
|
match_properties["rports"] = cell->getParam("\\RD_PORTS").as_int();
|
|
match_properties["bits"] = match_properties["words"] * match_properties["dbits"];
|
|
match_properties["ports"] = match_properties["wports"] + match_properties["rports"];
|
|
|
|
log(" Properties:");
|
|
for (auto &it : match_properties)
|
|
log(" %s=%d", it.first.c_str(), it.second);
|
|
log("\n");
|
|
|
|
pool<pair<IdString, int>> failed_brams;
|
|
dict<pair<int, int>, tuple<int, int, int>> best_rule_cache;
|
|
|
|
for (int i = 0; i < GetSize(rules.matches); i++)
|
|
{
|
|
auto &match = rules.matches.at(i);
|
|
|
|
if (!rules.brams.count(rules.matches[i].name))
|
|
log_error("No bram description for resource %s found!\n", log_id(rules.matches[i].name));
|
|
|
|
for (int vi = 0; vi < GetSize(rules.brams.at(match.name)); vi++)
|
|
{
|
|
auto &bram = rules.brams.at(match.name).at(vi);
|
|
bool or_next_if_better = match.or_next_if_better || vi+1 < GetSize(rules.brams.at(match.name));
|
|
|
|
if (failed_brams.count(pair<IdString, int>(bram.name, bram.variant)))
|
|
continue;
|
|
|
|
int avail_rd_ports = 0;
|
|
int avail_wr_ports = 0;
|
|
for (int j = 0; j < bram.groups; j++) {
|
|
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) == 0)
|
|
avail_rd_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
|
|
if (GetSize(bram.wrmode) < j || bram.wrmode.at(j) != 0)
|
|
avail_wr_ports += GetSize(bram.ports) < j ? bram.ports.at(j) : 0;
|
|
}
|
|
|
|
log(" Checking rule #%d for bram type %s (variant %d):\n", i+1, log_id(bram.name), bram.variant);
|
|
log(" Bram geometry: abits=%d dbits=%d wports=%d rports=%d\n", bram.abits, bram.dbits, avail_wr_ports, avail_rd_ports);
|
|
|
|
int dups = avail_rd_ports ? (match_properties["rports"] + avail_rd_ports - 1) / avail_rd_ports : 1;
|
|
match_properties["dups"] = dups;
|
|
|
|
log(" Estimated number of duplicates for more read ports: dups=%d\n", match_properties["dups"]);
|
|
|
|
int aover = match_properties["words"] % (1 << bram.abits);
|
|
int awaste = aover ? (1 << bram.abits) - aover : 0;
|
|
match_properties["awaste"] = awaste;
|
|
|
|
int dover = match_properties["dbits"] % bram.dbits;
|
|
int dwaste = dover ? bram.dbits - dover : 0;
|
|
match_properties["dwaste"] = dwaste;
|
|
|
|
int bwaste = awaste * bram.dbits + dwaste * (1 << bram.abits) - awaste * dwaste;
|
|
match_properties["bwaste"] = bwaste;
|
|
|
|
int waste = match_properties["dups"] * bwaste;
|
|
match_properties["waste"] = waste;
|
|
|
|
int cells = ((match_properties["dbits"] + bram.dbits - 1) / bram.dbits) * ((match_properties["words"] + (1 << bram.abits) - 1) / (1 << bram.abits));
|
|
int efficiency = (100 * match_properties["bits"]) / (dups * cells * bram.dbits * (1 << bram.abits));
|
|
match_properties["efficiency"] = efficiency;
|
|
|
|
log(" Metrics for %s: awaste=%d dwaste=%d bwaste=%d waste=%d efficiency=%d\n",
|
|
log_id(match.name), awaste, dwaste, bwaste, waste, efficiency);
|
|
|
|
if (cell_init && bram.init == 0) {
|
|
log(" Rule #%d for bram type %s (variant %d) rejected: cannot be initialized.\n",
|
|
i+1, log_id(bram.name), bram.variant);
|
|
goto next_match_rule;
|
|
}
|
|
|
|
for (auto it : match.min_limits) {
|
|
if (it.first == "waste" || it.first == "dups" || it.first == "acells" || it.first == "dcells" || it.first == "cells")
|
|
continue;
|
|
if (!match_properties.count(it.first))
|
|
log_error("Unknown property '%s' in match rule for bram type %s.\n",
|
|
it.first.c_str(), log_id(match.name));
|
|
if (match_properties[it.first] >= it.second)
|
|
continue;
|
|
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'min %s %d' not met.\n",
|
|
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
|
|
goto next_match_rule;
|
|
}
|
|
|
|
for (auto it : match.max_limits) {
|
|
if (it.first == "acells" || it.first == "dcells" || it.first == "cells")
|
|
continue;
|
|
if (!match_properties.count(it.first))
|
|
log_error("Unknown property '%s' in match rule for bram type %s.\n",
|
|
it.first.c_str(), log_id(match.name));
|
|
if (match_properties[it.first] <= it.second)
|
|
continue;
|
