OpenFPGA/libs/libvtrutil/src/vtr_ndoffsetmatrix.h

402 lines
14 KiB
C++

#ifndef VTR_ND_OFFSET_MATRIX_H
#define VTR_ND_OFFSET_MATRIX_H
#include <array>
#include <memory>
#include "vtr_assert.h"
namespace vtr {
//A half-open range specification for a matrix dimension [begin_index, last_index),
//with valid indicies from [begin_index() ... end_index()-1], provided size() > 0.
class DimRange {
public:
DimRange() = default;
DimRange(size_t begin, size_t end)
: begin_index_(begin)
, end_index_(end) {}
size_t begin_index() const { return begin_index_; }
size_t end_index() const { return end_index_; }
size_t size() const { return end_index_ - begin_index_; }
private:
size_t begin_index_ = 0;
size_t end_index_ = 0;
};
//Proxy class for a sub-matrix of a NdOffsetMatrix class.
//This is used to allow chaining of array indexing [] operators in a natural way.
//
//Each instance of this class peels off one-dimension and returns a NdOffsetMatrixProxy representing
//the resulting sub-matrix. This is repeated recursively until we hit the 1-dimensional base-case.
//
//Since this expansion happens at compiler time all the proxy classes get optimized away,
//yielding both high performance and generality.
//
//Recursive case: N-dimensional array
template<typename T, size_t N>
class NdOffsetMatrixProxy {
public:
static_assert(N > 0, "Must have at least one dimension");
//Construct a matrix proxy object
//
// dim_ranges: Array of DimRange objects
// idim: The dimension associated with this proxy
// dim_stride: The stride of this dimension (i.e. how many element in memory between indicies of this dimension)
// start: Pointer to the start of the sub-matrix this proxy represents
NdOffsetMatrixProxy<T, N>(const DimRange* dim_ranges, size_t idim, size_t dim_stride, T* start)
: dim_ranges_(dim_ranges)
, idim_(idim)
, dim_stride_(dim_stride)
, start_(start) {}
const NdOffsetMatrixProxy<T, N - 1> operator[](size_t index) const {
VTR_ASSERT_SAFE_MSG(index >= dim_ranges_[idim_].begin_index(), "Index out of range (below dimension minimum)");
VTR_ASSERT_SAFE_MSG(index < dim_ranges_[idim_].end_index(), "Index out of range (above dimension maximum)");
//The elements are stored in zero-indexed form, so we need to adjust
//for any non-zero minimum index
size_t effective_index = index - dim_ranges_[idim_].begin_index();
//Determine the stride of the next dimension
size_t next_dim_stride = dim_stride_ / dim_ranges_[idim_ + 1].size();
//Strip off one dimension
return NdOffsetMatrixProxy<T, N - 1>(dim_ranges_, //Pass the dimension information
idim_ + 1, //Pass the next dimension
next_dim_stride, //Pass the stride for the next dimension
start_ + dim_stride_ * effective_index); //Advance to index in this dimension
}
NdOffsetMatrixProxy<T, N - 1> operator[](size_t index) {
//Call the const version and cast-away constness
return const_cast<const NdOffsetMatrixProxy<T, N>*>(this)->operator[](index);
}
private:
const DimRange* dim_ranges_;
const size_t idim_;
const size_t dim_stride_;
T* start_;
};
//Base case: 1-dimensional array
template<typename T>
class NdOffsetMatrixProxy<T, 1> {
public:
NdOffsetMatrixProxy<T, 1>(const DimRange* dim_ranges, size_t idim, size_t dim_stride, T* start)
: dim_ranges_(dim_ranges)
, idim_(idim)
, dim_stride_(dim_stride)
, start_(start) {}
const T& operator[](size_t index) const {
VTR_ASSERT_SAFE_MSG(dim_stride_ == 1, "Final dimension must have stride 1");
VTR_ASSERT_SAFE_MSG(index >= dim_ranges_[idim_].begin_index(), "Index out of range (below dimension minimum)");
VTR_ASSERT_SAFE_MSG(index < dim_ranges_[idim_].end_index(), "Index out of range (above dimension maximum)");
//The elements are stored in zero-indexed form, so we need to adjust
//for any non-zero minimum index
size_t effective_index = index - dim_ranges_[idim_].begin_index();
//Base case
return start_[effective_index];
}
T& operator[](size_t index) {
//Call the const version and cast-away constness
return const_cast<T&>(const_cast<const NdOffsetMatrixProxy<T, 1>*>(this)->operator[](index));
}
private:
const DimRange* dim_ranges_;
const size_t idim_;
const size_t dim_stride_;
T* start_;
};
//Base class for an N-dimensional matrix supporting arbitrary index ranges per dimension.
