OpenFPGA/vpr7_x2p/vpr/SRC/base/read_blif.c

2017 lines
65 KiB
C

#include <string.h>
#include <stdio.h>
#include <time.h>
#include "assert.h"
#include "util.h"
#include "vpr_types.h"
#include "globals.h"
#include "read_blif.h"
#include "arch_types.h"
#include "ReadOptions.h"
#include "hash.h"
/* PRINT_PIN_NETS */
struct s_model_stats {
t_model * model;
int count;
};
#define MAX_ATOM_PARSE 200000000
/* This source file will read in a FLAT blif netlist consisting *
* of .inputs, .outputs, .names and .latch commands. It currently *
* does not handle hierarchical blif files. Hierarchical *
* blif files can be flattened via the read_blif and write_blif *
* commands of sis. LUT circuits should only have .names commands; *
* there should be no gates. This parser performs limited error *
* checking concerning the consistency of the netlist it obtains. *
* .inputs and .outputs statements must be given; this parser does *
* not infer primary inputs and outputs from non-driven and fanout *
* free nodes. This parser can be extended to do this if necessary, *
* or the sis read_blif and write_blif commands can be used to put a *
* netlist into the standard format. *
* V. Betz, August 25, 1994. *
* Added more error checking, March 30, 1995, V. Betz */
static int *num_driver, *temp_num_pins;
static int *logical_block_input_count, *logical_block_output_count;
static int num_blif_models;
static int num_luts = 0, num_latches = 0, num_subckts = 0;
/* # of .input, .output, .model and .end lines */
static int ilines, olines, model_lines, endlines;
static struct s_hash **blif_hash;
static char *model = NULL;
static FILE *blif;
static int add_vpack_net(char *ptr, int type, int bnum, int bport, int bpin,
boolean is_global, int doall);
static void get_blif_tok(char *buffer, int doall, boolean *done,
boolean *add_truth_table, INP t_model* inpad_model,
INP t_model* outpad_model, INP t_model* logic_model,
INP t_model* latch_model, INP t_model* user_models);
static void init_parse(int doall);
static void check_net(boolean sweep_hanging_nets_and_inputs);
static void free_parse(void);
static void io_line(int in_or_out, int doall, t_model *io_model);
static boolean add_lut(int doall, t_model *logic_model);
static void add_latch(int doall, INP t_model *latch_model);
static void add_subckt(int doall, INP t_model *user_models);
static void check_and_count_models(int doall, const char* model_name,
t_model* user_models);
static void load_default_models(INP t_model *library_models,
OUTP t_model** inpad_model, OUTP t_model** outpad_model,
OUTP t_model** logic_model, OUTP t_model** latch_model);
static void read_activity(char * activity_file);
static void read_blif(char *blif_file, boolean sweep_hanging_nets_and_inputs,
t_model *user_models, t_model *library_models,
boolean read_activity_file, char * activity_file);
static void absorb_buffer_luts(void);
static void compress_netlist(void);
static void show_blif_stats(t_model *user_models, t_model *library_models);
static bool add_activity_to_net(char * net_name, float probability,
float density);
static void read_blif(char *blif_file, boolean sweep_hanging_nets_and_inputs,
t_model *user_models, t_model *library_models,
boolean read_activity_file, char * activity_file) {
char buffer[BUFSIZE];
int doall;
boolean done;
boolean add_truth_table;
t_model *inpad_model, *outpad_model, *logic_model, *latch_model;
clock_t begin, end;
blif = fopen(blif_file, "r");
if (blif == NULL ) {
vpr_printf(TIO_MESSAGE_ERROR, "Failed to open blif file '%s'.\n",
blif_file);
exit(1);
}
load_default_models(library_models, &inpad_model, &outpad_model,
&logic_model, &latch_model);
/* doall = 0 means do a counting pass, doall = 1 means allocate and load data structures */
for (doall = 0; doall <= 1; doall++) {
begin = clock();
init_parse(doall);
end = clock();
#ifdef CLOCKS_PER_SEC
vpr_printf(TIO_MESSAGE_INFO,
"Loop for doall = %d, init_parse took %g seconds.\n", doall,
(float) (end - begin) / CLOCKS_PER_SEC);
#else
vpr_printf(TIO_MESSAGE_INFO, "Loop for doall = %d, init_parse took %g seconds.\n", doall, (float)(end - begin) / CLK_PER_SEC);
#endif
begin = clock();
file_line_number = 0; /* Reset line number. */
done = FALSE;
add_truth_table = FALSE;
model_lines = 0;
while (my_fgets(buffer, BUFSIZE, blif) != NULL ) {
get_blif_tok(buffer, doall, &done, &add_truth_table, inpad_model,
outpad_model, logic_model, latch_model, user_models);
}
rewind(blif); /* Start at beginning of file again */
end = clock();
#ifdef CLOCKS_PER_SEC
vpr_printf(TIO_MESSAGE_INFO, "Loop for doall = %d took %g seconds.\n",
doall, (float) (end - begin) / CLOCKS_PER_SEC);
#else
vpr_printf(TIO_MESSAGE_INFO, "Loop for doall = %d took %g seconds.\n", doall, (float)(end - begin) / CLK_PER_SEC);
#endif
}
/*checks how well the hash function is performing*/
#ifdef VERBOSE
get_hash_stats(blif_hash, "blif_hash");
#endif
fclose(blif);
check_net(sweep_hanging_nets_and_inputs);
/* Read activity file */
if (read_activity_file) {
read_activity(activity_file);
}
free_parse();
}
static void init_parse(int doall) {
/* Allocates and initializes the data structures needed for the parse. */
int i;
struct s_hash *h_ptr;
if (!doall) { /* Initialization before first (counting) pass */
num_logical_nets = 0;
blif_hash = (struct s_hash **) my_calloc(sizeof(struct s_hash *),
HASHSIZE);
}
/* Allocate memory for second (load) pass */
else {
vpack_net = (struct s_net *) my_calloc(num_logical_nets,
sizeof(struct s_net));
logical_block = (struct s_logical_block *) my_calloc(num_logical_blocks,
sizeof(struct s_logical_block));
num_driver = (int *) my_malloc(num_logical_nets * sizeof(int));
temp_num_pins = (int *) my_malloc(num_logical_nets * sizeof(int));
logical_block_input_count = (int *) my_calloc(num_logical_blocks,
sizeof(int));
logical_block_output_count = (int *) my_calloc(num_logical_blocks,
sizeof(int));
for (i = 0; i < num_logical_nets; i++) {
num_driver[i] = 0;
vpack_net[i].num_sinks = 0;
vpack_net[i].name = NULL;
vpack_net[i].node_block = NULL;
vpack_net[i].node_block_port = NULL;
vpack_net[i].node_block_pin = NULL;
vpack_net[i].is_global = FALSE;
}
for (i = 0; i < num_logical_blocks; i++) {
logical_block[i].index = i;
}
for (i = 0; i < HASHSIZE; i++) {
h_ptr = blif_hash[i];
while (h_ptr != NULL ) {
vpack_net[h_ptr->index].node_block = (int *) my_malloc(
h_ptr->count * sizeof(int));
vpack_net[h_ptr->index].node_block_port = (int *) my_malloc(
h_ptr->count * sizeof(int));
vpack_net[h_ptr->index].node_block_pin = (int *) my_malloc(
h_ptr->count * sizeof(int));
/* For avoiding assigning values beyond end of pins array. */
temp_num_pins[h_ptr->index] = h_ptr->count;
vpack_net[h_ptr->index].name = my_strdup(h_ptr->name);
h_ptr = h_ptr->next;
}
}
#ifdef PRINT_PIN_NETS
vpr_printf(TIO_MESSAGE_INFO, "i\ttemp_num_pins\n");
for (i = 0;i < num_logical_nets;i++) {
vpr_printf(TIO_MESSAGE_INFO, "%d\t%d\n",i,temp_num_pins[i]);
}
vpr_printf(TIO_MESSAGE_INFO, "num_logical_nets %d\n", num_logical_nets);
#endif
}
/* Initializations for both passes. */
ilines = 0;
olines = 0;
model_lines = 0;
endlines = 0;
num_p_inputs = 0;
num_p_outputs = 0;
num_luts = 0;
num_latches = 0;
num_logical_blocks = 0;
num_blif_models = 0;
num_subckts = 0;
}
static void get_blif_tok(char *buffer, int doall, boolean *done,
boolean *add_truth_table, INP t_model* inpad_model,
INP t_model* outpad_model, INP t_model* logic_model,
INP t_model* latch_model, INP t_model* user_models) {
/* Figures out which, if any token is at the start of this line and *
* takes the appropriate action. */
#define BLIF_TOKENS " \t\n"
char *ptr;
char *fn;
struct s_linked_vptr *data;
ptr = my_strtok(buffer, TOKENS, blif, buffer);
if (ptr == NULL )
return;
