OpenFPGA/yosys/techlibs/xilinx/tests/bram1_tb.v

149 lines
3.9 KiB
Verilog

module bram1_tb #(
parameter ABITS = 8, DBITS = 8, TRANSP = 0
);
reg clk;
reg [ABITS-1:0] WR_ADDR;
reg [DBITS-1:0] WR_DATA;
reg WR_EN;
reg [ABITS-1:0] RD_ADDR;
wire [DBITS-1:0] RD_DATA;
localparam [ABITS-1:0] INIT_ADDR_0 = 1234;
localparam [ABITS-1:0] INIT_ADDR_1 = 4321;
localparam [ABITS-1:0] INIT_ADDR_2 = 2**ABITS-1;
localparam [ABITS-1:0] INIT_ADDR_3 = (2**ABITS-1) / 2;
localparam [DBITS-1:0] INIT_DATA_0 = 128'h 51e152a7300e309ccb8cd06d34558f49;
localparam [DBITS-1:0] INIT_DATA_1 = 128'h 07b1fe94a530ddf3027520f9d23ab43e;
localparam [DBITS-1:0] INIT_DATA_2 = 128'h 3cedc6de43ef3f607af3193658d0eb0b;
localparam [DBITS-1:0] INIT_DATA_3 = 128'h f6bc5514a8abf1e2810df966bcc13b46;
bram1 #(
// .ABITS(ABITS),
// .DBITS(DBITS),
// .TRANSP(TRANSP)
) uut (
.clk (clk ),
.WR_ADDR(WR_ADDR),
.WR_DATA(WR_DATA),
.WR_EN (WR_EN ),
.RD_ADDR(RD_ADDR),
.RD_DATA(RD_DATA)
);
reg [63:0] xorshift64_state = 64'd88172645463325252 ^ (ABITS << 24) ^ (DBITS << 16) ^ (TRANSP << 8);
task xorshift64_next;
begin
// see page 4 of Marsaglia, George (July 2003). "Xorshift RNGs". Journal of Statistical Software 8 (14).
xorshift64_state = xorshift64_state ^ (xorshift64_state << 13);
xorshift64_state = xorshift64_state ^ (xorshift64_state >> 7);
xorshift64_state = xorshift64_state ^ (xorshift64_state << 17);
end
endtask
reg [ABITS-1:0] randaddr1;
reg [ABITS-1:0] randaddr2;
reg [ABITS-1:0] randaddr3;
function [31:0] getaddr(input [3:0] n);
begin
case (n)
0: getaddr = 0;
1: getaddr = 2**ABITS-1;
2: getaddr = 'b101 << (ABITS / 3);
3: getaddr = 'b101 << (2*ABITS / 3);
4: getaddr = 'b11011 << (ABITS / 4);
5: getaddr = 'b11011 << (2*ABITS / 4);
6: getaddr = 'b11011 << (3*ABITS / 4);
7: getaddr = randaddr1;
8: getaddr = randaddr2;
9: getaddr = randaddr3;
default: begin
getaddr = 1 << (2*n-16);
if (!getaddr) getaddr = xorshift64_state;
end
endcase
end
endfunction
reg [DBITS-1:0] memory [0:2**ABITS-1];
reg [DBITS-1:0] expected_rd, expected_rd_masked;
event error;
reg error_ind = 0;
integer i, j;
initial begin
// $dumpfile("testbench.vcd");
// $dumpvars(0, bram1_tb);
memory[INIT_ADDR_0] = INIT_DATA_0;
memory[INIT_ADDR_1] = INIT_DATA_1;
memory[INIT_ADDR_2] = INIT_DATA_2;
memory[INIT_ADDR_3] = INIT_DATA_3;
xorshift64_next;
xorshift64_next;
xorshift64_next;
xorshift64_next;
randaddr1 = xorshift64_state;
xorshift64_next;
randaddr2 = xorshift64_state;
xorshift64_next;
randaddr3 = xorshift64_state;
xorshift64_next;
clk <= 0;
for (i = 0; i < 512; i = i+1) begin
if (i == 0) begin
WR_EN <= 0;
RD_ADDR <= INIT_ADDR_0;
end else
if (i == 1) begin
WR_EN <= 0;
RD_ADDR <= INIT_ADDR_1;
end else
if (i == 2) begin
WR_EN <= 0;
RD_ADDR <= INIT_ADDR_2;
end else
if (i == 3) begin
WR_EN <= 0;
RD_ADDR <= INIT_ADDR_3;
end else begin
if (DBITS > 64)
WR_DATA <= (xorshift64_state << (DBITS-64)) ^ xorshift64_state;
else
WR_DATA <= xorshift64_state;
xorshift64_next;
WR_ADDR <= getaddr(i < 256 ? i[7:4] : xorshift64_state[63:60]);
xorshift64_next;
RD_ADDR <= getaddr(i < 256 ? i[3:0] : xorshift64_state[59:56]);
WR_EN <= xorshift64_state[55];
xorshift64_next;
end
#1; clk <= 1;
#1; clk <= 0;
if (TRANSP) begin
if (WR_EN) memory[WR_ADDR] = WR_DATA;
expected_rd = memory[RD_ADDR];
end else begin
expected_rd = memory[RD_ADDR];
if (WR_EN) memory[WR_ADDR] = WR_DATA;
end
for (j = 0; j < DBITS; j = j+1)
expected_rd_masked[j] = expected_rd[j] !== 1'bx ? expected_rd[j] : RD_DATA[j];
$display("#OUT# %3d | WA=%x WD=%x WE=%x | RA=%x RD=%x (%x) | %s", i, WR_ADDR, WR_DATA, WR_EN, RD_ADDR, RD_DATA, expected_rd, expected_rd_masked === RD_DATA ? "ok" : "ERROR");
if (expected_rd_masked !== RD_DATA) begin -> error; error_ind = ~error_ind; end
end
end
endmodule