OpenFPGA/vpr7_x2p/vpr/SRC/base/SetupVPR.c

1344 lines
49 KiB
C

#include <assert.h>
#include <string.h>
#include "util.h"
#include "vpr_types.h"
#include "OptionTokens.h"
#include "ReadOptions.h"
#include "globals.h"
#include "read_xml_arch_file.h"
#include "SetupVPR.h"
#include "pb_type_graph.h"
#include "ReadOptions.h"
/* mrFPGA: Xifan TANG*/
#include "mrfpga_api.h"
#include "mrfpga_globals.h"
/* END */
/* Xifan Tang: include for supporting Direct Parsing */
#include "vpr_utils.h"
static void SetupOperation(INP t_options Options,
OUTP enum e_operation *Operation);
static void SetupPackerOpts(INP t_options Options, INP boolean TimingEnabled,
INP t_arch Arch, INP char *net_file,
OUTP struct s_packer_opts *PackerOpts);
static void SetupPlacerOpts(INP t_options Options, INP boolean TimingEnabled,
OUTP struct s_placer_opts *PlacerOpts);
static void SetupAnnealSched(INP t_options Options,
OUTP struct s_annealing_sched *AnnealSched);
static void SetupRouterOpts(INP t_options Options, INP boolean TimingEnabled,
OUTP struct s_router_opts *RouterOpts);
static void SetupRoutingArch(INP t_arch Arch,
OUTP struct s_det_routing_arch *RoutingArch);
static void SetupTiming(INP t_options Options, INP t_arch Arch,
INP boolean TimingEnabled, INP enum e_operation Operation,
INP struct s_placer_opts PlacerOpts,
INP struct s_router_opts RouterOpts, OUTP t_timing_inf * Timing);
static void SetupSwitches(INP t_arch Arch,
INOUTP struct s_det_routing_arch *RoutingArch,
INP struct s_switch_inf *ArchSwitches, INP int NumArchSwitches);
static void SetupPowerOpts(t_options Options, t_power_opts *power_opts,
t_arch * Arch);
/*Xifan TANG: SPICE Model Support*/
static void SetupSpiceOpts(t_options Options,
t_spice_opts* spice_opts,
t_arch* arch);
/* end */
/* Xifan TANG: synthesizable verilog dumping */
static void SetupSynVerilogOpts(t_options Options,
t_syn_verilog_opts* syn_verilog_opts,
t_arch* arch);
/* Xifan TANG: Bitstream Generator */
static void SetupBitstreamGenOpts(t_options Options,
t_bitstream_gen_opts* bitstream_gen_opts,
t_arch* arch);
/* Xifan TANG: FPGA-SPICE Tool suites Options Setup */
static void SetupFpgaSpiceOpts(t_options Options,
t_fpga_spice_opts* fpga_spice_opts,
t_arch* arch);
/* end */
/* Xifan Tang: Parse CLB to CLB direct connections */
/* mrFPGA */
static void SetupSwitches_mrFPGA(INP t_arch Arch,
INOUTP struct s_det_routing_arch *RoutingArch,
INP struct s_switch_inf *ArchSwitches, INP int NumArchSwitches, INP t_segment_inf* segment_inf);
static void setup_junction_switch(struct s_det_routing_arch *det_routing_arch);
static void add_wire_to_switch(struct s_det_routing_arch *det_routing_arch);
static void set_max_pins_per_side();
static void hack_switch_to_rram(struct s_det_routing_arch *det_routing_arch);
/* end */
void VPRSetupArch(t_arch* arch,
t_det_routing_arch* RoutingArch,
t_segment_inf ** Segments,
/*Xifan TANG: Switch Segment Pattern Support*/
t_swseg_pattern_inf** swseg_patterns,
t_model** user_models,
t_model** library_models) {
int i, j;
(*user_models) = arch->models;
(*library_models) = arch->model_library;
/* TODO: this is inelegant, I should be populating this information in XmlReadArch */
EMPTY_TYPE = NULL;
FILL_TYPE = NULL;
IO_TYPE = NULL;
for (i = 0; i < num_types; i++) {
if (strcmp(type_descriptors[i].name, "<EMPTY>") == 0) {
EMPTY_TYPE = &type_descriptors[i];
} else if (strcmp(type_descriptors[i].name, "io") == 0) {
IO_TYPE = &type_descriptors[i];
} else {
for (j = 0; j < type_descriptors[i].num_grid_loc_def; j++) {
if (type_descriptors[i].grid_loc_def[j].grid_loc_type == FILL) {
assert(FILL_TYPE == NULL);
FILL_TYPE = &type_descriptors[i];
}
}
}
}
assert(EMPTY_TYPE != NULL && FILL_TYPE != NULL && IO_TYPE != NULL);
*Segments = arch->Segments;
RoutingArch->num_segment = arch->num_segments;
/*Xifan TANG: Switch Segment Pattern Support*/
(*swseg_patterns) = arch->swseg_patterns;
RoutingArch->num_swseg_pattern = arch->num_swseg_pattern;
/* END */
/* mrFPGA */
sync_arch_mrfpga_globals(arch->arch_mrfpga);
if (is_mrFPGA) {
SetupSwitches_mrFPGA(*arch, RoutingArch,
arch->Switches, arch->num_switches, arch->Segments);
/* Xifan TANG: added by bjxiao */
set_max_pins_per_side();
hack_switch_to_rram(RoutingArch);
} else {
/* Normal Setup VPR switches */
// Xifan TANG: Add Connection Blocks Switches
SetupSwitches(*arch, RoutingArch,
arch->Switches, arch->num_switches);
}
/* END */
/* end */
if(!is_mrFPGA && is_stack) {
add_wire_to_switch(RoutingArch);
}
/* end */
/* Xifan TANG: mrFPGA */
if (is_junction) {
setup_junction_switch(RoutingArch);
}
/* end */
SetupRoutingArch(*arch, RoutingArch);
return;
}
/* Sets VPR parameters and defaults. Does not do any error checking
* as this should have been done by the various input checkers */
void SetupVPR(INP t_options *Options, INP boolean TimingEnabled,
INP boolean readArchFile, OUTP struct s_file_name_opts *FileNameOpts,
INOUTP t_arch * Arch, OUTP enum e_operation *Operation,
OUTP t_model ** user_models, OUTP t_model ** library_models,
OUTP struct s_packer_opts *PackerOpts,
OUTP struct s_placer_opts *PlacerOpts,
OUTP struct s_annealing_sched *AnnealSched,
OUTP struct s_router_opts *RouterOpts,
OUTP struct s_det_routing_arch *RoutingArch,
OUTP t_segment_inf ** Segments, OUTP t_timing_inf * Timing,
OUTP boolean * ShowGraphics, OUTP int *GraphPause,
t_power_opts * PowerOpts,
/*Xifan TANG: Switch Segment Pattern Support*/
t_swseg_pattern_inf** swseg_patterns,
t_fpga_spice_opts* fpga_spice_opts) {
int len;
len = strlen(Options->CircuitName) + 6; /* circuit_name.blif/0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