if (*add_truth_table) {
if (ptr[0] == '0' || ptr[0] == '1' || ptr[0] == '-') {
data = (struct s_linked_vptr*) my_malloc(
sizeof(struct s_linked_vptr));
fn = ptr;
ptr = my_strtok(NULL, BLIF_TOKENS, blif, buffer);
if (!ptr || strlen(ptr) != 1) {
if (strlen(fn) == 1) {
/* constant generator */
data->next =
logical_block[num_logical_blocks - 1].truth_table;
data->data_vptr = my_malloc(strlen(fn) + 4);
sprintf((char*) (data->data_vptr), " %s", fn);
logical_block[num_logical_blocks - 1].truth_table = data;
ptr = fn;
} else {
vpr_printf(TIO_MESSAGE_ERROR,
"Unknown truth table data %s %s.\n", fn, ptr);
exit(1);
}
} else {
data->next = logical_block[num_logical_blocks - 1].truth_table;
data->data_vptr = my_malloc(strlen(fn) + 3);
sprintf((char*) data->data_vptr, "%s %s", fn, ptr);
logical_block[num_logical_blocks - 1].truth_table = data;
}
}
}
if (strcmp(ptr, ".names") == 0) {
*add_truth_table = FALSE;
*add_truth_table = add_lut(doall, logic_model);
return;
}
if (strcmp(ptr, ".latch") == 0) {
*add_truth_table = FALSE;
add_latch(doall, latch_model);
return;
}
if (strcmp(ptr, ".model") == 0) {
*add_truth_table = FALSE;
ptr = my_strtok(NULL, TOKENS, blif, buffer);
if (doall) {
if (ptr != NULL ) {
if(model != NULL) {
free(model);
}
model = (char *) my_malloc((strlen(ptr) + 1) * sizeof(char));
strcpy(model, ptr);
if (blif_circuit_name == NULL ) {
blif_circuit_name = my_strdup(model);
}
} else {
if(model != NULL) {
free(model);
}
model = (char *) my_malloc(sizeof(char));
model[0] = '\0';
}
}
if (model_lines > 0) {
check_and_count_models(doall, ptr, user_models);
} else {
dum_parse(buffer);
}
model_lines++;
return;
}
if (strcmp(ptr, ".inputs") == 0) {
*add_truth_table = FALSE;
/* packing can only one fully defined model */
if (model_lines == 1) {
io_line(DRIVER, doall, inpad_model);
*done = (boolean) 1;
}
if (doall)
ilines++; /* Error checking only */
return;
}
if (strcmp(ptr, ".outputs") == 0) {
*add_truth_table = FALSE;
/* packing can only one fully defined model */
if (model_lines == 1) {
io_line(RECEIVER, doall, outpad_model);
*done = (boolean) 1;
}
if (doall)
olines++; /* Make sure only one .output line */
/* For error checking only */
return;
}
if (strcmp(ptr, ".end") == 0) {
*add_truth_table = FALSE;
if (doall) {
endlines++; /* Error checking only */
}
return;
}
if (strcmp(ptr, ".subckt") == 0) {
*add_truth_table = FALSE;
add_subckt(doall, user_models);
}
/* Could have numbers following a .names command, so not matching any *
* of the tokens above is not an error. */
}
void dum_parse(char *buf) {
/* Continue parsing to the end of this (possibly continued) line. */
while (my_strtok(NULL, TOKENS, blif, buf) != NULL )
;
}
static boolean add_lut(int doall, t_model *logic_model) {
/* Adds a LUT as VPACK_COMB from (.names) currently being parsed to the logical_block array. Adds *
* its pins to the nets data structure by calling add_vpack_net. If doall is *
* zero this is a counting pass; if it is 1 this is the final (loading) *
* pass. */
char *ptr, **saved_names, buf[BUFSIZE];
int i, j, output_net_index;
saved_names = (char**) alloc_matrix(0, logic_model->inputs->size, 0,
BUFSIZE - 1, sizeof(char));
num_logical_blocks++;
/* Count # nets connecting */
i = 0;
while ((ptr = my_strtok(NULL, TOKENS, blif, buf)) != NULL ) {
if (i > logic_model->inputs->size) {
vpr_printf(TIO_MESSAGE_ERROR,
"[LINE %d] .names %s ... %s has a LUT size that exceeds the maximum LUT size (%d) of the architecture.\n",
file_line_number, saved_names[0], ptr,
logic_model->inputs->size);
exit(1);
}
strcpy(saved_names[i], ptr);
i++;
}
output_net_index = i - 1;
if (strcmp(saved_names[output_net_index], "unconn") == 0) {
/* unconn is a keyword to pad unused pins, ignore this block */
free_matrix(saved_names, 0, logic_model->inputs->size, 0, sizeof(char));
num_logical_blocks--;
return FALSE;
}
if (!doall) { /* Counting pass only ... */
for (j = 0; j <= output_net_index; j++)
/* On this pass it doesn't matter if RECEIVER or DRIVER. Just checking if in hash. [0] should be DRIVER */
add_vpack_net(saved_names[j], RECEIVER, num_logical_blocks - 1, 0,
j, FALSE, doall);
free_matrix(saved_names, 0, logic_model->inputs->size, 0, sizeof(char));
return FALSE;
}
logical_block[num_logical_blocks - 1].model = logic_model;
if (output_net_index > logic_model->inputs->size) {
vpr_printf(TIO_MESSAGE_ERROR,
"LUT size of %d in .blif file is too big for FPGA which has a maximum LUT size of %d.\n",
output_net_index, logic_model->inputs->size);
exit(1);
}
assert(logic_model->inputs->next == NULL);
assert(logic_model->outputs->next == NULL);
assert(logic_model->outputs->size == 1);
logical_block[num_logical_blocks - 1].input_nets = (int **) my_malloc(
sizeof(int*));
logical_block[num_logical_blocks - 1].output_nets = (int **) my_malloc(
sizeof(int*));
logical_block[num_logical_blocks - 1].clock_net = OPEN;
logical_block[num_logical_blocks - 1].input_nets[0] = (int *) my_malloc(
logic_model->inputs->size * sizeof(int));
logical_block[num_logical_blocks - 1].output_nets[0] = (int *) my_malloc(
sizeof(int));
logical_block[num_logical_blocks - 1].type = VPACK_COMB;
for (i = 0; i < output_net_index; i++) /* Do inputs */
logical_block[num_logical_blocks - 1].input_nets[0][i] = add_vpack_net(
saved_names[i], RECEIVER, num_logical_blocks - 1, 0, i, FALSE,
doall);
logical_block[num_logical_blocks - 1].output_nets[0][0] = add_vpack_net(
saved_names[output_net_index], DRIVER, num_logical_blocks - 1, 0, 0,
FALSE, doall);
for (i = output_net_index; i < logic_model->inputs->size; i++)
logical_block[num_logical_blocks - 1].input_nets[0][i] = OPEN;
logical_block[num_logical_blocks - 1].name = my_strdup(
saved_names[output_net_index]);
logical_block[num_logical_blocks - 1].truth_table = NULL;
num_luts++;
free_matrix(saved_names, 0, logic_model->inputs->size, 0, sizeof(char));
return (boolean) doall;
}
static void add_latch(int doall, INP t_model *latch_model) {
/* Adds the flipflop (.latch) currently being parsed to the logical_block array. *
* Adds its pins to the nets data structure by calling add_vpack_net. If doall *
* is zero this is a counting pass; if it is 1 this is the final *
* (loading) pass. Blif format for a latch is: *
* .latch <input> <output> <type (latch on)> <control (clock)> <init_val> *
* The latch pins are in .nets 0 to 2 in the order: Q D CLOCK. */
char *ptr, buf[BUFSIZE], saved_names[6][BUFSIZE];
int i;
num_logical_blocks++;
/* Count # parameters, making sure we don't go over 6 (avoids memory corr.) */
/* Note that we can't rely on the tokens being around unless we copy them. */
for (i = 0; i < 6; i++) {
ptr = my_strtok(NULL, TOKENS, blif, buf);
if (ptr == NULL )
break;
strcpy(saved_names[i], ptr);
}
if (i != 5) {
vpr_printf(TIO_MESSAGE_ERROR, ".latch does not have 5 parameters.\n");
vpr_printf(TIO_MESSAGE_ERROR, "Check netlist, line %d.\n",
file_line_number);
exit(1);
}
if (!doall) { /* If only a counting pass ... */
add_vpack_net(saved_names[0], RECEIVER, num_logical_blocks - 1, 0, 0,
FALSE, doall); /* D */
add_vpack_net(saved_names[1], DRIVER, num_logical_blocks - 1, 0, 0,
FALSE, doall); /* Q */
add_vpack_net(saved_names[3], RECEIVER, num_logical_blocks - 1, 0, 0,
TRUE, doall); /* Clock */
return;
}
logical_block[num_logical_blocks - 1].model = latch_model;
logical_block[num_logical_blocks - 1].type = VPACK_LATCH;
logical_block[num_logical_blocks - 1].input_nets = (int **) my_malloc(
sizeof(int*));
logical_block[num_logical_blocks - 1].output_nets = (int **) my_malloc(
sizeof(int*));
logical_block[num_logical_blocks - 1].input_nets[0] = (int *) my_malloc(
sizeof(int));
logical_block[num_logical_blocks - 1].output_nets[0] = (int *) my_malloc(
sizeof(int));
logical_block[num_logical_blocks - 1].output_nets[0][0] = add_vpack_net(
