OpenFPGA/openfpga_flow/benchmarks/iwls2005/usb_funct/rtl/usbf_pe.v

1096 lines
33 KiB
Verilog

/////////////////////////////////////////////////////////////////////
//// ////
//// Protocol Engine ////
//// Performs automatic protocol functions ////
//// ////
//// Author: Rudolf Usselmann ////
//// rudi@asics.ws ////
//// ////
//// ////
//// Downloaded from: http://www.opencores.org/cores/usb/ ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000-2003 Rudolf Usselmann ////
//// www.asics.ws ////
//// rudi@asics.ws ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer.////
//// ////
//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
//// POSSIBILITY OF SUCH DAMAGE. ////
//// ////
/////////////////////////////////////////////////////////////////////
// CVS Log
//
// $Id: usbf_pe.v,v 1.8 2003/10/17 02:36:57 rudi Exp $
//
// $Date: 2003/10/17 02:36:57 $
// $Revision: 1.8 $
// $Author: rudi $
// $Locker: $
// $State: Exp $
//
// Change History:
// $Log: usbf_pe.v,v $
// Revision 1.8 2003/10/17 02:36:57 rudi
// - Disabling bit stuffing and NRZI encoding during speed negotiation
// - Now the core can send zero size packets
// - Fixed register addresses for some of the higher endpoints
// (conversion between decimal/hex was wrong)
// - The core now does properly evaluate the function address to
// determine if the packet was intended for it.
// - Various other minor bugs and typos
//
// Revision 1.7 2001/11/04 12:22:45 rudi
//
// - Fixed previous fix (brocke something else ...)
// - Majore Synthesis cleanup
//
// Revision 1.6 2001/11/03 03:26:22 rudi
//
// - Fixed several interrupt and error condition reporting bugs
//
// Revision 1.5 2001/09/24 01:15:28 rudi
//
// Changed reset to be active high async.
//
// Revision 1.4 2001/09/23 08:39:33 rudi
//
// Renamed DEBUG and VERBOSE_DEBUG to USBF_DEBUG and USBF_VERBOSE_DEBUG ...
//
// Revision 1.3 2001/09/13 13:14:02 rudi
//
// Fixed a problem that would sometimes prevent the core to come out of
// reset and immediately be operational ...
//
// Revision 1.2 2001/08/10 08:48:33 rudi
//
// - Changed IO names to be more clear.
// - Uniquifyed define names to be core specific.
//
// Revision 1.1 2001/08/03 05:30:09 rudi
//
//
// 1) Reorganized directory structure
//
// Revision 1.2 2001/03/31 13:00:51 rudi
//
// - Added Core configuration
// - Added handling of OUT packets less than MAX_PL_SZ in DMA mode
// - Modified WISHBONE interface and sync logic
// - Moved SSRAM outside the core (added interface)
// - Many small bug fixes ...
//
// Revision 1.0 2001/03/07 09:17:12 rudi
//
//
// Changed all revisions to revision 1.0. This is because OpenCores CVS
// interface could not handle the original '0.1' revision ....
//
// Revision 0.2 2001/03/07 09:08:13 rudi
//
// Added USB control signaling (Line Status) block. Fixed some minor
// typos, added resume bit and signal.
//
// Revision 0.1.0.1 2001/02/28 08:11:07 rudi
// Initial Release
//
//
`include "usbf_defines.v"
module usbf_pe( clk, rst,
// UTMI Interfaces
tx_valid, rx_active,
// PID Information
pid_OUT, pid_IN, pid_SOF, pid_SETUP,
pid_DATA0, pid_DATA1, pid_DATA2, pid_MDATA,
pid_ACK, pid_NACK, pid_STALL, pid_NYET,
pid_PRE, pid_ERR, pid_SPLIT, pid_PING,
// Speed Mode
mode_hs,
// Token Information
token_valid, crc5_err,
// Receive Data Output
rx_data_valid, rx_data_done, crc16_err,
// Packet Assembler Interface
send_token, token_pid_sel,
data_pid_sel, send_zero_length,
// IDMA Interface
rx_dma_en, tx_dma_en,
abort, idma_done,
adr, size, buf_size,
sizu_c, dma_en,
// Register File Interface
fsel, idin,
dma_in_buf_sz1, dma_out_buf_avail,
ep_sel, match, nse_err,
buf0_rl, buf0_set, buf1_set,
uc_bsel_set, uc_dpd_set,
int_buf1_set, int_buf0_set, int_upid_set,
int_crc16_set, int_to_set, int_seqerr_set,
out_to_small,
csr, buf0, buf1
);
parameter SSRAM_HADR = 14;
input clk, rst;
input tx_valid, rx_active;
