OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/verilog/verilog_mux.cpp

225 lines
10 KiB
C++

/***********************************************
* This file includes functions to generate
* Verilog submodules for multiplexers.
* including both fundamental submodules
* such as a branch in a multiplexer
* and the full multiplexer
**********************************************/
#include <string>
#include "util.h"
#include "vtr_assert.h"
/* Device-level header files */
#include "mux_graph.h"
#include "physical_types.h"
#include "vpr_types.h"
/* FPGA-X2P context header files */
#include "spice_types.h"
#include "fpga_x2p_naming.h"
#include "fpga_x2p_utils.h"
/* FPGA-Verilog context header files */
#include "verilog_global.h"
#include "verilog_writer_utils.h"
#include "verilog_mux.h"
/***********************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
static
void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph) {
/* Get the tgate model */
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model);
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */
if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
return;
}
/* Get model ports of tgate */
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(3 == tgate_input_ports.size());
VTR_ASSERT(1 == tgate_output_ports.size());
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of inputs */
size_t num_inputs = mux_graph.num_inputs();
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 output */
VTR_ASSERT(1 == num_outputs);
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* Print Verilog module */
print_verilog_module_definition(fp, module_name);
/* Create port information */
/* Configure each input port */
BasicPort input_port("in", num_inputs);
/* Configure each output port */
BasicPort output_port("out", num_outputs);
/* Configure each memory port */
BasicPort mem_port("mem", num_mems);
BasicPort mem_inv_port("mem_inv", num_mems);
/* TODO: Generate global ports */
for (const auto& port : tgate_global_ports) {
/* Configure each global port */
BasicPort basic_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
/* Print port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, basic_port) << "," << std::endl;
}
/* TODO: add a module to the Module Manager */
/* Port list */
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, input_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_OUTPUT, output_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_inv_port) << std::endl;
fp << ");" << std::endl;
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
/* Special case: only one memory, switch case is simpler
* When mem = 1, propagate input 0;
* when mem = 0, propagate input 1;
*/
/* TODO: we should output the netlist following the connections in mux_graph */
if (1 == num_mems) {
/* Transmission gates are connected to each input and also the output*/
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_0 ";
/* Dump explicit port map if required */
/* TODO: add global port support for tgate model */
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[0]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
/* Transmission gates are connected to each input and also the output*/
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_1 ";
/* Dump explicit port map if required */
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[1]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
} else {
/* Other cases, we need to follow the rules:
* When mem[k] is enabled, switch on input[k]
* Only one memory bit is enabled!
*/
for (size_t i = 0; i < num_mems; i++) {
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_" << i << " ";
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << "mem[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << "mem_inv[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << "in[" << i << "]";
fp << ", " << "mem[" << i << "]";
fp << ", " << "mem_inv[" << i << "]";
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
}
}
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
}
/***********************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
void generate_verilog_mux_branch_module(std::fstream& fp,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph) {
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, verilog_mux_basis_posfix);
/* Multiplexers built with different technology is in different organization */
switch (circuit_lib.design_tech_type(circuit_model)) {
case SPICE_MODEL_DESIGN_CMOS:
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
generate_verilog_cmos_mux_branch_module_structural(fp, circuit_lib, circuit_model, module_name, mux_graph);
} else {
/*
dump_verilog_cmos_mux_one_basis_module(fp, mux_basis_subckt_name,
mux_size,
num_input_basis_subckt,
cur_spice_model,
special_basis);
*/
}
break;
case SPICE_MODEL_DESIGN_RRAM:
/* If requested, we can dump structural verilog for basis module */
/*
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
dump_verilog_rram_mux_one_basis_module_structural(fp, mux_basis_subckt_name,
num_input_basis_subckt,
cur_spice_model);
} else {
dump_verilog_rram_mux_one_basis_module(fp, mux_basis_subckt_name,
num_input_basis_subckt,
cur_spice_model);
}
*/
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n",
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
return;
}