saved_names[1], DRIVER, num_logical_blocks - 1, 0, 0, FALSE, doall); /* Q */
logical_block[num_logical_blocks - 1].input_nets[0][0] = add_vpack_net(
saved_names[0], RECEIVER, num_logical_blocks - 1, 0, 0, FALSE,
doall); /* D */
logical_block[num_logical_blocks - 1].clock_net = add_vpack_net(
saved_names[3], RECEIVER, num_logical_blocks - 1, 0, 0, TRUE,
doall); /* Clock */
logical_block[num_logical_blocks - 1].name = my_strdup(saved_names[1]);
logical_block[num_logical_blocks - 1].truth_table = NULL;
/* Xifan TANG: SPICE Model Support*/
/* Store the clock trigger type : "re" or "fe"*/
logical_block[num_logical_blocks - 1].trigger_type = my_strdup(saved_names[2]);
/* Store the initial value */
logical_block[num_logical_blocks - 1].init_val = my_atoi(saved_names[4]);
/* Add clock identification */
logical_block[logical_block[num_logical_blocks - 1].clock_net].is_clock = TRUE;
/*END*/
num_latches++;
}
static void add_subckt(int doall, t_model *user_models) {
char *ptr;
char *close_bracket;
char subckt_name[BUFSIZE];
char buf[BUFSIZE];
//fpos_t current_subckt_pos;
int i, j, iparse;
int subckt_index_signals = 0;
char **subckt_signal_name = NULL;
char *port_name, *pin_number;
char **circuit_signal_name = NULL;
char *subckt_logical_block_name = NULL;
short toggle = 0;
int input_net_count, output_net_count, input_port_count, output_port_count;
t_model *cur_model;
t_model_ports *port;
boolean found_subckt_signal;
num_logical_blocks++;
num_subckts++;
/* now we have to find the matching subckt */
/* find the name we are looking for */
strcpy(subckt_name, my_strtok(NULL, TOKENS, blif, buf));
/* get all the signals in the form z=r */
iparse = 0;
while (iparse < MAX_ATOM_PARSE) {
iparse++;
/* Assumption is that it will be "signal1, =, signal1b, spacing, and repeat" */
ptr = my_strtok(NULL, " \t\n=", blif, buf);
if (ptr == NULL && toggle == 0)
break;
else if (ptr == NULL && toggle == 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"subckt %s formed incorrectly with signal=signal at %s.\n",
subckt_name, buf);
exit(-1);
} else if (toggle == 0) {
/* ELSE - parse in one or the other */
/* allocate a new spot for both the circuit_signal name and the subckt_signal name */
subckt_signal_name = (char**) my_realloc(subckt_signal_name,
(subckt_index_signals + 1) * sizeof(char**));
circuit_signal_name = (char**) my_realloc(circuit_signal_name,
(subckt_index_signals + 1) * sizeof(char**));
/* copy in the subckt_signal name */
subckt_signal_name[subckt_index_signals] = my_strdup(ptr);
toggle = 1;
} else if (toggle == 1) {
/* copy in the circuit_signal name */
circuit_signal_name[subckt_index_signals] = my_strdup(ptr);
if (!doall) {
/* Counting pass, does not matter if driver or receiver and pin number does not matter */
add_vpack_net(circuit_signal_name[subckt_index_signals],
RECEIVER, num_logical_blocks - 1, 0, 0, FALSE, doall);
}
toggle = 0;
subckt_index_signals++;
}
}
assert(iparse < MAX_ATOM_PARSE);
/* record the position of the parse so far so when we resume we will move to the next item */
//if (fgetpos(blif, &current_subckt_pos) != 0) {
// vpr_printf(TIO_MESSAGE_ERROR, "In file pointer read - read_blif.c\n");
// exit(-1);
//}
input_net_count = 0;
output_net_count = 0;
if (doall) {
/* get the matching model to this subckt */
cur_model = user_models;
while (cur_model != NULL ) {
if (strcmp(cur_model->name, subckt_name) == 0) {
break;
}
cur_model = cur_model->next;
}
if (cur_model == NULL ) {
vpr_printf(TIO_MESSAGE_ERROR,
"Did not find matching model to subckt %s.\n", subckt_name);
exit(-1);
}
/* IF - do all then we need to allocate a string to hold all the subckt info */
/* initialize the logical_block structure */
/* record model info */
logical_block[num_logical_blocks - 1].model = cur_model;
/* allocate space for inputs and initialize all input nets to OPEN */
input_port_count = 0;
port = cur_model->inputs;
while (port) {
if (!port->is_clock) {
input_port_count++;
}
port = port->next;
}
logical_block[num_logical_blocks - 1].input_nets = (int**) my_malloc(
input_port_count * sizeof(int *));
port = cur_model->inputs;
while (port) {
if (port->is_clock) {
/* Clock ports are different from regular input ports, skip */
port = port->next;
continue;
}
assert(port->size >= 0);
logical_block[num_logical_blocks - 1].input_nets[port->index] =
(int*) my_malloc(port->size * sizeof(int));
for (j = 0; j < port->size; j++) {
logical_block[num_logical_blocks - 1].input_nets[port->index][j] =
OPEN;
}
port = port->next;
}
assert(port == NULL || (port->is_clock && port->next == NULL));
/* allocate space for outputs and initialize all output nets to OPEN */
output_port_count = 0;
port = cur_model->outputs;
while (port) {
port = port->next;
output_port_count++;
}
logical_block[num_logical_blocks - 1].output_nets = (int**) my_malloc(
output_port_count * sizeof(int *));
port = cur_model->outputs;
while (port) {
assert(port->size >= 0);
logical_block[num_logical_blocks - 1].output_nets[port->index] =
(int*) my_malloc(port->size * sizeof(int));
for (j = 0; j < port->size; j++) {
logical_block[num_logical_blocks - 1].output_nets[port->index][j] =
OPEN;
}
port = port->next;
}
assert(port == NULL);
/* initialize clock data */
logical_block[num_logical_blocks - 1].clock_net = OPEN;
logical_block[num_logical_blocks - 1].type = VPACK_COMB;
logical_block[num_logical_blocks - 1].truth_table = NULL;
logical_block[num_logical_blocks - 1].name = NULL;
/* setup the index signal if open or not */
for (i = 0; i < subckt_index_signals; i++) {
found_subckt_signal = FALSE;
/* determine the port name and the pin_number of the subckt */
port_name = my_strdup(subckt_signal_name[i]);
pin_number = strrchr(port_name, '[');
if (pin_number == NULL ) {
pin_number = "0"; /* default to 0 */
} else {
/* The pin numbering is port_name[pin_number] so need to go one to the right of [ then NULL out ] */
*pin_number = '\0';
pin_number++;
close_bracket = pin_number;
while (*close_bracket != '\0' && *close_bracket != ']') {
close_bracket++;
}
*close_bracket = '\0';
}
port = cur_model->inputs;
while (port) {
if (strcmp(port_name, port->name) == 0) {
if (found_subckt_signal) {
vpr_printf(TIO_MESSAGE_ERROR,
"Two instances of %s subckt signal found in subckt %s.\n",
subckt_signal_name[i], subckt_name);
}
found_subckt_signal = TRUE;
if (port->is_clock) {
assert(
logical_block[num_logical_blocks-1].clock_net == OPEN);
assert(my_atoi(pin_number) == 0);
logical_block[num_logical_blocks - 1].clock_net =
add_vpack_net(circuit_signal_name[i], RECEIVER,
num_logical_blocks - 1, port->index,
my_atoi(pin_number), TRUE, doall);
} else {
logical_block[num_logical_blocks - 1].input_nets[port->index][my_atoi(
pin_number)] = add_vpack_net(
circuit_signal_name[i], RECEIVER,
num_logical_blocks - 1, port->index,
my_atoi(pin_number), FALSE, doall);
input_net_count++;
}
}
port = port->next;
}
port = cur_model->outputs;
while (port) {
if (strcmp(port_name, port->name) == 0) {
if (found_subckt_signal) {
vpr_printf(TIO_MESSAGE_ERROR,
"Two instances of %s subckt signal found in subckt %s.\n",
subckt_signal_name[i], subckt_name);
}
found_subckt_signal = TRUE;
logical_block[num_logical_blocks - 1].output_nets[port->index][my_atoi(
pin_number)] = add_vpack_net(circuit_signal_name[i],
DRIVER, num_logical_blocks - 1, port->index,
my_atoi(pin_number), FALSE, doall);
if (subckt_logical_block_name == NULL
&& circuit_signal_name[i] != NULL ) {
subckt_logical_block_name = circuit_signal_name[i];
}
output_net_count++;
}
port = port->next;
}
/* record the name to be first output net parsed */
if(logical_block[num_logical_blocks - 1].name == NULL) {
/* Xifan TANG: add the index of logical block in its name !