// Packet Disassembler Interface
// Decoded PIDs (used when token_valid is asserted)
input pid_OUT, pid_IN, pid_SOF, pid_SETUP;
input pid_DATA0, pid_DATA1, pid_DATA2, pid_MDATA;
input pid_ACK, pid_NACK, pid_STALL, pid_NYET;
input pid_PRE, pid_ERR, pid_SPLIT, pid_PING;
input mode_hs;
input token_valid; // Token is valid
input crc5_err; // Token crc5 error
input rx_data_valid; // Data on rx_data_st is valid
input rx_data_done; // Indicates end of a transfer
input crc16_err; // Data packet CRC 16 error
// Packet Assembler Interface
output send_token;
output [1:0] token_pid_sel;
output [1:0] data_pid_sel;
output send_zero_length;
// IDMA Interface
output rx_dma_en; // Allows the data to be stored
output tx_dma_en; // Allows for data to be retrieved
output abort; // Abort Transfer (time_out, crc_err or rx_error)
input idma_done; // DMA is done indicator
output [SSRAM_HADR + 2:0] adr; // Byte Address
output [13:0] size; // Size in bytes
output [13:0] buf_size; // Actual buffer size
input [10:0] sizu_c; // Up and Down counting size registers, used to update
output dma_en; // USB external DMA mode enabled
// Register File interface
input fsel; // This function is selected
output [31:0] idin; // Data Output
input [3:0] ep_sel; // Endpoint Number Input
input match; // Endpoint Matched
output nse_err; // no such endpoint error
input dma_in_buf_sz1, dma_out_buf_avail;
output buf0_rl; // Reload Buf 0 with original values
output buf0_set; // Write to buf 0
output buf1_set; // Write to buf 1
output uc_bsel_set; // Write to the uc_bsel field
output uc_dpd_set; // Write to the uc_dpd field
output int_buf1_set; // Set buf1 full/empty interrupt
output int_buf0_set; // Set buf0 full/empty interrupt
output int_upid_set; // Set unsupported PID interrupt
output int_crc16_set; // Set CRC16 error interrupt
output int_to_set; // Set time out interrupt
output int_seqerr_set; // Set PID sequence error interrupt
output out_to_small; // OUT packet was to small for DMA operation
input [31:0] csr; // Internal CSR Output
input [31:0] buf0; // Internal Buf 0 Output
input [31:0] buf1; // Internal Buf 1 Output
///////////////////////////////////////////////////////////////////
//
// Local Wires and Registers
//
// tx token decoding
parameter ACK = 0,
NACK = 1,
STALL = 2,
NYET = 3;
// State decoding
parameter [9:0] // synopsys enum state
IDLE = 10'b000000_0001,
TOKEN = 10'b000000_0010,
IN = 10'b000000_0100,
IN2 = 10'b000000_1000,
OUT = 10'b000001_0000,
OUT2A = 10'b000010_0000,
OUT2B = 10'b000100_0000,
UPDATEW = 10'b001000_0000,
UPDATE = 10'b010000_0000,
UPDATE2 = 10'b100000_0000;
reg [1:0] token_pid_sel;
reg [1:0] token_pid_sel_d;
reg send_token;
reg send_token_d;
reg rx_dma_en, tx_dma_en;
reg int_seqerr_set_d;
reg int_seqerr_set;
reg int_upid_set;
reg match_r;
// Endpoint Decoding
wire IN_ep, OUT_ep, CTRL_ep; // Endpoint Types
wire txfr_iso, txfr_bulk; // Transfer Types
wire ep_disabled, ep_stall; // Endpoint forced conditions
wire lrg_ok, sml_ok; // Packet size acceptance
wire [1:0] tr_fr; // Number of transfers per micro-frame
wire [10:0] max_pl_sz; // Max payload size
wire [1:0] uc_dpd, uc_bsel;
// Buffer checks
wire buf_sel;
reg buf0_na, buf1_na;
wire [SSRAM_HADR + 2:0] buf0_adr, buf1_adr;
wire [13:0] buf0_sz, buf1_sz;
reg [9:0] /* synopsys enum state */ state, next_state;
// synopsys state_vector state
// PID next and current decoders
reg [1:0] next_dpid;
reg [1:0] this_dpid;
reg pid_seq_err;
wire [1:0] tr_fr_d;
wire [13:0] size_next;
wire buf_smaller;
reg [SSRAM_HADR + 2:0] adr;
reg [13:0] new_size;
reg [13:0] new_sizeb;
reg buffer_full;
reg buffer_empty;
wire [SSRAM_HADR + 2:0] new_adr;
reg buffer_done;
reg no_bufs0, no_bufs1;
wire no_bufs;
// After sending Data in response to an IN token from host, the
// host must reply with an ack. The host has XXXnS to reply.
// "rx_ack_to" indicates when this time has expired.