//This class implements all of the matrix handling (lifetime etc.) except for indexing
//(which is implemented in the NdOffsetMatrix class). Indexing is split out to allows specialization
//of indexing for N = 1.
//
//Implementation:
//
//This class uses a single linear array to store the matrix in c-style (row major)
//order. That is, the right-most index is laid out contiguous memory.
//
//This should improve memory usage (no extra pointers to store for each dimension),
//and cache locality (less indirection via pointers, predictable strides).
//
//The indicies are calculated based on the dimensions to access the appropriate elements.
//Since the indexing calculations are visible to the compiler at compile time they can be
//optimized to be efficient.
template<typename T, size_t N>
class NdOffsetMatrixBase {
public:
static_assert(N >= 1, "Minimum dimension 1");
//An empty matrix (all dimensions size zero)
NdOffsetMatrixBase() {
clear();
}
//Specified dimension sizes:
// [0..dim_sizes[0])
// [0..dim_sizes[1])
// ...
//with optional fill value
NdOffsetMatrixBase(std::array<size_t, N> dim_sizes, T value = T()) {
resize(dim_sizes, value);
}
//Specified dimension index ranges:
// [dim_ranges[0].begin_index() ... dim_ranges[1].end_index())
// [dim_ranges[1].begin_index() ... dim_ranges[1].end_index())
// ...
//with optional fill value
NdOffsetMatrixBase(std::array<DimRange, N> dim_ranges, T value = T()) {
resize(dim_ranges, value);
}
public: //Accessors
//Returns the size of the matrix (number of elements)
size_t size() const {
//Size is the product of all dimension sizes
size_t cnt = dim_size(0);
for (size_t idim = 1; idim < ndims(); ++idim) {
cnt *= dim_size(idim);
}
return cnt;
}
//Returns true if there are no elements in the matrix
bool empty() const {
return size() == 0;
}
//Returns the number of dimensions (i.e. N)
size_t ndims() const {
return dim_ranges_.size();
}
//Returns the size of the ith dimension
size_t dim_size(size_t i) const {
VTR_ASSERT_SAFE(i < ndims());
return dim_ranges_[i].size();
}
//Returns the starting index of ith dimension
size_t begin_index(size_t i) const {
VTR_ASSERT_SAFE(i < ndims());
return dim_ranges_[i].begin_index();
}
//Returns the one-past-the-end index of the ith dimension
size_t end_index(size_t i) const {
VTR_ASSERT_SAFE(i < ndims());
return dim_ranges_[i].end_index();
}
public: //Mutators
//Set all elements to 'value'
void fill(T value) {
std::fill(data_.get(), data_.get() + size(), value);
}
//Resize the matrix to the specified dimensions
//
//If 'value' is specified all elements will be initialized to it,
//otherwise they will be default constructed.
void resize(std::array<size_t, N> dim_sizes, T value = T()) {
//Convert dimension to range [0..dim)
for (size_t i = 0; i < dim_sizes.size(); ++i) {
dim_ranges_[i] = {0, dim_sizes[i]};
}
alloc();
fill(value);
}
//Resize the matrix to the specified dimension ranges
//
//If 'value' is specified all elements will be initialized to it,
//otherwise they will be default constructed.
void resize(std::array<DimRange, N> dim_ranges, T value = T()) {
dim_ranges_ = dim_ranges;
alloc();
fill(value);
}
//Reset the matrix to size zero
void clear() {
data_.reset(nullptr);
for (size_t i = 0; i < dim_ranges_.size(); ++i) {
dim_ranges_[i] = {0, 0};
}
}
public: //Lifetime management
//Copy constructor
NdOffsetMatrixBase(const NdOffsetMatrixBase& other)
: NdOffsetMatrixBase(other.dim_ranges_) {
std::copy(other.data_.get(), other.data_.get() + other.size(), data_.get());
}
//Move constructor
NdOffsetMatrixBase(NdOffsetMatrixBase&& other)
: NdOffsetMatrixBase() {
swap(*this, other);
}
//Copy/move assignment
//
//Note that rhs is taken by value (copy-swap idiom)
NdOffsetMatrixBase& operator=(NdOffsetMatrixBase rhs) {
swap(*this, rhs);
return *this;
}
//Swap two NdOffsetMatrixBase objects
friend void swap(NdOffsetMatrixBase<T, N>& m1, NdOffsetMatrixBase<T, N>& m2) {
using std::swap;
swap(m1.dim_ranges_, m2.dim_ranges_);
swap(m1.data_, m2.data_);
}
private:
//Allocate space for all the elements
void alloc() {
data_ = std::make_unique<T[]>(size());
}
protected:
std::array<DimRange, N> dim_ranges_;
std::unique_ptr<T[]> data_ = nullptr;
};
//An N-dimensional matrix supporting arbitrary (continuous) index ranges
//per dimension.