* Name format is <subckt_logical_block_name>_lb<index>
* If not, there could be two pbs having the same name during packing!
*/
if (NULL == subckt_logical_block_name) {
if (i == (subckt_index_signals - 1)) {
/* If this is the last signal and still there is no name for this subckt
* we give a default name.
* Actually, this should not never happen, elsewhere this is a block with no fan-out
*/
logical_block[num_logical_blocks - 1].name = (char*)my_malloc(sizeof(char)*
(6 + 3 + 5 + 1));
sprintf(logical_block[num_logical_blocks - 1].name, "noname_lb%d",
num_logical_blocks -1);
}
} else {
logical_block[num_logical_blocks - 1].name = (char*)my_malloc(sizeof(char)*
(strlen(subckt_logical_block_name) + 3 + 5 + 1));
/* I do lazy job here, assume 5 bits for the index, whose range is [0, 32767]
* This can be improved by using itoa
*/
sprintf(logical_block[num_logical_blocks - 1].name, "%s_lb%d",
subckt_logical_block_name, num_logical_blocks -1);
}
/* logical_block[num_logical_blocks - 1].name = my_strdup(
subckt_logical_block_name); */
}
if (!found_subckt_signal) {
vpr_printf(TIO_MESSAGE_ERROR, "Unknown subckt port %s.\n",
subckt_signal_name[i]);
exit(1);
}
free(port_name);
}
}
for (i = 0; i < subckt_index_signals; i++) {
free(subckt_signal_name[i]);
free(circuit_signal_name[i]);
}
free(subckt_signal_name);
free(circuit_signal_name);
/* now that you've done the analysis, move the file pointer back */
//if (fsetpos(blif, &current_subckt_pos) != 0) {
// vpr_printf(TIO_MESSAGE_ERROR, "In moving back file pointer - read_blif.c\n");
// exit(-1);
//}
}
static void io_line(int in_or_out, int doall, t_model *io_model) {
/* Adds an input or output logical_block to the logical_block data structures. *
* in_or_out: DRIVER for input, RECEIVER for output. *
* doall: 1 for final pass when structures are loaded. 0 for *
* first pass when hash table is built and pins, nets, etc. are counted. */
char *ptr;
char buf2[BUFSIZE];
int nindex, len, iparse;
iparse = 0;
while (iparse < MAX_ATOM_PARSE) {
iparse++;
ptr = my_strtok(NULL, TOKENS, blif, buf2);
if (ptr == NULL )
return;
num_logical_blocks++;
nindex = add_vpack_net(ptr, in_or_out, num_logical_blocks - 1, 0, 0,
FALSE, doall);
/* zero offset indexing */
if (!doall)
continue; /* Just counting things when doall == 0 */
logical_block[num_logical_blocks - 1].clock_net = OPEN;
logical_block[num_logical_blocks - 1].input_nets = NULL;
logical_block[num_logical_blocks - 1].output_nets = NULL;
logical_block[num_logical_blocks - 1].model = io_model;
len = strlen(ptr);
if (in_or_out == RECEIVER) { /* output pads need out: prefix
* to make names unique from LUTs */
logical_block[num_logical_blocks - 1].name = (char *) my_malloc(
(len + 1 + 4) * sizeof(char)); /* Space for out: at start */
strcpy(logical_block[num_logical_blocks - 1].name, "out:");
strcat(logical_block[num_logical_blocks - 1].name, ptr);
logical_block[num_logical_blocks - 1].input_nets =
(int **) my_malloc(sizeof(int*));
logical_block[num_logical_blocks - 1].input_nets[0] =
(int *) my_malloc(sizeof(int));
logical_block[num_logical_blocks - 1].input_nets[0][0] = OPEN;
} else {
assert(in_or_out == DRIVER);
logical_block[num_logical_blocks - 1].name = (char *) my_malloc(
(len + 1) * sizeof(char));
strcpy(logical_block[num_logical_blocks - 1].name, ptr);
logical_block[num_logical_blocks - 1].output_nets =
(int **) my_malloc(sizeof(int*));
logical_block[num_logical_blocks - 1].output_nets[0] =
(int *) my_malloc(sizeof(int));
logical_block[num_logical_blocks - 1].output_nets[0][0] = OPEN;
}
if (in_or_out == DRIVER) { /* processing .inputs line */
num_p_inputs++;
logical_block[num_logical_blocks - 1].type = VPACK_INPAD;
logical_block[num_logical_blocks - 1].output_nets[0][0] = nindex;
} else { /* processing .outputs line */
num_p_outputs++;
logical_block[num_logical_blocks - 1].type = VPACK_OUTPAD;
logical_block[num_logical_blocks - 1].input_nets[0][0] = nindex;
}
logical_block[num_logical_blocks - 1].truth_table = NULL;
}
assert(iparse < MAX_ATOM_PARSE);
}
static void check_and_count_models(int doall, const char* model_name,
t_model *user_models) {
fpos_t start_pos;
t_model *user_model;
num_blif_models++;
if (doall) {
/* get start position to do two passes on model */
if (fgetpos(blif, &start_pos) != 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"in file pointer read - read_blif.c\n");
exit(-1);
}
/* get corresponding architecture model */
user_model = user_models;
while (user_model) {
if (0 == strcmp(model_name, user_model->name)) {
break;
}
user_model = user_model->next;
}
if (user_model == NULL ) {
vpr_printf(TIO_MESSAGE_ERROR,
"No corresponding model %s in architecture description.\n",
model_name);
exit(1);
}
/* check ports */
}
}
static int add_vpack_net(char *ptr, int type, int bnum, int bport, int bpin,
boolean is_global, int doall) {
/* This routine is given a vpack_net name in *ptr, either DRIVER or RECEIVER *
* specifying whether the logical_block number (bnum) and the output pin (bpin) is driving this *
* vpack_net or in the fan-out and doall, which is 0 for the counting pass *
* and 1 for the loading pass. It updates the vpack_net data structure and *
* returns the vpack_net number so the calling routine can update the logical_block *
* data structure. */
struct s_hash *h_ptr, *prev_ptr;
int index, j, nindex;
if (strcmp(ptr, "open") == 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"net name \"open\" is a reserved keyword in VPR.");
exit(1);
}
if (strcmp(ptr, "unconn") == 0) {
return OPEN;
}
index = hash_value(ptr);
if (doall) {
if (type == RECEIVER && !is_global) {
logical_block_input_count[bnum]++;
} else if (type == DRIVER) {
logical_block_output_count[bnum]++;
}
}
h_ptr = blif_hash[index];
prev_ptr = h_ptr;
while (h_ptr != NULL ) {
if (strcmp(h_ptr->name, ptr) == 0) { /* Net already in hash table */
nindex = h_ptr->index;
if (!doall) { /* Counting pass only */
(h_ptr->count)++;
return (nindex);
}
if (type == DRIVER) {
num_driver[nindex]++;
j = 0; /* Driver always in position 0 of pinlist */
} else {
vpack_net[nindex].num_sinks++;
if ((num_driver[nindex] < 0) || (num_driver[nindex] > 1)) {
vpr_printf(TIO_MESSAGE_ERROR,
"Number of drivers for net #%d (%s) has %d drivers.\n",
nindex, ptr, num_driver[index]);
}
j = vpack_net[nindex].num_sinks;
/* num_driver is the number of signal drivers of this vpack_net. *
* should always be zero or 1 unless the netlist is bad. */
if ((vpack_net[nindex].num_sinks - num_driver[nindex])
>= temp_num_pins[nindex]) {
vpr_printf(TIO_MESSAGE_ERROR,
"Net #%d (%s) has no driver and will cause memory corruption.\n",
nindex, ptr);
exit(1);
}
}
vpack_net[nindex].node_block[j] = bnum;
vpack_net[nindex].node_block_port[j] = bport;
vpack_net[nindex].node_block_pin[j] = bpin;
vpack_net[nindex].is_global = is_global;
return (nindex);
}
prev_ptr = h_ptr;
h_ptr = h_ptr->next;
}
/* Net was not in the hash table. */
if (doall == 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"in add_vpack_net: The second (load) pass could not find vpack_net %s in the symbol table.\n",
ptr);
exit(1);
}