|
log(" Rule #%d for bram type %s (variant %d) rejected: requirement 'max %s %d' not met.\n",
|
|
i+1, log_id(bram.name), bram.variant, it.first.c_str(), it.second);
|
|
goto next_match_rule;
|
|
}
|
|
|
|
log(" Rule #%d for bram type %s (variant %d) accepted.\n", i+1, log_id(bram.name), bram.variant);
|
|
|
|
if (or_next_if_better || !best_rule_cache.empty())
|
|
{
|
|
if (or_next_if_better && i+1 == GetSize(rules.matches) && vi+1 == GetSize(rules.brams.at(match.name)))
|
|
log_error("Found 'or_next_if_better' in last match rule.\n");
|
|
|
|
if (!replace_cell(cell, rules, bram, match, match_properties, 1)) {
|
|
log(" Mapping to bram type %s failed.\n", log_id(match.name));
|
|
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
|
|
goto next_match_rule;
|
|
}
|
|
|
|
log(" Storing for later selection.\n");
|
|
best_rule_cache[pair<int, int>(i, vi)] = tuple<int, int, int>(match_properties["efficiency"], -match_properties["cells"], -match_properties["acells"]);
|
|
|
|
next_match_rule:
|
|
if (or_next_if_better || best_rule_cache.empty())
|
|
continue;
|
|
|
|
log(" Selecting best of %d rules:\n", GetSize(best_rule_cache));
|
|
pair<int, int> best_rule = best_rule_cache.begin()->first;
|
|
|
|
for (auto &it : best_rule_cache) {
|
|
if (it.second > best_rule_cache[best_rule])
|
|
best_rule = it.first;
|
|
log(" Efficiency for rule %d.%d: efficiency=%d, cells=%d, acells=%d\n", it.first.first+1, it.first.second+1,
|
|
std::get<0>(it.second), -std::get<1>(it.second), -std::get<2>(it.second));
|
|
}
|
|
|
|
log(" Selected rule %d.%d with efficiency %d.\n", best_rule.first+1, best_rule.second+1, std::get<0>(best_rule_cache[best_rule]));
|
|
best_rule_cache.clear();
|
|
|
|
auto &best_bram = rules.brams.at(rules.matches.at(best_rule.first).name).at(best_rule.second);
|
|
if (!replace_cell(cell, rules, best_bram, rules.matches.at(best_rule.first), match_properties, 2))
|
|
log_error("Mapping to bram type %s (variant %d) after pre-selection failed.\n", log_id(best_bram.name), best_bram.variant);
|
|
return;
|
|
}
|
|
|
|
if (!replace_cell(cell, rules, bram, match, match_properties, 0)) {
|
|
log(" Mapping to bram type %s failed.\n", log_id(match.name));
|
|
failed_brams.insert(pair<IdString, int>(bram.name, bram.variant));
|
|
goto next_match_rule;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
log(" No acceptable bram resources found.\n");
|
|
}
|
|
|
|
struct MemoryBramPass : public Pass {
|
|
MemoryBramPass() : Pass("memory_bram", "map memories to block rams") { }
|
|
void help() YS_OVERRIDE
|
|
{
|
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
|
log("\n");
|
|
log(" memory_bram -rules <rule_file> [selection]\n");
|
|
log("\n");
|
|
log("This pass converts the multi-port $mem memory cells into block ram instances.\n");
|
|
log("The given rules file describes the available resources and how they should be\n");
|
|
log("used.\n");
|
|
log("\n");
|
|
log("The rules file contains a set of block ram description and a sequence of match\n");
|
|
log("rules. A block ram description looks like this:\n");
|
|
log("\n");
|
|
log(" bram RAMB1024X32 # name of BRAM cell\n");
|
|
log(" init 1 # set to '1' if BRAM can be initialized\n");
|
|
log(" abits 10 # number of address bits\n");
|
|
log(" dbits 32 # number of data bits\n");
|
|
log(" groups 2 # number of port groups\n");
|
|
log(" ports 1 1 # number of ports in each group\n");
|
|
log(" wrmode 1 0 # set to '1' if this groups is write ports\n");
|
|
log(" enable 4 1 # number of enable bits\n");
|
|
log(" transp 0 2 # transparent (for read ports)\n");
|
|
log(" clocks 1 2 # clock configuration\n");
|
|
log(" clkpol 2 2 # clock polarity configuration\n");
|
|
log(" endbram\n");
|
|
log("\n");
|
|
log("For the option 'transp' the value 0 means non-transparent, 1 means transparent\n");
|
|
log("and a value greater than 1 means configurable. All groups with the same\n");
|
|
log("value greater than 1 share the same configuration bit.\n");
|
|
log("\n");
|
|
log("For the option 'clocks' the value 0 means non-clocked, and a value greater\n");