// rx_ack_to_clr, clears the timer
reg rx_ack_to_clr;
reg rx_ack_to_clr_d;
reg rx_ack_to;
reg [7:0] rx_ack_to_cnt;
// After sending a OUT token the host must send a data packet.
// The host has XX nS to send the packet. "tx_data_to" indicates
// when this time has expired.
// tx_data_to_clr, clears the timer
wire tx_data_to_clr;
reg tx_data_to;
reg [7:0] tx_data_to_cnt;
wire [7:0] rx_ack_to_val, tx_data_to_val;
reg int_set_en;
wire [1:0] next_bsel;
reg buf_set_d;
reg uc_stat_set_d;
reg [31:0] idin;
reg buf0_set, buf1_set;
reg uc_bsel_set;
reg uc_dpd_set;
reg buf0_rl_d;
reg buf0_rl;
wire no_buf0_dma;
reg buf0_st_max;
reg buf1_st_max;
reg [SSRAM_HADR + 2:0] adr_r;
reg [13:0] size_next_r;
reg in_token;
reg out_token;
reg setup_token;
wire in_op, out_op; // Indicate a IN or OUT operation
reg to_small; // Indicates a "to small packer" error
reg to_large; // Indicates a "to large packer" error
reg buffer_overflow;
reg [1:0] allow_pid;
reg nse_err;
reg out_to_small, out_to_small_r;
reg abort;
reg buf0_not_aloc, buf1_not_aloc;
reg send_zero_length;
///////////////////////////////////////////////////////////////////
//
// Misc Logic
//
// Endpoint/CSR Decoding
assign IN_ep = csr[27:26]==2'b01;
assign OUT_ep = csr[27:26]==2'b10;
assign CTRL_ep = csr[27:26]==2'b00;
assign txfr_iso = csr[25:24]==2'b01;
assign txfr_bulk = csr[25:24]==2'b10;
assign ep_disabled = csr[23:22]==2'b01;
assign ep_stall = csr[23:22]==2'b10;
assign lrg_ok = csr[17];
assign sml_ok = csr[16];
assign dma_en = csr[15] & !CTRL_ep;
assign tr_fr = csr[12:11];
assign max_pl_sz = csr[10:0];
assign uc_dpd = csr[29:28];
assign uc_bsel = csr[31:30];
// Buffer decoding and allocation checks
assign buf0_adr = buf0[SSRAM_HADR + 2:0];
assign buf1_adr = buf1[SSRAM_HADR + 2:0];
assign buf0_sz = buf0[30:17];
assign buf1_sz = buf1[30:17];
// Buffers Not Available
always @(posedge clk)
buf0_na <= buf0[31] | ( &buf0_adr );
always @(posedge clk)
buf1_na <= buf1[31] | ( &buf1_adr );
// Buffer Not Allocated
always @(posedge clk)
buf0_not_aloc <= &buf0_adr;
always @(posedge clk)
buf1_not_aloc <= &buf1_adr;
always @(posedge clk)
match_r <= match;
// No Such Endpoint Indicator
always @(posedge clk)
nse_err <= token_valid & (pid_OUT | pid_IN | pid_SETUP) & !match;
always @(posedge clk)
send_token <= send_token_d;
always @(posedge clk)
token_pid_sel <= token_pid_sel_d;
///////////////////////////////////////////////////////////////////
//
// Data Pid Sequencer
//
assign tr_fr_d = mode_hs ? tr_fr : 2'h0;
always @(posedge clk) // tr/mf:ep/type:tr/type:last dpd
casex({tr_fr_d,csr[27:26],csr[25:24],uc_dpd}) // synopsys full_case parallel_case
8'b0?_01_01_??: next_dpid <= 2'b00; // ISO txfr. IN, 1 tr/mf
8'b10_01_01_?0: next_dpid <= 2'b01; // ISO txfr. IN, 2 tr/mf
8'b10_01_01_?1: next_dpid <= 2'b00; // ISO txfr. IN, 2 tr/mf
8'b11_01_01_00: next_dpid <= 2'b01; // ISO txfr. IN, 3 tr/mf
8'b11_01_01_01: next_dpid <= 2'b10; // ISO txfr. IN, 3 tr/mf
8'b11_01_01_10: next_dpid <= 2'b00; // ISO txfr. IN, 3 tr/mf
8'b0?_10_01_??: next_dpid <= 2'b00; // ISO txfr. OUT, 1 tr/mf
8'b10_10_01_??: // ISO txfr. OUT, 2 tr/mf
begin // Resynchronize in case of PID error