//
//If no second template parameter is provided defaults to a 2-dimensional
//matrix
//
//Examples:
//
// //A 2-dimensional matrix with indicies [0..4][0..9]
// NdOffsetMatrix<int,2> m1({5,10});
//
// //Accessing an element
// int i = m4[3][5];
//
// //Setting an element
// m4[6][20] = 0;
//
// //A 2-dimensional matrix with indicies [2..6][5..9]
// // Note that C++ requires one more set of curly brace than you would expect
// NdOffsetMatrix<int,2> m2({{{2,7},{5,10}}});
//
// //A 3-dimensional matrix with indicies [0..4][0..9][0..19]
// NdOffsetMatrix<int,3> m3({5,10,20});
//
// //A 3-dimensional matrix with indicies [2..6][1..19][50..89]
// NdOffsetMatrix<int,3> m4({{{2,7}, {1,20}, {50,90}}});
//
// //A 2-dimensional matrix with indicies [2..6][1..20], with all entries
// //intialized to 42
// NdOffsetMatrix<int,2> m4({{{2,7}, {1,21}}}, 42);
//
// //A 2-dimensional matrix with indicies [0..4][0..9], with all entries
// //initialized to 42
// NdOffsetMatrix<int,2> m1({5,10}, 42);
//
// //Filling all entries with value 101
// m1.fill(101);
//
// //Resizing an existing matrix (all values reset to default constucted value)
// m1.resize({5,5})
//
// //Resizing an existing matrix (all elements set to value 88)
// m1.resize({15,55}, 88)
template<typename T, size_t N>
class NdOffsetMatrix : public NdOffsetMatrixBase<T, N> {
//General case
static_assert(N >= 2, "Minimum dimension 2");
public:
//Use the base constructors
using NdOffsetMatrixBase<T, N>::NdOffsetMatrixBase;
public:
//Access an element
//
//Returns a proxy-object to allow chained array-style indexing (N >= 2 case)
//template<typename = typename std::enable_if<N >= 2>::type, typename T1=T>
const NdOffsetMatrixProxy<T, N - 1> operator[](size_t index) const {
VTR_ASSERT_SAFE_MSG(this->dim_size(0) > 0, "Can not index into size zero dimension");
VTR_ASSERT_SAFE_MSG(this->dim_size(1) > 0, "Can not index into size zero dimension");
VTR_ASSERT_SAFE_MSG(index >= this->dim_ranges_[0].begin_index(), "Index out of range (below dimension minimum)");
VTR_ASSERT_SAFE_MSG(index < this->dim_ranges_[0].end_index(), "Index out of range (above dimension maximum)");
//The elements are stored in zero-indexed form, so adjust for any
//non-zero minimum index in this dimension
size_t effective_index = index - this->dim_ranges_[0].begin_index();
//Calculate the stride for the current dimension
size_t dim_stride = this->size() / this->dim_size(0);
//Calculate the stride for the next dimension
size_t next_dim_stride = dim_stride / this->dim_size(1);
//Peel off the first dimension
return NdOffsetMatrixProxy<T, N - 1>(this->dim_ranges_.data(), //Pass the dimension information
1, //Pass the next dimension
next_dim_stride, //Pass the stride for the next dimension
this->data_.get() + dim_stride * effective_index); //Advance to index in this dimension
}
//Access an element
//
//Returns a proxy-object to allow chained array-style indexing
NdOffsetMatrixProxy<T, N - 1> operator[](size_t index) {
//Call the const version, since returned by value don't need to worry about const
return const_cast<const NdOffsetMatrix<T, N>*>(this)->operator[](index);
}
};
template<typename T>
class NdOffsetMatrix<T, 1> : public NdOffsetMatrixBase<T, 1> {
//Specialization for N = 1
public:
//Use the base constructors
using NdOffsetMatrixBase<T, 1>::NdOffsetMatrixBase;
public:
//Access an element (immutable)
const T& operator[](size_t index) const {
VTR_ASSERT_SAFE_MSG(this->dim_size(0) > 0, "Can not index into size zero dimension");
VTR_ASSERT_SAFE_MSG(index >= this->dim_ranges_[0].begin_index(), "Index out of range (below dimension minimum)");
VTR_ASSERT_SAFE_MSG(index < this->dim_ranges_[0].end_index(), "Index out of range (above dimension maximum)");
return this->data_[index];
}
//Access an element (mutable)
T& operator[](size_t index) {
//Call the const version, and cast away const-ness
return const_cast<T&>(const_cast<const NdOffsetMatrix<T, 1>*>(this)->operator[](index));
}
};
//Convenient short forms for common NdMatricies
template<typename T>
using OffsetMatrix = NdOffsetMatrix<T, 2>;
} // namespace vtr
#endif