|
|
log("than 0 means clocked. All groups with the same value share the same clock\n");
|
|
log("signal.\n");
|
|
log("\n");
|
|
log("For the option 'clkpol' the value 0 means negative edge, 1 means positive edge\n");
|
|
log("and a value greater than 1 means configurable. All groups with the same value\n");
|
|
log("greater than 1 share the same configuration bit.\n");
|
|
log("\n");
|
|
log("Using the same bram name in different bram blocks will create different variants\n");
|
|
log("of the bram. Verilog configuration parameters for the bram are created as needed.\n");
|
|
log("\n");
|
|
log("It is also possible to create variants by repeating statements in the bram block\n");
|
|
log("and appending '@<label>' to the individual statements.\n");
|
|
log("\n");
|
|
log("A match rule looks like this:\n");
|
|
log("\n");
|
|
log(" match RAMB1024X32\n");
|
|
log(" max waste 16384 # only use this bram if <= 16k ram bits are unused\n");
|
|
log(" min efficiency 80 # only use this bram if efficiency is at least 80%%\n");
|
|
log(" endmatch\n");
|
|
log("\n");
|
|
log("It is possible to match against the following values with min/max rules:\n");
|
|
log("\n");
|
|
log(" words ........ number of words in memory in design\n");
|
|
log(" abits ........ number of address bits on memory in design\n");
|
|
log(" dbits ........ number of data bits on memory in design\n");
|
|
log(" wports ....... number of write ports on memory in design\n");
|
|
log(" rports ....... number of read ports on memory in design\n");
|
|
log(" ports ........ number of ports on memory in design\n");
|
|
log(" bits ......... number of bits in memory in design\n");
|
|
log(" dups .......... number of duplications for more read ports\n");
|
|
log("\n");
|
|
log(" awaste ....... number of unused address slots for this match\n");
|
|
log(" dwaste ....... number of unused data bits for this match\n");
|
|
log(" bwaste ....... number of unused bram bits for this match\n");
|
|
log(" waste ........ total number of unused bram bits (bwaste*dups)\n");
|
|
log(" efficiency ... total percentage of used and non-duplicated bits\n");
|
|
log("\n");
|
|
log(" acells ....... number of cells in 'address-direction'\n");
|
|
log(" dcells ....... number of cells in 'data-direction'\n");
|
|
log(" cells ........ total number of cells (acells*dcells*dups)\n");
|
|
log("\n");
|
|
log("The interface for the created bram instances is derived from the bram\n");
|
|
log("description. Use 'techmap' to convert the created bram instances into\n");
|
|
log("instances of the actual bram cells of your target architecture.\n");
|
|
log("\n");
|
|
log("A match containing the command 'or_next_if_better' is only used if it\n");
|
|
log("has a higher efficiency than the next match (and the one after that if\n");
|
|
log("the next also has 'or_next_if_better' set, and so forth).\n");
|
|
log("\n");
|
|
log("A match containing the command 'make_transp' will add external circuitry\n");
|
|
log("to simulate 'transparent read', if necessary.\n");
|
|
log("\n");
|
|
log("A match containing the command 'make_outreg' will add external flip-flops\n");
|
|
log("to implement synchronous read ports, if necessary.\n");
|
|
log("\n");
|
|
log("A match containing the command 'shuffle_enable A' will re-organize\n");
|
|
log("the data bits to accommodate the enable pattern of port A.\n");
|
|
log("\n");
|
|
}
|
|
void execute(vector<string> args, Design *design) YS_OVERRIDE
|
|
{
|
|
rules_t rules;
|
|
|
|
log_header(design, "Executing MEMORY_BRAM pass (mapping $mem cells to block memories).\n");
|
|
|
|
size_t argidx;
|
|
for (argidx = 1; argidx < args.size(); argidx++) {
|
|
if (args[argidx] == "-rules" && argidx+1 < args.size()) {
|
|
rules.parse(args[++argidx]);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
extra_args(args, argidx, design);
|
|
|
|
for (auto mod : design->selected_modules())
|
|
for (auto cell : mod->selected_cells())
|
|
if (cell->type == "$mem")
|
|
handle_cell(cell, rules);
|
|
}
|
|
} MemoryBramPass;
|
|
|
|
PRIVATE_NAMESPACE_END
|