/* Add the vpack_net (only counting pass will add nets to symbol table). */
num_logical_nets++;
h_ptr = (struct s_hash *) my_malloc(sizeof(struct s_hash));
if (prev_ptr == NULL ) {
blif_hash[index] = h_ptr;
} else {
prev_ptr->next = h_ptr;
}
h_ptr->next = NULL;
h_ptr->index = num_logical_nets - 1;
h_ptr->count = 1;
h_ptr->name = my_strdup(ptr);
return (h_ptr->index);
}
void echo_input(char *blif_file, char *echo_file, t_model *library_models) {
/* Echo back the netlist data structures to file input.echo to *
* allow the user to look at the internal state of the program *
* and check the parsing. */
int i, j;
FILE *fp;
t_model_ports *port;
t_model *latch_model;
t_model *logic_model;
t_model *cur;
int *lut_distribution;
int num_absorbable_latch;
int inet;
cur = library_models;
logic_model = latch_model = NULL;
while (cur) {
if (strcmp(cur->name, MODEL_LOGIC) == 0) {
logic_model = cur;
assert(logic_model->inputs->next == NULL);
} else if (strcmp(cur->name, MODEL_LATCH) == 0) {
latch_model = cur;
assert(latch_model->inputs->size == 1);
}
cur = cur->next;
}
lut_distribution = (int*) my_calloc(logic_model->inputs[0].size + 1,
sizeof(int));
num_absorbable_latch = 0;
for (i = 0; i < num_logical_blocks; i++) {
if (logical_block[i].model == logic_model) {
if (logic_model == NULL )
continue;
for (j = 0; j < logic_model->inputs[0].size; j++) {
if (logical_block[i].input_nets[0][j] == OPEN) {
break;
}
}
lut_distribution[j]++;
} else if (logical_block[i].model == latch_model) {
if (latch_model == NULL )
continue;
inet = logical_block[i].input_nets[0][0];
if (vpack_net[inet].num_sinks == 1
&& logical_block[vpack_net[inet].node_block[0]].model
== logic_model) {
num_absorbable_latch++;
}
}
}
vpr_printf(TIO_MESSAGE_INFO, "Input netlist file: '%s', model: %s\n",
blif_file, model);
vpr_printf(TIO_MESSAGE_INFO, "Primary inputs: %d, primary outputs: %d\n",
num_p_inputs, num_p_outputs);
vpr_printf(TIO_MESSAGE_INFO, "LUTs: %d, latches: %d, subckts: %d\n",
num_luts, num_latches, num_subckts);
vpr_printf(TIO_MESSAGE_INFO, "# standard absorbable latches: %d\n",
num_absorbable_latch);
vpr_printf(TIO_MESSAGE_INFO, "\t");
for (i = 0; i < logic_model->inputs[0].size + 1; i++) {
if (i > 0)
vpr_printf(TIO_MESSAGE_DIRECT, ", ");
vpr_printf(TIO_MESSAGE_DIRECT, "LUT size %d = %d", i,
lut_distribution[i]);
}
vpr_printf(TIO_MESSAGE_DIRECT, "\n");
vpr_printf(TIO_MESSAGE_INFO, "Total blocks: %d, total nets: %d\n",
num_logical_blocks, num_logical_nets);
fp = my_fopen(echo_file, "w", 0);
fprintf(fp, "Input netlist file: '%s', model: %s\n", blif_file, model);
fprintf(fp,
"num_p_inputs: %d, num_p_outputs: %d, num_luts: %d, num_latches: %d\n",
num_p_inputs, num_p_outputs, num_luts, num_latches);
fprintf(fp, "num_logical_blocks: %d, num_logical_nets: %d\n",
num_logical_blocks, num_logical_nets);
fprintf(fp, "\nNet\tName\t\t#Pins\tDriver\tRecvs.\n");
for (i = 0; i < num_logical_nets; i++) {
fprintf(fp, "\n%d\t%s\t", i, vpack_net[i].name);
if (strlen(vpack_net[i].name) < 8)
fprintf(fp, "\t"); /* Name field is 16 chars wide */
fprintf(fp, "%d", vpack_net[i].num_sinks + 1);
for (j = 0; j <= vpack_net[i].num_sinks; j++)
fprintf(fp, "\t(%d,%d,%d)", vpack_net[i].node_block[j],
vpack_net[i].node_block_port[j],
vpack_net[i].node_block_pin[j]);
}
fprintf(fp, "\n\nBlocks\t\tBlock type legend:\n");
fprintf(fp, "\t\tINPAD = %d\tOUTPAD = %d\n", VPACK_INPAD, VPACK_OUTPAD);
fprintf(fp, "\t\tCOMB = %d\tLATCH = %d\n", VPACK_COMB, VPACK_LATCH);
fprintf(fp, "\t\tEMPTY = %d\n", VPACK_EMPTY);
for (i = 0; i < num_logical_blocks; i++) {
fprintf(fp, "\nblock %d %s ", i, logical_block[i].name);
fprintf(fp, "\ttype: %d ", logical_block[i].type);
fprintf(fp, "\tmodel name: %s\n", logical_block[i].model->name);
port = logical_block[i].model->inputs;
while (port) {
fprintf(fp, "\tinput port: %s \t", port->name);
for (j = 0; j < port->size; j++) {
if (logical_block[i].input_nets[port->index][j] == OPEN)
fprintf(fp, "OPEN ");
else
fprintf(fp, "%d ",
logical_block[i].input_nets[port->index][j]);
}
fprintf(fp, "\n");
port = port->next;
}
port = logical_block[i].model->outputs;
while (port) {
fprintf(fp, "\toutput port: %s \t", port->name);
for (j = 0; j < port->size; j++) {
if (logical_block[i].output_nets[port->index][j] == OPEN) {
fprintf(fp, "OPEN ");
} else {
fprintf(fp, "%d ",
logical_block[i].output_nets[port->index][j]);
}
}
fprintf(fp, "\n");
port = port->next;
}
fprintf(fp, "\tclock net: %d\n", logical_block[i].clock_net);
}
fclose(fp);
}
/* load default vpack models (inpad, outpad, logic) */
static void load_default_models(INP t_model *library_models,
OUTP t_model** inpad_model, OUTP t_model** outpad_model,
OUTP t_model** logic_model, OUTP t_model** latch_model) {
t_model *cur_model;
cur_model = library_models;
*inpad_model = *outpad_model = *logic_model = *latch_model = NULL;
while (cur_model) {
if (strcmp(MODEL_INPUT, cur_model->name) == 0) {
assert(cur_model->inputs == NULL);
assert(cur_model->outputs->next == NULL);
assert(cur_model->outputs->size == 1);
*inpad_model = cur_model;
} else if (strcmp(MODEL_OUTPUT, cur_model->name) == 0) {
assert(cur_model->outputs == NULL);
assert(cur_model->inputs->next == NULL);
assert(cur_model->inputs->size == 1);
*outpad_model = cur_model;
} else if (strcmp(MODEL_LOGIC, cur_model->name) == 0) {
assert(cur_model->inputs->next == NULL);
assert(cur_model->outputs->next == NULL);
assert(cur_model->outputs->size == 1);
*logic_model = cur_model;
} else if (strcmp(MODEL_LATCH, cur_model->name) == 0) {
assert(cur_model->outputs->next == NULL);
assert(cur_model->outputs->size == 1);
*latch_model = cur_model;
} else {
assert(0);
}
cur_model = cur_model->next;
}
}
static void check_net(boolean sweep_hanging_nets_and_inputs) {
/* Checks the input netlist for obvious errors. */
int i, j, k, error, iblk, ipin, iport, inet, L_check_net;
boolean found;
int count_inputs, count_outputs;
int explicit_vpack_models;
t_model_ports *port;
struct s_linked_vptr *p_io_removed;
int removed_nets;
int count_unconn_blocks;
explicit_vpack_models = num_blif_models + 1;
error = 0;
removed_nets = 0;
if (ilines != explicit_vpack_models) {
vpr_printf(TIO_MESSAGE_ERROR, "Found %d .inputs lines; expected %d.\n",
ilines, explicit_vpack_models);
error++;
}
if (olines != explicit_vpack_models) {
vpr_printf(TIO_MESSAGE_ERROR, "Found %d .outputs lines; expected %d.\n",
olines, explicit_vpack_models);
error++;
}
if (model_lines != explicit_vpack_models) {
vpr_printf(TIO_MESSAGE_ERROR, "Found %d .model lines; expected %d.\n",
model_lines, num_blif_models + 1);
error++;
}
if (endlines != explicit_vpack_models) {
vpr_printf(TIO_MESSAGE_ERROR, "Found %d .end lines; expected %d.\n",
endlines, explicit_vpack_models);
error++;
}
for (i = 0; i < num_logical_nets; i++) {
if (num_driver[i] != 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"vpack_net %s has %d signals driving it.\n",
vpack_net[i].name, num_driver[i]);
error++;
}
if (vpack_net[i].num_sinks == 0) {
/* If this is an input pad, it is unused and I just remove it with *
* a warning message. Lots of the mcnc circuits have this problem.