default_output_name = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(default_output_name, "%s", Options->CircuitName);
} else {
sprintf(default_output_name, "%s%s", Options->out_file_prefix,
Options->CircuitName);
}
/* init default filenames */
if (Options->BlifFile == NULL ) {
len = strlen(Options->CircuitName) + 6; /* circuit_name.blif/0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
Options->BlifFile = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(Options->BlifFile, "%s.blif", Options->CircuitName);
} else {
sprintf(Options->BlifFile, "%s%s.blif", Options->out_file_prefix,
Options->CircuitName);
}
}
if (Options->NetFile == NULL ) {
len = strlen(Options->CircuitName) + 5; /* circuit_name.net/0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
Options->NetFile = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(Options->NetFile, "%s.net", Options->CircuitName);
} else {
sprintf(Options->NetFile, "%s%s.net", Options->out_file_prefix,
Options->CircuitName);
}
}
if (Options->PlaceFile == NULL ) {
len = strlen(Options->CircuitName) + 7; /* circuit_name.place/0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
Options->PlaceFile = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(Options->PlaceFile, "%s.place", Options->CircuitName);
} else {
sprintf(Options->PlaceFile, "%s%s.place", Options->out_file_prefix,
Options->CircuitName);
}
}
if (Options->RouteFile == NULL ) {
len = strlen(Options->CircuitName) + 7; /* circuit_name.route/0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
Options->RouteFile = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(Options->RouteFile, "%s.route", Options->CircuitName);
} else {
sprintf(Options->RouteFile, "%s%s.route", Options->out_file_prefix,
Options->CircuitName);
}
}
if (Options->ActFile == NULL ) {
len = strlen(Options->CircuitName) + 7; /* circuit_name.route/0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
Options->ActFile = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(Options->ActFile, "%s.act", Options->CircuitName);
} else {
sprintf(Options->ActFile, "%s%s.act", Options->out_file_prefix,
Options->CircuitName);
}
}
if (Options->PowerFile == NULL ) {
len = strlen(Options->CircuitName) + 7; /* circuit_name.power\0*/
if (Options->out_file_prefix != NULL ) {
len += strlen(Options->out_file_prefix);
}
Options->PowerFile = (char*) my_calloc(len, sizeof(char));
if (Options->out_file_prefix == NULL ) {
sprintf(Options->PowerFile, "%s.power", Options->CircuitName);
} else {
sprintf(Options->ActFile, "%s%s.power", Options->out_file_prefix,
Options->CircuitName);
}
}
alloc_and_load_output_file_names(default_output_name);
FileNameOpts->CircuitName = Options->CircuitName;
FileNameOpts->ArchFile = Options->ArchFile;
FileNameOpts->BlifFile = Options->BlifFile;
FileNameOpts->NetFile = Options->NetFile;
FileNameOpts->PlaceFile = Options->PlaceFile;
FileNameOpts->RouteFile = Options->RouteFile;
FileNameOpts->ActFile = Options->ActFile;
FileNameOpts->PowerFile = Options->PowerFile;
FileNameOpts->CmosTechFile = Options->CmosTechFile;
FileNameOpts->out_file_prefix = Options->out_file_prefix;
SetupOperation(*Options, Operation);
SetupPlacerOpts(*Options, TimingEnabled, PlacerOpts);
SetupAnnealSched(*Options, AnnealSched);
SetupRouterOpts(*Options, TimingEnabled, RouterOpts);
SetupPowerOpts(*Options, PowerOpts, Arch);
/* Xifan TANG: FPGA-SPICE Tool suites Options Setup */
SetupFpgaSpiceOpts(*Options, fpga_spice_opts, Arch);
/* END */
if (readArchFile == TRUE) {
XmlReadArch(Options->ArchFile, TimingEnabled, Arch, &type_descriptors,
&num_types);
}
VPRSetupArch(Arch, RoutingArch, Segments, swseg_patterns, user_models, library_models);
SetupTiming(*Options, *Arch, TimingEnabled, *Operation, *PlacerOpts,
*RouterOpts, Timing);
SetupPackerOpts(*Options, TimingEnabled, *Arch, Options->NetFile,
PackerOpts);
/* init global variables */
out_file_prefix = Options->out_file_prefix;
grid_logic_tile_area = Arch->grid_logic_tile_area;
ipin_mux_trans_size = Arch->ipin_mux_trans_size;
/* Set seed for pseudo-random placement, default seed to 1 */
PlacerOpts->seed = 1;
if (Options->Count[OT_SEED]) {
PlacerOpts->seed = Options->Seed;
}
my_srandom(PlacerOpts->seed);
/* Build the complex block graph */
vpr_printf(TIO_MESSAGE_INFO, "Building complex block graph.\n");
alloc_and_load_all_pb_graphs(PowerOpts->do_power);
/* Xifan Tang: Initialize the clb to clb directs */
alloc_and_init_globals_clb_to_clb_directs(Arch->num_directs, Arch->Directs);
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_PB_GRAPH)) {
echo_pb_graph(getEchoFileName(E_ECHO_PB_GRAPH));
}
*GraphPause = 1; /* DEFAULT */
if (Options->Count[OT_AUTO]) {
*GraphPause = Options->GraphPause;
}
#ifdef NO_GRAPHICS
*ShowGraphics = FALSE; /* DEFAULT */
#else /* NO_GRAPHICS */
*ShowGraphics = TRUE; /* DEFAULT */
if (Options->Count[OT_NODISP]) {
*ShowGraphics = FALSE;
}
#endif /* NO_GRAPHICS */
if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_ARCH)) {
EchoArch(getEchoFileName(E_ECHO_ARCH), type_descriptors, num_types,
Arch);
}
}
static void SetupTiming(INP t_options Options, INP t_arch Arch,
INP boolean TimingEnabled, INP enum e_operation Operation,
INP struct s_placer_opts PlacerOpts,
INP struct s_router_opts RouterOpts, OUTP t_timing_inf * Timing) {
/* Don't do anything if they don't want timing */
if (FALSE == TimingEnabled) {
memset(Timing, 0, sizeof(t_timing_inf));
Timing->timing_analysis_enabled = FALSE;
return;
}
Timing->C_ipin_cblock = Arch.C_ipin_cblock;
Timing->T_ipin_cblock = Arch.T_ipin_cblock;
Timing->timing_analysis_enabled = TimingEnabled;
/* If the user specified an SDC filename on the command line, look for specified_name.sdc, otherwise look for circuit_name.sdc*/
