225 lines
10 KiB
C++
225 lines
10 KiB
C++
/***********************************************
|
|
* This file includes functions to generate
|
|
* Verilog submodules for multiplexers.
|
|
* including both fundamental submodules
|
|
* such as a branch in a multiplexer
|
|
* and the full multiplexer
|
|
**********************************************/
|
|
#include <string>
|
|
|
|
#include "util.h"
|
|
#include "vtr_assert.h"
|
|
|
|
/* Device-level header files */
|
|
#include "mux_graph.h"
|
|
#include "physical_types.h"
|
|
#include "vpr_types.h"
|
|
|
|
/* FPGA-X2P context header files */
|
|
#include "spice_types.h"
|
|
#include "fpga_x2p_naming.h"
|
|
#include "fpga_x2p_utils.h"
|
|
|
|
/* FPGA-Verilog context header files */
|
|
#include "verilog_global.h"
|
|
#include "verilog_writer_utils.h"
|
|
#include "verilog_mux.h"
|
|
|
|
/***********************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
**********************************************/
|
|
static
|
|
void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& circuit_model,
|
|
const std::string& module_name,
|
|
const MuxGraph& mux_graph) {
|
|
/* Get the tgate model */
|
|
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model);
|
|
|
|
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */
|
|
if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
|
|
VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
|
|
return;
|
|
}
|
|
|
|
/* Get model ports of tgate */
|
|
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
|
|
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
|
|
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
|
|
VTR_ASSERT(3 == tgate_input_ports.size());
|
|
VTR_ASSERT(1 == tgate_output_ports.size());
|
|
|
|
/* Make sure we have a valid file handler*/
|
|
check_file_handler(fp);
|
|
|
|
/* Generate the Verilog netlist according to the mux_graph */
|
|
/* Find out the number of inputs */
|
|
size_t num_inputs = mux_graph.num_inputs();
|
|
/* Find out the number of outputs */
|
|
size_t num_outputs = mux_graph.num_outputs();
|
|
/* Find out the number of memory bits */
|
|
size_t num_mems = mux_graph.num_memory_bits();
|
|
|
|
/* Check codes to ensure the port of Verilog netlists will match */
|
|
/* MUX graph must have only 1 output */
|
|
VTR_ASSERT(1 == num_outputs);
|
|
/* MUX graph must have only 1 level*/
|
|
VTR_ASSERT(1 == mux_graph.num_levels());
|
|
|
|
/* Print Verilog module */
|
|
print_verilog_module_definition(fp, module_name);
|
|
|
|
/* Create port information */
|
|
/* Configure each input port */
|
|
BasicPort input_port("in", num_inputs);
|
|
|
|
/* Configure each output port */
|
|
BasicPort output_port("out", num_outputs);
|
|
|
|
/* Configure each memory port */
|
|
BasicPort mem_port("mem", num_mems);
|
|
BasicPort mem_inv_port("mem_inv", num_mems);
|
|
|
|
/* TODO: Generate global ports */
|
|
for (const auto& port : tgate_global_ports) {
|
|
/* Configure each global port */
|
|
BasicPort basic_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
|
|
/* Print port */
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, basic_port) << "," << std::endl;
|
|
}
|
|
|
|
/* TODO: add a module to the Module Manager */
|
|
|
|
/* Port list */
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, input_port) << "," << std::endl;
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_OUTPUT, output_port) << "," << std::endl;
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_port) << "," << std::endl;
|
|
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_inv_port) << std::endl;
|
|
fp << ");" << std::endl;
|
|
|
|
/* Verilog Behavior description for a MUX */
|
|
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
|
|
/* Special case: only one memory, switch case is simpler
|
|
* When mem = 1, propagate input 0;
|
|
* when mem = 0, propagate input 1;
|
|
*/
|
|
/* TODO: we should output the netlist following the connections in mux_graph */
|
|
if (1 == num_mems) {
|
|
/* Transmission gates are connected to each input and also the output*/
|
|
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_0 ";
|
|
/* Dump explicit port map if required */
|
|
/* TODO: add global port support for tgate model */
|
|
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
|
|
fp << " (";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[0]" << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
|
|
fp << ");" << std::endl;
|
|
} else {
|
|
fp << " (";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
|
|
fp << ");" << std::endl;
|
|
}
|
|
/* Transmission gates are connected to each input and also the output*/
|
|
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_1 ";
|
|
/* Dump explicit port map if required */
|
|
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
|
|
fp << " (";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[1]" << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
|
|
fp << ");" << std::endl;
|
|
} else {
|
|
fp << " (";
|
|
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
|
|
fp << ");" << std::endl;
|
|
}
|
|
} else {
|
|
/* Other cases, we need to follow the rules:
|
|
* When mem[k] is enabled, switch on input[k]
|
|
* Only one memory bit is enabled!
|
|
*/
|
|
for (size_t i = 0; i < num_mems; i++) {
|
|
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_" << i << " ";
|
|
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
|
|
fp << " (";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[" << i << "]" << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << "mem[" << i << "]" << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << "mem_inv[" << i << "]" << "),";
|
|
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
|
|
fp << ");" << std::endl;
|
|
} else {
|
|
fp << " (";
|
|
fp << "in[" << i << "]";
|
|
fp << ", " << "mem[" << i << "]";
|
|
fp << ", " << "mem_inv[" << i << "]";
|
|
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
|
|
fp << ");" << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Put an end to the Verilog module */
|
|
print_verilog_module_end(fp, module_name);
|
|
}
|
|
|
|
/***********************************************
|
|
* Generate Verilog codes modeling an branch circuit
|
|
* for a multiplexer with the given size
|
|
**********************************************/
|
|
void generate_verilog_mux_branch_module(std::fstream& fp,
|
|
const CircuitLibrary& circuit_lib,
|
|
const CircuitModelId& circuit_model,
|
|
const size_t& mux_size,
|
|
const MuxGraph& mux_graph) {
|
|
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, verilog_mux_basis_posfix);
|
|
|
|
/* Multiplexers built with different technology is in different organization */
|
|
switch (circuit_lib.design_tech_type(circuit_model)) {
|
|
case SPICE_MODEL_DESIGN_CMOS:
|
|
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
|
|
generate_verilog_cmos_mux_branch_module_structural(fp, circuit_lib, circuit_model, module_name, mux_graph);
|
|
} else {
|
|
/*
|
|
dump_verilog_cmos_mux_one_basis_module(fp, mux_basis_subckt_name,
|
|
mux_size,
|
|
num_input_basis_subckt,
|
|
cur_spice_model,
|
|
special_basis);
|
|
*/
|
|
}
|
|
break;
|
|
case SPICE_MODEL_DESIGN_RRAM:
|
|
/* If requested, we can dump structural verilog for basis module */
|
|
/*
|
|
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
|
|
dump_verilog_rram_mux_one_basis_module_structural(fp, mux_basis_subckt_name,
|
|
num_input_basis_subckt,
|
|
cur_spice_model);
|
|
} else {
|
|
dump_verilog_rram_mux_one_basis_module(fp, mux_basis_subckt_name,
|
|
num_input_basis_subckt,
|
|
cur_spice_model);
|
|
}
|
|
*/
|
|
break;
|
|
default:
|
|
vpr_printf(TIO_MESSAGE_ERROR,
|
|
"(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n",
|
|
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
|
|
exit(1);
|
|
}
|
|
|
|
return;
|
|
}
|