Also, subckts from ODIN often have unused driven nets
*/
iblk = vpack_net[i].node_block[0];
iport = vpack_net[i].node_block_port[0];
ipin = vpack_net[i].node_block_pin[0];
assert((vpack_net[i].num_sinks - num_driver[i]) == -1);
/* All nets should connect to inputs of block except output pads */
if (logical_block[iblk].type != VPACK_OUTPAD) {
if (sweep_hanging_nets_and_inputs) {
removed_nets++;
vpack_net[i].node_block[0] = OPEN;
vpack_net[i].node_block_port[0] = OPEN;
vpack_net[i].node_block_pin[0] = OPEN;
logical_block[iblk].output_nets[iport][ipin] = OPEN;
logical_block_output_count[iblk]--;
} else {
vpr_printf(TIO_MESSAGE_WARNING,
"vpack_net %s has no fanout.\n", vpack_net[i].name);
}
continue;
}
}
if (strcmp(vpack_net[i].name, "open") == 0
|| strcmp(vpack_net[i].name, "unconn") == 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"vpack_net #%d has the reserved name %s.\n", i,
vpack_net[i].name);
error++;
}
for (j = 0; j <= vpack_net[i].num_sinks; j++) {
iblk = vpack_net[i].node_block[j];
iport = vpack_net[i].node_block_port[j];
ipin = vpack_net[i].node_block_pin[j];
if (ipin == OPEN) {
/* Clocks are not connected to regular pins on a block hence open */
L_check_net = logical_block[iblk].clock_net;
if (L_check_net != i) {
vpr_printf(TIO_MESSAGE_ERROR,
"Clock net for block %s #%d is net %s #%d but connecting net is %s #%d.\n",
logical_block[iblk].name, iblk,
vpack_net[L_check_net].name, L_check_net,
vpack_net[i].name, i);
error++;
}
} else {
if (j == 0) {
L_check_net = logical_block[iblk].output_nets[iport][ipin];
if (L_check_net != i) {
vpr_printf(TIO_MESSAGE_ERROR,
"Output net for block %s #%d is net %s #%d but connecting net is %s #%d.\n",
logical_block[iblk].name, iblk,
vpack_net[L_check_net].name, L_check_net,
vpack_net[i].name, i);
error++;
}
} else {
if (vpack_net[i].is_global) {
L_check_net = logical_block[iblk].clock_net;
} else {
L_check_net =
logical_block[iblk].input_nets[iport][ipin];
}
if (L_check_net != i) {
vpr_printf(TIO_MESSAGE_ERROR,
"Input net for block %s #%d is net %s #%d but connecting net is %s #%d.\n",
logical_block[iblk].name, iblk,
vpack_net[L_check_net].name, L_check_net,
vpack_net[i].name, i);
error++;
}
}
}
}
}
vpr_printf(TIO_MESSAGE_INFO, "Swept away %d nets with no fanout.\n",
removed_nets);
count_unconn_blocks = 0;
for (i = 0; i < num_logical_blocks; i++) {
/* This block has no output and is not an output pad so it has no use, hence we remove it */
if ((logical_block_output_count[i] == 0)
&& (logical_block[i].type != VPACK_OUTPAD)) {
vpr_printf(TIO_MESSAGE_WARNING,
"logical_block %s #%d has no fanout.\n",
logical_block[i].name, i);
if (sweep_hanging_nets_and_inputs
&& (logical_block[i].type == VPACK_INPAD)) {
logical_block[i].type = VPACK_EMPTY;
vpr_printf(TIO_MESSAGE_INFO, "Removing input.\n");
p_io_removed = (struct s_linked_vptr*) my_malloc(
sizeof(struct s_linked_vptr));
p_io_removed->data_vptr = my_strdup(logical_block[i].name);
p_io_removed->next = circuit_p_io_removed;
circuit_p_io_removed = p_io_removed;
continue;
} else {
count_unconn_blocks++;
vpr_printf(TIO_MESSAGE_WARNING,
"Sweep hanging nodes in your logic synthesis tool because VPR can not do this yet.\n");
}
}
count_inputs = 0;
count_outputs = 0;
port = logical_block[i].model->inputs;
while (port) {
if (port->is_clock) {
port = port->next;
continue;
}
for (j = 0; j < port->size; j++) {
if (logical_block[i].input_nets[port->index][j] == OPEN)
continue;
count_inputs++;
inet = logical_block[i].input_nets[port->index][j];
found = FALSE;
for (k = 1; k <= vpack_net[inet].num_sinks; k++) {
if (vpack_net[inet].node_block[k] == i) {
if (vpack_net[inet].node_block_port[k] == port->index) {
if (vpack_net[inet].node_block_pin[k] == j) {
found = TRUE;
}
}
}
}
assert(found == TRUE);
}
port = port->next;
}
assert(count_inputs == logical_block_input_count[i]);
logical_block[i].used_input_pins = count_inputs;
port = logical_block[i].model->outputs;
while (port) {
for (j = 0; j < port->size; j++) {
if (logical_block[i].output_nets[port->index][j] == OPEN)
continue;
count_outputs++;
inet = logical_block[i].output_nets[port->index][j];
vpack_net[inet].is_const_gen = FALSE;
if (count_inputs == 0 && logical_block[i].type != VPACK_INPAD
&& logical_block[i].type != VPACK_OUTPAD
&& logical_block[i].clock_net == OPEN) {
vpr_printf(TIO_MESSAGE_INFO,
"Net is a constant generator: %s.\n",
vpack_net[inet].name);
vpack_net[inet].is_const_gen = TRUE;
}
found = FALSE;
if (vpack_net[inet].node_block[0] == i) {
if (vpack_net[inet].node_block_port[0] == port->index) {
if (vpack_net[inet].node_block_pin[0] == j) {
found = TRUE;
}
}
}
assert(found == TRUE);
}
port = port->next;
}
assert(count_outputs == logical_block_output_count[i]);
if (logical_block[i].type == VPACK_LATCH) {
if (logical_block_input_count[i] != 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"Latch #%d with output %s has %d input pin(s), expected one (D).\n",
i, logical_block[i].name, logical_block_input_count[i]);
error++;
}
if (logical_block_output_count[i] != 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"Latch #%d with output %s has %d output pin(s), expected one (Q).\n",
i, logical_block[i].name,
logical_block_output_count[i]);
error++;
}
if (logical_block[i].clock_net == OPEN) {
vpr_printf(TIO_MESSAGE_ERROR,
"Latch #%d with output %s has no clock.\n", i,
logical_block[i].name);
error++;
}
}
else if (logical_block[i].type == VPACK_INPAD) {
if (logical_block_input_count[i] != 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"IO inpad logical_block #%d name %s of type %d" "has %d input pins.\n",
i, logical_block[i].name, logical_block[i].type,
logical_block_input_count[i]);
error++;
}
if (logical_block_output_count[i] != 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"IO inpad logical_block #%d name %s of type %d" "has %d output pins.\n",
i, logical_block[i].name, logical_block[i].type,
logical_block_output_count[i]);
error++;
}
if (logical_block[i].clock_net != OPEN) {
vpr_printf(TIO_MESSAGE_ERROR,
"IO inpad #%d with output %s has clock.\n", i,
logical_block[i].name);
error++;
}
} else if (logical_block[i].type == VPACK_OUTPAD) {
if (logical_block_input_count[i] != 1) {
vpr_printf(TIO_MESSAGE_ERROR,
"io outpad logical_block #%d name %s of type %d" "has %d input pins.\n",
i, logical_block[i].name, logical_block[i].type,
logical_block_input_count[i]);
error++;
}
if (logical_block_output_count[i] != 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"io outpad logical_block #%d name %s of type %d" "has %d output pins.\n",
i, logical_block[i].name, logical_block[i].type,
logical_block_output_count[i]);
error++;
}
if (logical_block[i].clock_net != OPEN) {
vpr_printf(TIO_MESSAGE_ERROR,
"io outpad #%d with name %s has clock.\n", i,
logical_block[i].name);
error++;
}
} else if (logical_block[i].type == VPACK_COMB) {
if (logical_block_input_count[i] <= 0) {
vpr_printf(TIO_MESSAGE_WARNING,
"logical_block #%d with output %s has only %d pin.\n",
i, logical_block[i].name, logical_block_input_count[i]);
if (logical_block_input_count[i] < 0) {
error++;
} else {
if (logical_block_output_count[i] > 0) {