if (Options.SDCFile == NULL ) {
Timing->SDCFile = (char*) my_calloc(strlen(Options.CircuitName) + 5,
sizeof(char)); /* circuit_name.sdc/0*/
sprintf(Timing->SDCFile, "%s.sdc", Options.CircuitName);
} else {
Timing->SDCFile = (char*) my_strdup(Options.SDCFile);
}
}
/* This loads up VPR's switch_inf data by combining the switches from
* the arch file with the special switches that VPR needs. */
static void SetupSwitches(INP t_arch Arch,
INOUTP struct s_det_routing_arch *RoutingArch,
INP struct s_switch_inf *ArchSwitches, INP int NumArchSwitches) {
RoutingArch->num_switch = NumArchSwitches;
/* Depends on RoutingArch->num_switch */
RoutingArch->wire_to_ipin_switch = RoutingArch->num_switch;
++RoutingArch->num_switch;
/* Depends on RoutingArch->num_switch */
RoutingArch->delayless_switch = RoutingArch->num_switch;
RoutingArch->global_route_switch = RoutingArch->delayless_switch;
++RoutingArch->num_switch;
/* Alloc the list now that we know the final num_switch value */
switch_inf = (struct s_switch_inf *) my_malloc(
sizeof(struct s_switch_inf) * RoutingArch->num_switch);
/* Copy the switch data from architecture file */
memcpy(switch_inf, ArchSwitches,
sizeof(struct s_switch_inf) * NumArchSwitches);
/* Delayless switch for connecting sinks and sources with their pins. */
switch_inf[RoutingArch->delayless_switch].buffered = TRUE;
switch_inf[RoutingArch->delayless_switch].R = 0.;
switch_inf[RoutingArch->delayless_switch].Cin = 0.;
switch_inf[RoutingArch->delayless_switch].Cout = 0.;
switch_inf[RoutingArch->delayless_switch].Tdel = 0.;
switch_inf[RoutingArch->delayless_switch].power_buffer_type = POWER_BUFFER_TYPE_NONE;
switch_inf[RoutingArch->delayless_switch].mux_trans_size = 0.;
/* Xifan TANG: SPICE model support*/
switch_inf[RoutingArch->delayless_switch].spice_model_name = NULL;
switch_inf[RoutingArch->delayless_switch].spice_model = NULL;
/* The wire to ipin switch for all types. Curently all types
* must share ipin switch. Some of the timing code would
* need to be changed otherwise. */
/* Xifan TANG: Enhancement for connection blocks */
if (0 == Arch.num_cb_switch) {
switch_inf[RoutingArch->wire_to_ipin_switch].buffered = TRUE;
switch_inf[RoutingArch->wire_to_ipin_switch].R = 0.;
switch_inf[RoutingArch->wire_to_ipin_switch].Cin = Arch.C_ipin_cblock;
switch_inf[RoutingArch->wire_to_ipin_switch].Cout = 0.;
switch_inf[RoutingArch->wire_to_ipin_switch].Tdel = Arch.T_ipin_cblock;
switch_inf[RoutingArch->wire_to_ipin_switch].power_buffer_type = POWER_BUFFER_TYPE_NONE;
switch_inf[RoutingArch->wire_to_ipin_switch].mux_trans_size = 0.;
switch_inf[RoutingArch->wire_to_ipin_switch].spice_model_name = NULL;
switch_inf[RoutingArch->wire_to_ipin_switch].spice_model = NULL;
} else {
/* Xifan TANG: Currently we only support 1 connection blocks switch defined.*/
assert(1 == Arch.num_cb_switch);
memcpy(&switch_inf[RoutingArch->wire_to_ipin_switch], Arch.cb_switches,
sizeof(struct s_switch_inf) * Arch.num_cb_switch);
}
}
/* This loads up VPR's switch_inf data by combining the switches from
* the arch file with the special switches that VPR needs. */
static void SetupSwitches_mrFPGA(INP t_arch Arch,
INOUTP struct s_det_routing_arch *RoutingArch,
INP struct s_switch_inf *ArchSwitches, INP int NumArchSwitches, INP t_segment_inf* segment_inf) {
int i/*, switch_index*/;
RoutingArch->num_switch = NumArchSwitches;
/* mrFPGA : Xifan TANG*/
/* Xifan TANG: only overwrite it when it is defined*/
num_normal_switch = NumArchSwitches;
if (is_mrFPGA && Arch.arch_mrfpga.is_opin_cblock_defined) {
RoutingArch->opin_to_wire_switch = RoutingArch->num_switch;
++RoutingArch->num_switch;
}
/* end */
/* Depends on RoutingArch->num_switch */
RoutingArch->wire_to_ipin_switch = RoutingArch->num_switch;
++RoutingArch->num_switch;
/* Depends on RoutingArch->num_switch */
RoutingArch->delayless_switch = RoutingArch->num_switch;
RoutingArch->global_route_switch = RoutingArch->delayless_switch;
++RoutingArch->num_switch;
/*mrFPGA: Xifan TANG*/
start_seg_switch = RoutingArch->num_switch;
/* END */
/* Alloc the list now that we know the final num_switch value */
switch_inf = (struct s_switch_inf *) my_malloc(
sizeof(struct s_switch_inf) * RoutingArch->num_switch);
/* Copy the switch data from architecture file */
memcpy(switch_inf, ArchSwitches,
sizeof(struct s_switch_inf) * NumArchSwitches);
/* Delayless switch for connecting sinks and sources with their pins. */
switch_inf[RoutingArch->delayless_switch].buffered = TRUE;
switch_inf[RoutingArch->delayless_switch].R = 0.;
switch_inf[RoutingArch->delayless_switch].Cin = 0.;
switch_inf[RoutingArch->delayless_switch].Cout = 0.;
switch_inf[RoutingArch->delayless_switch].Tdel = 0.;
switch_inf[RoutingArch->delayless_switch].power_buffer_type = POWER_BUFFER_TYPE_NONE;
switch_inf[RoutingArch->delayless_switch].mux_trans_size = 0.;
/* Xifan TANG: easy to identify internal built switch*/
switch_inf[RoutingArch->delayless_switch].type = "buffer";
switch_inf[RoutingArch->delayless_switch].name = "delayless_switch";
/* end */
/* Xifan TANG: SPICE model support*/
switch_inf[RoutingArch->delayless_switch].spice_model_name = NULL;
switch_inf[RoutingArch->delayless_switch].spice_model = NULL;
/* END */
/* The wire to ipin switch for all types. Curently all types
* must share ipin switch. Some of the timing code would
* need to be changed otherwise. */
/* Xifan TANG: Enhancement for connection blocks */
if (0 == Arch.num_cb_switch) {
switch_inf[RoutingArch->wire_to_ipin_switch].buffered = TRUE;
switch_inf[RoutingArch->wire_to_ipin_switch].R = 0.;
switch_inf[RoutingArch->wire_to_ipin_switch].Cin = Arch.C_ipin_cblock;
switch_inf[RoutingArch->wire_to_ipin_switch].Cout = 0.;
switch_inf[RoutingArch->wire_to_ipin_switch].Tdel = Arch.T_ipin_cblock;
switch_inf[RoutingArch->wire_to_ipin_switch].power_buffer_type = POWER_BUFFER_TYPE_NONE;
switch_inf[RoutingArch->wire_to_ipin_switch].mux_trans_size = 0.;
/* Xifan TANG: easy to identify internal built switch*/
switch_inf[RoutingArch->wire_to_ipin_switch].type = "buffer";
switch_inf[RoutingArch->wire_to_ipin_switch].name = "wire_to_ipin_switch";
/* end */
switch_inf[RoutingArch->wire_to_ipin_switch].spice_model_name = NULL;
switch_inf[RoutingArch->wire_to_ipin_switch].spice_model = NULL;
} else {
/* Xifan TANG: Currently we only support 1 connection blocks switch defined.*/
assert(1 == Arch.num_cb_switch);
memcpy(&switch_inf[RoutingArch->wire_to_ipin_switch], Arch.cb_switches,
sizeof(struct s_switch_inf) * Arch.num_cb_switch);
}
/* END */
/* mrFPGA: Xifan TANG */
if (is_mrFPGA && Arch.arch_mrfpga.is_opin_cblock_defined) {
switch_inf[RoutingArch->opin_to_wire_switch].buffered = TRUE;
switch_inf[RoutingArch->opin_to_wire_switch].R = Arch.arch_mrfpga.R_opin_cblock;
switch_inf[RoutingArch->opin_to_wire_switch].Cin = 0.;
switch_inf[RoutingArch->opin_to_wire_switch].Cout = 0.;
switch_inf[RoutingArch->opin_to_wire_switch].Tdel = Arch.arch_mrfpga.T_opin_cblock;
/* Xifan TANG: name should be specified!!!*/
switch_inf[RoutingArch->opin_to_wire_switch].power_buffer_type = POWER_BUFFER_TYPE_NONE;
switch_inf[RoutingArch->opin_to_wire_switch].mux_trans_size = 0.;
switch_inf[RoutingArch->opin_to_wire_switch].type = "buffer";
switch_inf[RoutingArch->opin_to_wire_switch].name = "mrFPGA_opin_switch";
switch_inf[RoutingArch->opin_to_wire_switch].spice_model_name = NULL;
switch_inf[RoutingArch->opin_to_wire_switch].spice_model = NULL;
}
for (i = 0; i < RoutingArch->num_segment; i++ ) {
/* Xifan TANG: only overwrite it when it is defined*/
if (is_mrFPGA && Arch.arch_mrfpga.is_opin_cblock_defined) {
segment_inf[i].opin_switch = RoutingArch->opin_to_wire_switch;
}
}
/* end */
}
/* Sets up routing structures. Since checks are already done, this
* just copies values across */
static void SetupRoutingArch(INP t_arch Arch,
OUTP struct s_det_routing_arch *RoutingArch) {
RoutingArch->switch_block_type = Arch.SBType;
RoutingArch->R_minW_nmos = Arch.R_minW_nmos;
RoutingArch->R_minW_pmos = Arch.R_minW_pmos;
RoutingArch->Fs = Arch.Fs;
RoutingArch->directionality = BI_DIRECTIONAL;
if (Arch.Segments)
RoutingArch->directionality = Arch.Segments[0].directionality;
}
static void SetupRouterOpts(INP t_options Options, INP boolean TimingEnabled,
OUTP struct s_router_opts *RouterOpts) {
RouterOpts->astar_fac = 1.2; /* DEFAULT */
if (Options.Count[OT_ASTAR_FAC]) {
RouterOpts->astar_fac = Options.astar_fac;
}
RouterOpts->bb_factor = 3; /* DEFAULT */
if (Options.Count[OT_FAST]) {
RouterOpts->bb_factor = 0; /* DEFAULT */
}
if (Options.Count[OT_BB_FACTOR]) {
RouterOpts->bb_factor = Options.bb_factor;
}
RouterOpts->criticality_exp = 1.0; /* DEFAULT */
if (Options.Count[OT_CRITICALITY_EXP]) {
RouterOpts->criticality_exp = Options.criticality_exp;
}
RouterOpts->max_criticality = 0.99; /* DEFAULT */
if (Options.Count[OT_MAX_CRITICALITY]) {
RouterOpts->max_criticality = Options.max_criticality;
}
RouterOpts->max_router_iterations = 50; /* DEFAULT */
if (Options.Count[OT_FAST]) {
RouterOpts->max_router_iterations = 10;
}
if (Options.Count[OT_MAX_ROUTER_ITERATIONS]) {
RouterOpts->max_router_iterations = Options.max_router_iterations;
}
RouterOpts->pres_fac_mult = 1.3; /* DEFAULT */
if (Options.Count[OT_PRES_FAC_MULT]) {
RouterOpts->pres_fac_mult = Options.pres_fac_mult;
}
RouterOpts->route_type = DETAILED; /* DEFAULT */
if (Options.Count[OT_ROUTE_TYPE]) {
RouterOpts->route_type = Options.RouteType;
}
RouterOpts->full_stats = FALSE; /* DEFAULT */
if (Options.Count[OT_FULL_STATS]) {
RouterOpts->full_stats = TRUE;
}
RouterOpts->verify_binary_search = FALSE; /* DEFAULT */
if (Options.Count[OT_VERIFY_BINARY_SEARCH]) {
RouterOpts->verify_binary_search = TRUE;
}
/* Depends on RouteOpts->route_type */
RouterOpts->router_algorithm = NO_TIMING; /* DEFAULT */
if (TimingEnabled) {
RouterOpts->router_algorithm = TIMING_DRIVEN; /* DEFAULT */
}
if (GLOBAL == RouterOpts->route_type) {
RouterOpts->router_algorithm = NO_TIMING; /* DEFAULT */
}
if (Options.Count[OT_ROUTER_ALGORITHM]) {
RouterOpts->router_algorithm = Options.RouterAlgorithm;
}
RouterOpts->fixed_channel_width = NO_FIXED_CHANNEL_WIDTH; /* DEFAULT */
if (Options.Count[OT_ROUTE_CHAN_WIDTH]) {
RouterOpts->fixed_channel_width = Options.RouteChanWidth;
}
/* mrFPGA: Xifan TANG */
is_show_sram = FALSE;
if (Options.Count[OT_SHOW_SRAM]) {
is_show_sram = TRUE;
}
is_show_pass_trans = FALSE;
if (Options.Count[OT_SHOW_PASS_TRANS]) {
is_show_pass_trans = TRUE;
}
/* END */
/* Depends on RouterOpts->router_algorithm */
RouterOpts->initial_pres_fac = 0.5; /* DEFAULT */
if (NO_TIMING == RouterOpts->router_algorithm || Options.Count[OT_FAST]) {
RouterOpts->initial_pres_fac = 10000.0; /* DEFAULT */
}
if (Options.Count[OT_INITIAL_PRES_FAC]) {
RouterOpts->initial_pres_fac = Options.initial_pres_fac;
}
/* Depends on RouterOpts->router_algorithm */
RouterOpts->base_cost_type = DELAY_NORMALIZED; /* DEFAULT */
if (BREADTH_FIRST == RouterOpts->router_algorithm) {
RouterOpts->base_cost_type = DEMAND_ONLY; /* DEFAULT */
}
if (NO_TIMING == RouterOpts->router_algorithm) {
RouterOpts->base_cost_type = DEMAND_ONLY; /* DEFAULT */
}
if (Options.Count[OT_BASE_COST_TYPE]) {
RouterOpts->base_cost_type = Options.base_cost_type;
}
/* Depends on RouterOpts->router_algorithm */