vpr_printf(TIO_MESSAGE_WARNING,
"Block contains output -- may be a constant generator.\n");
} else {
vpr_printf(TIO_MESSAGE_WARNING,
"Block contains no output.\n");
}
}
}
if (strcmp(logical_block[i].model->name, MODEL_LOGIC) == 0) {
if (logical_block_output_count[i] != 1) {
vpr_printf(TIO_MESSAGE_WARNING,
"Logical_block #%d name %s of model %s has %d output pins instead of 1.\n",
i, logical_block[i].name,
logical_block[i].model->name,
logical_block_output_count[i]);
}
}
} else {
vpr_printf(TIO_MESSAGE_ERROR,
"Unknown type for logical_block #%d %s.\n", i,
logical_block[i].name);
}
}
vpr_printf(TIO_MESSAGE_INFO, "%d unconnected blocks in input netlist.\n", count_unconn_blocks);
if (error != 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"Found %d fatal errors in the input netlist.\n", error);
exit(1);
}
}
static void free_parse(void) {
/* Release memory needed only during blif network parsing. */
int i;
struct s_hash *h_ptr, *temp_ptr;
for (i = 0; i < HASHSIZE; i++) {
h_ptr = blif_hash[i];
while (h_ptr != NULL ) {
free((void *) h_ptr->name);
temp_ptr = h_ptr->next;
free((void *) h_ptr);
h_ptr = temp_ptr;
}
}
free((void *) num_driver);
free((void *) blif_hash);
free((void *) temp_num_pins);
}
static void absorb_buffer_luts(void) {
/* This routine uses a simple pattern matching algorithm to remove buffer LUTs where possible (single-input LUTs that are programmed to be a wire) */
int bnum, in_blk, out_blk, ipin, out_net, in_net;
int removed = 0;
/* Pin ordering for the clb blocks (1 VPACK_LUT + 1 FF in each logical_block) is *
* output, n VPACK_LUT inputs, clock input. */
for (bnum = 0; bnum < num_logical_blocks; bnum++) {
if (strcmp(logical_block[bnum].model->name, "names") == 0) {
if (logical_block[bnum].truth_table != NULL
&& logical_block[bnum].truth_table->data_vptr) {
if (strcmp("0 0",
(char*) logical_block[bnum].truth_table->data_vptr) == 0
|| strcmp("1 1",
(char*) logical_block[bnum].truth_table->data_vptr)
== 0) {
for (ipin = 0;
ipin < logical_block[bnum].model->inputs->size;
ipin++) {
if (logical_block[bnum].input_nets[0][ipin] == OPEN)
break;
}
assert(ipin == 1);
assert(logical_block[bnum].clock_net == OPEN);
assert(logical_block[bnum].model->inputs->next == NULL);
assert(logical_block[bnum].model->outputs->size == 1);
assert(logical_block[bnum].model->outputs->next == NULL);
in_net = logical_block[bnum].input_nets[0][0]; /* Net driving the buffer */
out_net = logical_block[bnum].output_nets[0][0]; /* Net the buffer us driving */
out_blk = vpack_net[out_net].node_block[1];
in_blk = vpack_net[in_net].node_block[0];
assert(in_net != OPEN);
assert(out_net != OPEN);
assert(out_blk != OPEN);
assert(in_blk != OPEN);
/* TODO: Make this handle general cases, due to time reasons I can only handle buffers with single outputs */
if (vpack_net[out_net].num_sinks == 1) {
for (ipin = 1; ipin <= vpack_net[in_net].num_sinks;
ipin++) {
if (vpack_net[in_net].node_block[ipin] == bnum) {
break;
}
}
assert(ipin <= vpack_net[in_net].num_sinks);
vpack_net[in_net].node_block[ipin] =
vpack_net[out_net].node_block[1]; /* New output */
vpack_net[in_net].node_block_port[ipin] =
vpack_net[out_net].node_block_port[1];
vpack_net[in_net].node_block_pin[ipin] =
vpack_net[out_net].node_block_pin[1];
assert(
logical_block[out_blk].input_nets[vpack_net[out_net].node_block_port[1]][vpack_net[out_net].node_block_pin[1]] == out_net);
logical_block[out_blk].input_nets[vpack_net[out_net].node_block_port[1]][vpack_net[out_net].node_block_pin[1]] =
in_net;
vpack_net[out_net].node_block[0] = OPEN; /* This vpack_net disappears; mark. */
vpack_net[out_net].node_block_pin[0] = OPEN; /* This vpack_net disappears; mark. */
vpack_net[out_net].node_block_port[0] = OPEN; /* This vpack_net disappears; mark. */
vpack_net[out_net].num_sinks = 0; /* This vpack_net disappears; mark. */
logical_block[bnum].type = VPACK_EMPTY; /* Mark logical_block that had LUT */
/* error checking */
for (ipin = 0; ipin <= vpack_net[out_net].num_sinks;
ipin++) {
assert(vpack_net[out_net].node_block[ipin] != bnum);
}
removed++;
}
}
}
}
}
vpr_printf(TIO_MESSAGE_INFO, "Removed %d LUT buffers.\n", removed);
}
static void compress_netlist(void) {
/* This routine removes all the VPACK_EMPTY blocks and OPEN nets that *
* may have been left behind post synthesis. After this *
* routine, all the VPACK blocks that exist in the netlist *
* are in a contiguous list with no unused spots. The same *
* goes for the list of nets. This means that blocks and nets *
* have to be renumbered somewhat. */
int inet, iblk, index, ipin, new_num_nets, new_num_blocks, i;
int *net_remap, *block_remap;
int L_num_nets;
t_model_ports *port;
struct s_linked_vptr *tvptr, *next;
new_num_nets = 0;
new_num_blocks = 0;
net_remap = (int *) my_malloc(num_logical_nets * sizeof(int));
block_remap = (int *) my_malloc(num_logical_blocks * sizeof(int));
for (inet = 0; inet < num_logical_nets; inet++) {
if (vpack_net[inet].node_block[0] != OPEN) {
net_remap[inet] = new_num_nets;
new_num_nets++;
} else {
net_remap[inet] = OPEN;
}
}
for (iblk = 0; iblk < num_logical_blocks; iblk++) {
if (logical_block[iblk].type != VPACK_EMPTY) {
block_remap[iblk] = new_num_blocks;
new_num_blocks++;
} else {
block_remap[iblk] = OPEN;
}
}
if (new_num_nets != num_logical_nets
|| new_num_blocks != num_logical_blocks) {
for (inet = 0; inet < num_logical_nets; inet++) {
if (vpack_net[inet].node_block[0] != OPEN) {
index = net_remap[inet];
vpack_net[index] = vpack_net[inet];
for (ipin = 0; ipin <= vpack_net[index].num_sinks; ipin++) {
vpack_net[index].node_block[ipin] =
block_remap[vpack_net[index].node_block[ipin]];
}
} else {
free(vpack_net[inet].name);
free(vpack_net[inet].node_block);
free(vpack_net[inet].node_block_port);
free(vpack_net[inet].node_block_pin);
}
}
num_logical_nets = new_num_nets;
vpack_net = (struct s_net *) my_realloc(vpack_net,
num_logical_nets * sizeof(struct s_net));
for (iblk = 0; iblk < num_logical_blocks; iblk++) {
if (logical_block[iblk].type != VPACK_EMPTY) {
index = block_remap[iblk];
if (index != iblk) {
logical_block[index] = logical_block[iblk];
logical_block[index].index = index; /* array index moved */
}
L_num_nets = 0;
port = logical_block[index].model->inputs;
while (port) {
for (ipin = 0; ipin < port->size; ipin++) {
if (port->is_clock) {
assert(
port->size == 1 && port->index == 0 && ipin == 0);
if (logical_block[index].clock_net == OPEN)
continue;
logical_block[index].clock_net =
net_remap[logical_block[index].clock_net];
} else {
if (logical_block[index].input_nets[port->index][ipin]
== OPEN)
continue;
logical_block[index].input_nets[port->index][ipin] =
net_remap[logical_block[index].input_nets[port->index][ipin]];
}
L_num_nets++;
}
port = port->next;
}
port = logical_block[index].model->outputs;
while (port) {
for (ipin = 0; ipin < port->size; ipin++) {
if (logical_block[index].output_nets[port->index][ipin]
== OPEN)
continue;
logical_block[index].output_nets[port->index][ipin] =
net_remap[logical_block[index].output_nets[port->index][ipin]];
L_num_nets++;
}
port = port->next;
}
}
else {
free(logical_block[iblk].name);