RouterOpts->first_iter_pres_fac = 0.5; /* DEFAULT */
if (BREADTH_FIRST == RouterOpts->router_algorithm) {
RouterOpts->first_iter_pres_fac = 0.0; /* DEFAULT */
}
if (NO_TIMING == RouterOpts->router_algorithm || Options.Count[OT_FAST]) {
RouterOpts->first_iter_pres_fac = 10000.0; /* DEFAULT */
}
if (Options.Count[OT_FIRST_ITER_PRES_FAC]) {
RouterOpts->first_iter_pres_fac = Options.first_iter_pres_fac;
}
/* Depends on RouterOpts->router_algorithm */
RouterOpts->acc_fac = 1.0;
if (BREADTH_FIRST == RouterOpts->router_algorithm) {
RouterOpts->acc_fac = 0.2;
}
if (Options.Count[OT_ACC_FAC]) {
RouterOpts->acc_fac = Options.acc_fac;
}
/* Depends on RouterOpts->route_type */
RouterOpts->bend_cost = 0.0; /* DEFAULT */
if (GLOBAL == RouterOpts->route_type) {
RouterOpts->bend_cost = 1.0; /* DEFAULT */
}
if (Options.Count[OT_BEND_COST]) {
RouterOpts->bend_cost = Options.bend_cost;
}
RouterOpts->doRouting = FALSE;
if (Options.Count[OT_ROUTE]) {
RouterOpts->doRouting = TRUE;
} else if (!Options.Count[OT_PACK] && !Options.Count[OT_PLACE]
&& !Options.Count[OT_ROUTE]) {
if (!Options.Count[OT_TIMING_ANALYZE_ONLY_WITH_NET_DELAY])
RouterOpts->doRouting = TRUE;
}
}
static void SetupAnnealSched(INP t_options Options,
OUTP struct s_annealing_sched *AnnealSched) {
AnnealSched->alpha_t = 0.8; /* DEFAULT */
if (Options.Count[OT_ALPHA_T]) {
AnnealSched->alpha_t = Options.PlaceAlphaT;
}
if (AnnealSched->alpha_t >= 1 || AnnealSched->alpha_t <= 0) {
vpr_printf(TIO_MESSAGE_ERROR,
"alpha_t must be between 0 and 1 exclusive.\n");
exit(1);
}
AnnealSched->exit_t = 0.01; /* DEFAULT */
if (Options.Count[OT_EXIT_T]) {
AnnealSched->exit_t = Options.PlaceExitT;
}
if (AnnealSched->exit_t <= 0) {
vpr_printf(TIO_MESSAGE_ERROR, "exit_t must be greater than 0.\n");
exit(1);
}
AnnealSched->init_t = 100.0; /* DEFAULT */
if (Options.Count[OT_INIT_T]) {
AnnealSched->init_t = Options.PlaceInitT;
}
if (AnnealSched->init_t <= 0) {
vpr_printf(TIO_MESSAGE_ERROR, "init_t must be greater than 0.\n");
exit(1);
}
if (AnnealSched->init_t < AnnealSched->exit_t) {
vpr_printf(TIO_MESSAGE_ERROR,
"init_t must be greater or equal to than exit_t.\n");
exit(1);
}
AnnealSched->inner_num = 1.0; /* DEFAULT */
if (Options.Count[OT_INNER_NUM]) {
AnnealSched->inner_num = Options.PlaceInnerNum;
}
if (AnnealSched->inner_num <= 0) {
vpr_printf(TIO_MESSAGE_ERROR, "init_t must be greater than 0.\n");
exit(1);
}
AnnealSched->type = AUTO_SCHED; /* DEFAULT */
if ((Options.Count[OT_ALPHA_T]) || (Options.Count[OT_EXIT_T])
|| (Options.Count[OT_INIT_T])) {
AnnealSched->type = USER_SCHED;
}
}
/* Sets up the s_packer_opts structure baesd on users inputs and on the architecture specified.
* Error checking, such as checking for conflicting params is assumed to be done beforehand
*/
void SetupPackerOpts(INP t_options Options, INP boolean TimingEnabled,
INP t_arch Arch, INP char *net_file,
OUTP struct s_packer_opts *PackerOpts) {
if (Arch.clb_grid.IsAuto) {
PackerOpts->aspect = Arch.clb_grid.Aspect;
} else {
PackerOpts->aspect = (float) Arch.clb_grid.H / (float) Arch.clb_grid.W;
}
PackerOpts->output_file = net_file;
PackerOpts->blif_file_name = Options.BlifFile;
PackerOpts->doPacking = FALSE; /* DEFAULT */
if (Options.Count[OT_PACK]) {
PackerOpts->doPacking = TRUE;
} else if (!Options.Count[OT_PACK] && !Options.Count[OT_PLACE]
&& !Options.Count[OT_ROUTE]) {
if (!Options.Count[OT_TIMING_ANALYZE_ONLY_WITH_NET_DELAY])
PackerOpts->doPacking = TRUE;
}
PackerOpts->global_clocks = TRUE; /* DEFAULT */
if (Options.Count[OT_GLOBAL_CLOCKS]) {
PackerOpts->global_clocks = Options.global_clocks;
}
PackerOpts->hill_climbing_flag = FALSE; /* DEFAULT */
if (Options.Count[OT_HILL_CLIMBING_FLAG]) {
PackerOpts->hill_climbing_flag = Options.hill_climbing_flag;
}
PackerOpts->sweep_hanging_nets_and_inputs = TRUE;
if (Options.Count[OT_SWEEP_HANGING_NETS_AND_INPUTS]) {
PackerOpts->sweep_hanging_nets_and_inputs =
Options.sweep_hanging_nets_and_inputs;
}
PackerOpts->skip_clustering = FALSE; /* DEFAULT */
if (Options.Count[OT_SKIP_CLUSTERING]) {
PackerOpts->skip_clustering = TRUE;
}
PackerOpts->allow_unrelated_clustering = TRUE; /* DEFAULT */
if (Options.Count[OT_ALLOW_UNRELATED_CLUSTERING]) {
PackerOpts->allow_unrelated_clustering =
Options.allow_unrelated_clustering;
}
PackerOpts->allow_early_exit = FALSE; /* DEFAULT */
if (Options.Count[OT_ALLOW_EARLY_EXIT]) {
PackerOpts->allow_early_exit = Options.allow_early_exit;
}
PackerOpts->connection_driven = TRUE; /* DEFAULT */
if (Options.Count[OT_CONNECTION_DRIVEN_CLUSTERING]) {
PackerOpts->connection_driven = Options.connection_driven;
}
PackerOpts->timing_driven = TimingEnabled; /* DEFAULT */
if (Options.Count[OT_TIMING_DRIVEN_CLUSTERING]) {
PackerOpts->timing_driven = Options.timing_driven;
}
PackerOpts->cluster_seed_type = (
TimingEnabled ? VPACK_TIMING : VPACK_MAX_INPUTS); /* DEFAULT */
if (Options.Count[OT_CLUSTER_SEED]) {
PackerOpts->cluster_seed_type = Options.cluster_seed_type;
}
PackerOpts->alpha = 0.75; /* DEFAULT */
if (Options.Count[OT_ALPHA_CLUSTERING]) {
PackerOpts->alpha = Options.alpha;
}
PackerOpts->beta = 0.9; /* DEFAULT */
if (Options.Count[OT_BETA_CLUSTERING]) {
PackerOpts->beta = Options.beta;
}
/* never recomputer timing */
PackerOpts->recompute_timing_after = MAX_SHORT; /* DEFAULT */
if (Options.Count[OT_RECOMPUTE_TIMING_AFTER]) {
PackerOpts->recompute_timing_after = Options.recompute_timing_after;
}
PackerOpts->block_delay = 0; /* DEFAULT */
if (Options.Count[OT_CLUSTER_BLOCK_DELAY]) {
PackerOpts->block_delay = Options.block_delay;
}
PackerOpts->intra_cluster_net_delay = 0; /* DEFAULT */
if (Options.Count[OT_INTRA_CLUSTER_NET_DELAY]) {
PackerOpts->intra_cluster_net_delay = Options.intra_cluster_net_delay;
}
PackerOpts->inter_cluster_net_delay = 1.0; /* DEFAULT */
PackerOpts->auto_compute_inter_cluster_net_delay = TRUE;
if (Options.Count[OT_INTER_CLUSTER_NET_DELAY]) {
PackerOpts->inter_cluster_net_delay = Options.inter_cluster_net_delay;
PackerOpts->auto_compute_inter_cluster_net_delay = FALSE;
}
PackerOpts->packer_algorithm = PACK_GREEDY; /* DEFAULT */
if (Options.Count[OT_PACKER_ALGORITHM]) {
PackerOpts->packer_algorithm = Options.packer_algorithm;
}
/* Xifan TANG: PACK_CLB_PIN_REMAP */
PackerOpts->pack_clb_pin_remap = FALSE; /* DEFAULT */
if (Options.Count[OT_PACK_CLB_PIN_REMAP]) {
PackerOpts->pack_clb_pin_remap = TRUE;
}
}
/* Sets up the s_placer_opts structure based on users input. Error checking,
* such as checking for conflicting params is assumed to be done beforehand */
static void SetupPlacerOpts(INP t_options Options, INP boolean TimingEnabled,
OUTP struct s_placer_opts *PlacerOpts) {
PlacerOpts->block_dist = 1; /* DEFAULT */
if (Options.Count[OT_BLOCK_DIST]) {
PlacerOpts->block_dist = Options.block_dist;
}
PlacerOpts->inner_loop_recompute_divider = 0; /* DEFAULT */
if (Options.Count[OT_INNER_LOOP_RECOMPUTE_DIVIDER]) {
PlacerOpts->inner_loop_recompute_divider =
Options.inner_loop_recompute_divider;
}
PlacerOpts->place_cost_exp = 1.; /* DEFAULT */
if (Options.Count[OT_PLACE_COST_EXP]) {
PlacerOpts->place_cost_exp = Options.place_cost_exp;
}
PlacerOpts->td_place_exp_first = 1.; /* DEFAULT */
if (Options.Count[OT_TD_PLACE_EXP_FIRST]) {
PlacerOpts->td_place_exp_first = Options.place_exp_first;
}
PlacerOpts->td_place_exp_last = 8.; /* DEFAULT */
if (Options.Count[OT_TD_PLACE_EXP_LAST]) {
PlacerOpts->td_place_exp_last = Options.place_exp_last;
}
PlacerOpts->place_algorithm = BOUNDING_BOX_PLACE; /* DEFAULT */
if (TimingEnabled) {
PlacerOpts->place_algorithm = PATH_TIMING_DRIVEN_PLACE; /* DEFAULT */
}
if (Options.Count[OT_PLACE_ALGORITHM]) {
PlacerOpts->place_algorithm = Options.PlaceAlgorithm;
}
PlacerOpts->pad_loc_file = NULL; /* DEFAULT */
if (Options.Count[OT_FIX_PINS]) {
if (Options.PinFile) {
PlacerOpts->pad_loc_file = my_strdup(Options.PinFile);
}
}
PlacerOpts->pad_loc_type = FREE; /* DEFAULT */
if (Options.Count[OT_FIX_PINS]) {
PlacerOpts->pad_loc_type = (Options.PinFile ? USER : RANDOM);
}
PlacerOpts->place_chan_width = 100; /* DEFAULT */
if (Options.Count[OT_PLACE_CHAN_WIDTH]) {
PlacerOpts->place_chan_width = Options.PlaceChanWidth;
}
PlacerOpts->recompute_crit_iter = 1; /* DEFAULT */
if (Options.Count[OT_RECOMPUTE_CRIT_ITER]) {
PlacerOpts->recompute_crit_iter = Options.RecomputeCritIter;
}
PlacerOpts->timing_tradeoff = 0.5; /* DEFAULT */
if (Options.Count[OT_TIMING_TRADEOFF]) {
PlacerOpts->timing_tradeoff = Options.PlaceTimingTradeoff;
}
/* Xifan TANG : PLACE_CLB_PIN_REMAP */
PlacerOpts->place_clb_pin_remap = FALSE; /* DEFAULT */
if (Options.Count[OT_PLACE_CLB_PIN_REMAP]) {
PlacerOpts->place_clb_pin_remap = TRUE;
}
/* END */
/* Depends on PlacerOpts->place_algorithm */
PlacerOpts->enable_timing_computations = FALSE; /* DEFAULT */
if ((PlacerOpts->place_algorithm == PATH_TIMING_DRIVEN_PLACE)
|| (PlacerOpts->place_algorithm == NET_TIMING_DRIVEN_PLACE)) {
PlacerOpts->enable_timing_computations = TRUE; /* DEFAULT */
}
if (Options.Count[OT_ENABLE_TIMING_COMPUTATIONS]) {
PlacerOpts->enable_timing_computations = Options.ShowPlaceTiming;
}
PlacerOpts->place_freq = PLACE_ONCE; /* DEFAULT */
if ((Options.Count[OT_ROUTE_CHAN_WIDTH])
|| (Options.Count[OT_PLACE_CHAN_WIDTH])) {
PlacerOpts->place_freq = PLACE_ONCE;
}
PlacerOpts->doPlacement = FALSE; /* DEFAULT */
if (Options.Count[OT_PLACE]) {
PlacerOpts->doPlacement = TRUE;
} else if (!Options.Count[OT_PACK] && !Options.Count[OT_PLACE]
&& !Options.Count[OT_ROUTE]) {
if (!Options.Count[OT_TIMING_ANALYZE_ONLY_WITH_NET_DELAY])
PlacerOpts->doPlacement = TRUE;
}
if (PlacerOpts->doPlacement == FALSE) {
PlacerOpts->place_freq = PLACE_NEVER;
}
}
static void SetupOperation(INP t_options Options,
OUTP enum e_operation *Operation) {
*Operation = RUN_FLOW; /* DEFAULT */
if (Options.Count[OT_TIMING_ANALYZE_ONLY_WITH_NET_DELAY]) {
*Operation = TIMING_ANALYSIS_ONLY;
}
}
static void SetupPowerOpts(t_options Options, t_power_opts *power_opts,
t_arch * Arch) {
if (Options.Count[OT_POWER]) {
power_opts->do_power = TRUE;
} else {
power_opts->do_power = FALSE;
}
if (power_opts->do_power) {
Arch->power = (t_power_arch*) my_malloc(sizeof(t_power_arch));
Arch->clocks = (t_clock_arch*) my_malloc(sizeof(t_clock_arch));
g_clock_arch = Arch->clocks;
} else {
Arch->power = NULL;
Arch->clocks = NULL;
g_clock_arch = NULL;
}
}
/* Setup the SPICE Options:*/
static void SetupSpiceOpts(t_options Options,
t_spice_opts* spice_opts,
t_arch* arch) {
/* Initialize */
spice_opts->do_spice = FALSE;
spice_opts->fpga_spice_print_top_testbench = FALSE;
spice_opts->fpga_spice_print_pb_mux_testbench = FALSE;
spice_opts->fpga_spice_print_cb_mux_testbench = FALSE;
spice_opts->fpga_spice_print_sb_mux_testbench = FALSE;
spice_opts->fpga_spice_print_cb_testbench = FALSE;
spice_opts->fpga_spice_print_sb_testbench = FALSE;
spice_opts->fpga_spice_print_lut_testbench = FALSE;
spice_opts->fpga_spice_print_hardlogic_testbench = FALSE;
spice_opts->fpga_spice_print_io_testbench = FALSE;
spice_opts->fpga_spice_print_grid_testbench = FALSE;
spice_opts->fpga_spice_leakage_only = FALSE;
spice_opts->fpga_spice_parasitic_net_estimation = TRUE;
spice_opts->fpga_spice_testbench_load_extraction = TRUE;
/* Turn on the spice option if it is selected*/
if (Options.Count[OT_FPGA_SPICE]) {
spice_opts->do_spice = TRUE;
spice_opts->spice_dir = my_strdup(Options.spice_dir);