port = logical_block[iblk].model->inputs;
i = 0;
while (port) {
if (!port->is_clock) {
if (logical_block[iblk].input_nets) {
if (logical_block[iblk].input_nets[i]) {
free(logical_block[iblk].input_nets[i]);
logical_block[iblk].input_nets[i] = NULL;
}
}
i++;
}
port = port->next;
}
if (logical_block[iblk].input_nets)
free(logical_block[iblk].input_nets);
port = logical_block[iblk].model->outputs;
i = 0;
while (port) {
if (logical_block[iblk].output_nets) {
if (logical_block[iblk].output_nets[i]) {
free(logical_block[iblk].output_nets[i]);
logical_block[iblk].output_nets[i] = NULL;
}
}
i++;
port = port->next;
}
if (logical_block[iblk].output_nets)
free(logical_block[iblk].output_nets);
tvptr = logical_block[iblk].truth_table;
while (tvptr != NULL ) {
if (tvptr->data_vptr)
free(tvptr->data_vptr);
next = tvptr->next;
free(tvptr);
tvptr = next;
}
}
}
vpr_printf(TIO_MESSAGE_INFO, "Sweeped away %d nodes.\n",
num_logical_blocks - new_num_blocks);
num_logical_blocks = new_num_blocks;
logical_block = (struct s_logical_block *) my_realloc(logical_block,
num_logical_blocks * sizeof(struct s_logical_block));
}
/* Now I have to recompute the number of primary inputs and outputs, since *
* some inputs may have been unused and been removed. No real need to *
* recount primary outputs -- it's just done as defensive coding. */
num_p_inputs = 0;
num_p_outputs = 0;
for (iblk = 0; iblk < num_logical_blocks; iblk++) {
if (logical_block[iblk].type == VPACK_INPAD)
num_p_inputs++;
else if (logical_block[iblk].type == VPACK_OUTPAD)
num_p_outputs++;
}
free(net_remap);
free(block_remap);
}
/* Read blif file and perform basic sweep/accounting on it
* - power_opts: Power options, can be NULL
*/
void read_and_process_blif(char *blif_file,
boolean sweep_hanging_nets_and_inputs, t_model *user_models,
t_model *library_models, boolean read_activity_file, char * activity_file) {
/* begin parsing blif input file */
read_blif(blif_file, sweep_hanging_nets_and_inputs, user_models,
library_models, read_activity_file, activity_file);
/* TODO: Do check blif here
eg.
for (i = 0; i < num_logical_blocks; i++) {
if (logical_block[i].model->num_inputs > max_subblock_inputs) {
vpr_printf(TIO_MESSAGE_ERROR, "logical_block %s of model %s has %d inputs but architecture only supports subblocks up to %d inputs.\n",
logical_block[i].name, logical_block[i].model->name, logical_block[i].model->num_inputs, max_subblock_inputs);
exit(1);
}
}
*/
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_BLIF_INPUT)) {
echo_input(blif_file, getEchoFileName(E_ECHO_BLIF_INPUT),
library_models);
} else
;
absorb_buffer_luts();
compress_netlist(); /* remove unused inputs */
/* NB: It's important to mark clocks and such *after* compressing the *
* netlist because the vpack_net numbers, etc. may be changed by removing *
* unused inputs . */
show_blif_stats(user_models, library_models);
free(logical_block_input_count);
free(logical_block_output_count);
free(model);
logical_block_input_count = NULL;
logical_block_output_count = NULL;
model = NULL;
}
/* Output blif statistics */
static void show_blif_stats(t_model *user_models, t_model *library_models) {
struct s_model_stats *model_stats;
struct s_model_stats *lut_model;
int num_model_stats;
t_model *cur;
int MAX_LUT_INPUTS;
int i, j, iblk, ipin, num_pins;
int *num_lut_of_size;
/* Store data structure for all models in FPGA */
num_model_stats = 0;
cur = library_models;
while (cur) {
num_model_stats++;
cur = cur->next;
}
cur = user_models;
while (cur) {
num_model_stats++;
cur = cur->next;
}
model_stats = (struct s_model_stats*) my_calloc(num_model_stats,
sizeof(struct s_model_stats));
num_model_stats = 0;
lut_model = NULL;
cur = library_models;
while (cur) {
model_stats[num_model_stats].model = cur;
if (strcmp(cur->name, "names") == 0) {
lut_model = &model_stats[num_model_stats];
}
num_model_stats++;
cur = cur->next;
}
cur = user_models;
while (cur) {
model_stats[num_model_stats].model = cur;
num_model_stats++;
cur = cur->next;
}
/* Gather statistics from circuit */
MAX_LUT_INPUTS = 0;
for (iblk = 0; iblk < num_logical_blocks; iblk++) {
if (strcmp(logical_block[iblk].model->name, "names") == 0) {
MAX_LUT_INPUTS = logical_block[iblk].model->inputs->size;
break;
}
}
num_lut_of_size = (int*) my_calloc(MAX_LUT_INPUTS + 1, sizeof(int));
for (i = 0; i < num_logical_blocks; i++) {
for (j = 0; j < num_model_stats; j++) {
if (logical_block[i].model == model_stats[j].model) {
break;
}
}
assert(j < num_model_stats);
model_stats[j].count++;
if (&model_stats[j] == lut_model) {
num_pins = 0;
for (ipin = 0; ipin < logical_block[i].model->inputs->size;
ipin++) {
if (logical_block[i].input_nets[0][ipin] != OPEN) {
num_pins++;
}
}
num_lut_of_size[num_pins]++;
}
}
/* Print blif circuit stats */
vpr_printf(TIO_MESSAGE_INFO, "BLIF circuit stats:\n");
for (i = 0; i <= MAX_LUT_INPUTS; i++) {
vpr_printf(TIO_MESSAGE_INFO, "\t%d LUTs of size %d\n",
num_lut_of_size[i], i);
}
for (i = 0; i < num_model_stats; i++) {
vpr_printf(TIO_MESSAGE_INFO, "\t%d of type %s\n", model_stats[i].count,
model_stats[i].model->name);
}
free(model_stats);
free(num_lut_of_size);
}
static void read_activity(char * activity_file) {
int net_idx;
bool fail;
char buf[BUFSIZE];
char * ptr;
char * word1;
char * word2;
char * word3;
FILE * act_file_hdl;
if (num_logical_nets == 0) {
printf("Error reading activity file. Must read netlist first\n");
exit(-1);
}
for (net_idx = 0; net_idx < num_logical_nets; net_idx++) {
if (!vpack_net[net_idx].net_power) {
vpack_net[net_idx].net_power = new t_net_power;
}
vpack_net[net_idx].net_power->probability = -1.0;
vpack_net[net_idx].net_power->density = -1.0;
}
act_file_hdl = my_fopen(activity_file, "r", FALSE);
if (act_file_hdl == NULL ) {
printf("Error: could not open activity file: %s\n", activity_file);
exit(-1);
}
fail = FALSE;
ptr = my_fgets(buf, BUFSIZE, act_file_hdl);
while (ptr != NULL ) {
word1 = strtok(buf, TOKENS);
word2 = strtok(NULL, TOKENS);
word3 = strtok(NULL, TOKENS);
//printf("word1:%s|word2:%s|word3:%s\n", word1, word2, word3);
fail |= add_activity_to_net(word1, atof(word2), atof(word3));
ptr = my_fgets(buf, BUFSIZE, act_file_hdl);
}
fclose(act_file_hdl);
/* Make sure all nets have an activity value */
for (net_idx = 0; net_idx < num_logical_nets; net_idx++) {
if (!vpack_net[net_idx].net_power
|| vpack_net[net_idx].net_power->probability < 0.0
|| vpack_net[net_idx].net_power->density < 0.0) {
printf("Error: Activity file does not contain signal %s\n",
vpack_net[net_idx].name);
fail = TRUE;
}
}
if (fail) {
exit(-1);
}
}
bool add_activity_to_net(char * net_name, float probability, float density) {
int hash_idx, net_idx;
struct s_hash * h_ptr;
hash_idx = hash_value(net_name);
h_ptr = blif_hash[hash_idx];
while (h_ptr != NULL ) {
if (strcmp(h_ptr->name, net_name) == 0) {
net_idx = h_ptr->index;
vpack_net[net_idx].net_power->probability = probability;
vpack_net[net_idx].net_power->density = density;
return false;
}
h_ptr = h_ptr->next;
}
printf(
"Error: net %s found in activity file, but it does not exist in the .blif file.\n",
net_name);
return true;
}