/* TODO: this could be more flexible*/
spice_opts->include_dir = "include/";
spice_opts->subckt_dir = "subckt/";
if (Options.Count[OT_FPGA_SPICE_PRINT_TOP_TESTBENCH]) {
spice_opts->fpga_spice_print_top_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_PB_MUX_TESTBENCH]) {
spice_opts->fpga_spice_print_pb_mux_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_CB_MUX_TESTBENCH]) {
spice_opts->fpga_spice_print_cb_mux_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_SB_MUX_TESTBENCH]) {
spice_opts->fpga_spice_print_sb_mux_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_CB_TESTBENCH]) {
spice_opts->fpga_spice_print_cb_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_SB_TESTBENCH]) {
spice_opts->fpga_spice_print_sb_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_GRID_TESTBENCH]) {
spice_opts->fpga_spice_print_grid_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_LUT_TESTBENCH]) {
spice_opts->fpga_spice_print_lut_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_HARDLOGIC_TESTBENCH]) {
spice_opts->fpga_spice_print_hardlogic_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PRINT_IO_TESTBENCH]) {
spice_opts->fpga_spice_print_io_testbench = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_LEAKAGE_ONLY]) {
spice_opts->fpga_spice_leakage_only = TRUE;
}
if (Options.Count[OT_FPGA_SPICE_PARASITIC_NET_ESTIMATION]) {
spice_opts->fpga_spice_parasitic_net_estimation = Options.fpga_spice_parasitic_net_estimation;
}
if (Options.Count[OT_FPGA_SPICE_TESTBENCH_LOAD_EXTRACTION]) {
spice_opts->fpga_spice_testbench_load_extraction = Options.fpga_spice_testbench_load_extraction;
}
}
/* Set default options */
if ((TRUE == spice_opts->do_spice)
&&(FALSE == spice_opts->fpga_spice_print_top_testbench)
&&(FALSE == spice_opts->fpga_spice_print_grid_testbench)
&&(FALSE == spice_opts->fpga_spice_print_pb_mux_testbench)
&&(FALSE == spice_opts->fpga_spice_print_cb_mux_testbench)
&&(FALSE == spice_opts->fpga_spice_print_sb_mux_testbench)
&&(FALSE == spice_opts->fpga_spice_print_cb_testbench)
&&(FALSE == spice_opts->fpga_spice_print_sb_testbench)
&&(FALSE == spice_opts->fpga_spice_print_lut_testbench)
&&(FALSE == spice_opts->fpga_spice_print_hardlogic_testbench)) {
spice_opts->fpga_spice_print_pb_mux_testbench = TRUE;
spice_opts->fpga_spice_print_cb_mux_testbench = TRUE;
spice_opts->fpga_spice_print_sb_mux_testbench = TRUE;
spice_opts->fpga_spice_print_lut_testbench = TRUE;
spice_opts->fpga_spice_print_hardlogic_testbench = TRUE;
}
/* Assign the number of mt in SPICE simulation */
spice_opts->fpga_spice_sim_multi_thread_num = 8;
if (Options.Count[OT_FPGA_SPICE_SIM_MT_NUM]) {
spice_opts->fpga_spice_sim_multi_thread_num = Options.fpga_spice_sim_mt_num;
}
/* Assign path of SPICE simulator */
spice_opts->simulator_path = NULL;
if (Options.Count[OT_FPGA_SPICE_SIMULATOR_PATH]) {
spice_opts->simulator_path = my_strdup(Options.fpga_spice_simulator_path);
}
/* If spice option is selected*/
arch->read_xml_spice = spice_opts->do_spice;
arch->spice = (t_spice*)my_malloc(sizeof(t_spice));
return;
}
/*Xifan TANG: Synthesizable Verilog Dumping */
static void SetupSynVerilogOpts(t_options Options,
t_syn_verilog_opts* syn_verilog_opts,
t_arch* arch) {
/* Initialize */
syn_verilog_opts->dump_syn_verilog = FALSE;
syn_verilog_opts->syn_verilog_dump_dir = NULL;
syn_verilog_opts->print_top_testbench = FALSE;
syn_verilog_opts->print_autocheck_top_testbench = FALSE;
syn_verilog_opts->reference_verilog_benchmark_file = NULL;
syn_verilog_opts->print_input_blif_testbench = FALSE;
syn_verilog_opts->include_timing = FALSE;
syn_verilog_opts->include_signal_init = FALSE;
syn_verilog_opts->print_modelsim_autodeck = FALSE;
syn_verilog_opts->print_formal_verification_top_netlist= FALSE;
syn_verilog_opts->modelsim_ini_path = NULL;
syn_verilog_opts->print_user_defined_template = FALSE;
syn_verilog_opts->print_report_timing_tcl = FALSE;
syn_verilog_opts->print_sdc_pnr = FALSE;
syn_verilog_opts->print_sdc_analysis = FALSE;
syn_verilog_opts->include_icarus_simulator = FALSE;
/* Turn on Syn_verilog options */
if (Options.Count[OT_FPGA_VERILOG_SYN]) {
syn_verilog_opts->dump_syn_verilog = TRUE;
} else {
return;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_DIR]) {
syn_verilog_opts->syn_verilog_dump_dir = my_strdup(Options.fpga_syn_verilog_dir);
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_TOP_TESTBENCH]) {
syn_verilog_opts->print_top_testbench = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_AUTOCHECK_TOP_TESTBENCH]) {
syn_verilog_opts->print_autocheck_top_testbench = TRUE;
syn_verilog_opts->reference_verilog_benchmark_file = my_strdup(Options.fpga_verilog_reference_benchmark_file);
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_INPUT_BLIF_TESTBENCH]) {
syn_verilog_opts->print_input_blif_testbench = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_FORMAL_VERIFICATION_TOP_NETLIST]) {
syn_verilog_opts->print_formal_verification_top_netlist = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_INCLUDE_TIMING]) {
syn_verilog_opts->include_timing = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_INCLUDE_SIGNAL_INIT]) {
syn_verilog_opts->include_signal_init = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_INCLUDE_ICARUS_SIMULATOR]) {
syn_verilog_opts->include_icarus_simulator = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_MODELSIM_AUTODECK]) {
syn_verilog_opts->print_modelsim_autodeck = TRUE;
syn_verilog_opts->modelsim_ini_path = my_strdup(Options.fpga_verilog_modelsim_ini_path);
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_USER_DEFINED_TEMPLATE]) {
syn_verilog_opts->print_user_defined_template = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_REPORT_TIMING_TCL]) {
syn_verilog_opts->print_report_timing_tcl = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_REPORT_TIMING_RPT_PATH]) {
syn_verilog_opts->report_timing_path = my_strdup(Options.fpga_verilog_report_timing_path);
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_SDC_PNR]) {
syn_verilog_opts->print_sdc_pnr = TRUE;
}
if (Options.Count[OT_FPGA_VERILOG_SYN_PRINT_SDC_ANALYSIS]) {
syn_verilog_opts->print_sdc_analysis = TRUE;
}
/* SynVerilog needs the input from spice modeling */
if (FALSE == arch->read_xml_spice) {
arch->read_xml_spice = syn_verilog_opts->dump_syn_verilog;
arch->spice = (t_spice*)my_malloc(sizeof(t_spice));
}
return;
}
/*Xifan TANG: Bitstream Generator */
static void SetupBitstreamGenOpts(t_options Options,
t_bitstream_gen_opts* bitstream_gen_opts,
t_arch* arch) {
/* Initialize */
bitstream_gen_opts->gen_bitstream = FALSE;
bitstream_gen_opts->bitstream_output_file = NULL;
/* Turn on Bitstream Generator options */
if (Options.Count[OT_FPGA_BITSTREAM_GENERATOR]) {
bitstream_gen_opts->gen_bitstream = TRUE;
} else {
return;
}
if (Options.Count[OT_FPGA_BITSTREAM_OUTPUT_FILE]) {
bitstream_gen_opts->bitstream_output_file = my_strdup(Options.fpga_bitstream_file);
}
/* SynVerilog needs the input from spice modeling */
if (FALSE == arch->read_xml_spice) {
arch->read_xml_spice = bitstream_gen_opts->gen_bitstream;
arch->spice = (t_spice*)my_malloc(sizeof(t_spice));
}
return;
}
static void SetupFpgaSpiceOpts(t_options Options,
t_fpga_spice_opts* fpga_spice_opts,
t_arch* Arch) {
/* Xifan TANG: SPICE Support*/
SetupSpiceOpts(Options, &(fpga_spice_opts->SpiceOpts), Arch);
/* Xifan TANG: Synthesizable Verilog Dumping*/
SetupSynVerilogOpts(Options, &(fpga_spice_opts->SynVerilogOpts), Arch);
/* Xifan TANG: Bitstream generator */
SetupBitstreamGenOpts(Options, &(fpga_spice_opts->BitstreamGenOpts), Arch);
/* Decide if we need to rename illegal port names */
fpga_spice_opts->rename_illegal_port = FALSE;
if (Options.Count[OT_FPGA_X2P_RENAME_ILLEGAL_PORT]) {
fpga_spice_opts->rename_illegal_port = TRUE;
}
/* Assign the weight of signal density */
fpga_spice_opts->signal_density_weight = 1.;
if (Options.Count[OT_FPGA_X2P_SIGNAL_DENSITY_WEIGHT]) {
fpga_spice_opts->signal_density_weight = Options.fpga_spice_signal_density_weight;
}
/* Assign the weight of signal density */
fpga_spice_opts->sim_window_size = 0.5;
if (Options.Count[OT_FPGA_X2P_SIM_WINDOW_SIZE]) {
fpga_spice_opts->sim_window_size = Options.fpga_spice_sim_window_size;
}
/* Check if user wants to use a compact routing hierarchy */
fpga_spice_opts->compact_routing_hierarchy = FALSE;
if (Options.Count[OT_FPGA_X2P_COMPACT_ROUTING_HIERARCHY]) {
fpga_spice_opts->compact_routing_hierarchy = TRUE;
}
/* Decide if we need to do FPGA-SPICE */
fpga_spice_opts->do_fpga_spice = FALSE;
if (( TRUE == fpga_spice_opts->SpiceOpts.do_spice)
||(TRUE == fpga_spice_opts->SynVerilogOpts.dump_syn_verilog)
||(TRUE == fpga_spice_opts->BitstreamGenOpts.gen_bitstream)) {
fpga_spice_opts->do_fpga_spice = TRUE;
}
/* Decide if we need to read activity file */
fpga_spice_opts->read_act_file = FALSE;
if (( TRUE == fpga_spice_opts->SpiceOpts.do_spice)
||(TRUE == fpga_spice_opts->SynVerilogOpts.dump_syn_verilog)) {
fpga_spice_opts->read_act_file = TRUE;
}
return;
}
/* Initialize the global variables for clb to clb directs */
void alloc_and_init_globals_clb_to_clb_directs(int num_directs,
t_direct_inf* directs) {
num_clb2clb_directs = num_directs;
clb2clb_direct = alloc_and_load_clb_to_clb_directs(directs, num_directs);
return;
}
/* mrFPGA : Reshaped by Xifan TANG */
static void set_max_pins_per_side() {
int i, j, p, q;
max_pins_per_side = 0;
for (p = 0; p < num_types; ++p) {
for (q = 0; q < type_descriptors[p].height; ++q) {
/* Xifan TANG: Skip NULL pointor*/
if (EMPTY_TYPE == &(type_descriptors[p])) {
continue;
}
for (i = 0; i <= 3; i++) {
int sum = 0;
for (j = 0; j < type_descriptors[p].num_pins; j++) {
if (1 == type_descriptors[p].pinloc[q][i][j]) {
type_descriptors[p].pin_index_per_side[j] = sum;
type_descriptors[p].pin_ptc_to_side[j] = i;
sum++;
}
}
if (IO_TYPE != &(type_descriptors[p])) {
max_pins_per_side = std::max(sum, max_pins_per_side);
}
}
}
}
return;
}
static void setup_junction_switch(struct s_det_routing_arch *det_routing_arch) {
int i;
if (is_wire_buffer) {
wire_buffer_inf.R += memristor_inf.R;
}
for (i = 0; i < num_normal_switch; i++) {
if ( switch_inf[i].buffered ) {
switch_inf[i].R += memristor_inf.R;
} else {
switch_inf[i].R += 2.0 * memristor_inf.R;
}
switch_inf[i].Tdel += memristor_inf.R * (0.5 * memristor_inf.C + switch_inf[i].Cin);
switch_inf[i].Tdel += 2.0 * memristor_inf.Tdel;
}
switch_inf[det_routing_arch->wire_to_ipin_switch].Tdel += memristor_inf.R * (0.5 * memristor_inf.C + switch_inf[i].Cin) + memristor_inf.Tdel;
if ( is_mrFPGA ) {
switch_inf[det_routing_arch->opin_to_wire_switch].R += memristor_inf.R;
switch_inf[det_routing_arch->opin_to_wire_switch].Tdel += memristor_inf.Tdel;
}
}
static void add_wire_to_switch(struct s_det_routing_arch *det_routing_arch) {
int i;
for (i = 0; i < num_normal_switch; i++) {
switch_inf[i].Tdel += switch_inf[i].R * Cseg_global + 0.5 * Rseg_global * Cseg_global;
switch_inf[i].R += Rseg_global;
}
}
static void hack_switch_to_rram(struct s_det_routing_arch *det_routing_arch) {
int i;
if(rram_pass_tran_value > 0.01) {
for (i = 0; i < num_normal_switch; i++) {
if(switch_inf[i].buffered) {
switch_inf[i].R = switch_inf[i].R / 2. + rram_pass_tran_value;
} else {
switch_inf[i].R = rram_pass_tran_value;
}
}
}
}
/* end */