case({pid_MDATA, pid_DATA1}) // synopsys full_case parallel_case
2'b10: next_dpid <= 2'b01;
2'b01: next_dpid <= 2'b00;
endcase
end
8'b11_10_01_00: // ISO txfr. OUT, 3 tr/mf
begin // Resynchronize in case of PID error
case({pid_MDATA, pid_DATA2}) // synopsys full_case parallel_case
2'b10: next_dpid <= 2'b01;
2'b01: next_dpid <= 2'b00;
endcase
end
8'b11_10_01_01: // ISO txfr. OUT, 3 tr/mf
begin // Resynchronize in case of PID error
case({pid_MDATA, pid_DATA2}) // synopsys full_case parallel_case
2'b10: next_dpid <= 2'b10;
2'b01: next_dpid <= 2'b00;
endcase
end
8'b11_10_01_10: // ISO txfr. OUT, 3 tr/mf
begin // Resynchronize in case of PID error
case({pid_MDATA, pid_DATA2}) // synopsys full_case parallel_case
2'b10: next_dpid <= 2'b01;
2'b01: next_dpid <= 2'b00;
endcase
end
8'b??_01_00_?0, // IN/OUT endpoint only
8'b??_10_00_?0: next_dpid <= 2'b01; // INT transfers
8'b??_01_00_?1, // IN/OUT endpoint only
8'b??_10_00_?1: next_dpid <= 2'b00; // INT transfers
8'b??_01_10_?0, // IN/OUT endpoint only
8'b??_10_10_?0: next_dpid <= 2'b01; // BULK transfers
8'b??_01_10_?1, // IN/OUT endpoint only
8'b??_10_10_?1: next_dpid <= 2'b00; // BULK transfers
8'b??_00_??_??: // CTRL Endpoint
casex({setup_token, in_op, out_op, uc_dpd}) // synopsys full_case parallel_case
5'b1_??_??: next_dpid <= 2'b11; // SETUP operation
5'b0_10_0?: next_dpid <= 2'b11; // IN operation
5'b0_10_1?: next_dpid <= 2'b01; // IN operation
5'b0_01_?0: next_dpid <= 2'b11; // OUT operation
5'b0_01_?1: next_dpid <= 2'b10; // OUT operation
endcase
endcase
// Current PID decoder
// Allow any PID for ISO. transfers when mode full speed or tr_fr is zero
always @(pid_DATA0 or pid_DATA1 or pid_DATA2 or pid_MDATA)
case({pid_DATA0, pid_DATA1, pid_DATA2, pid_MDATA} ) // synopsys full_case parallel_case
4'b1000: allow_pid = 2'b00;
4'b0100: allow_pid = 2'b01;
4'b0010: allow_pid = 2'b10;
4'b0001: allow_pid = 2'b11;
endcase
always @(posedge clk) // tf/mf:ep/type:tr/type:last dpd
casex({tr_fr_d,csr[27:26],csr[25:24],uc_dpd}) // synopsys full_case parallel_case
8'b0?_01_01_??: this_dpid <= 2'b00; // ISO txfr. IN, 1 tr/mf
8'b10_01_01_?0: this_dpid <= 2'b01; // ISO txfr. IN, 2 tr/mf
8'b10_01_01_?1: this_dpid <= 2'b00; // ISO txfr. IN, 2 tr/mf
8'b11_01_01_00: this_dpid <= 2'b10; // ISO txfr. IN, 3 tr/mf
8'b11_01_01_01: this_dpid <= 2'b01; // ISO txfr. IN, 3 tr/mf
8'b11_01_01_10: this_dpid <= 2'b00; // ISO txfr. IN, 3 tr/mf
8'b00_10_01_??: this_dpid <= allow_pid; // ISO txfr. OUT, 0 tr/mf
8'b01_10_01_??: this_dpid <= 2'b00; // ISO txfr. OUT, 1 tr/mf
8'b10_10_01_?0: this_dpid <= 2'b11; // ISO txfr. OUT, 2 tr/mf
8'b10_10_01_?1: this_dpid <= 2'b01; // ISO txfr. OUT, 2 tr/mf
8'b11_10_01_00: this_dpid <= 2'b11; // ISO txfr. OUT, 3 tr/mf
8'b11_10_01_01: this_dpid <= 2'b11; // ISO txfr. OUT, 3 tr/mf
8'b11_10_01_10: this_dpid <= 2'b10; // ISO txfr. OUT, 3 tr/mf
8'b??_01_00_?0, // IN/OUT endpoint only
8'b??_10_00_?0: this_dpid <= 2'b00; // INT transfers
8'b??_01_00_?1, // IN/OUT endpoint only
8'b??_10_00_?1: this_dpid <= 2'b01; // INT transfers
8'b??_01_10_?0, // IN/OUT endpoint only
8'b??_10_10_?0: this_dpid <= 2'b00; // BULK transfers
8'b??_01_10_?1, // IN/OUT endpoint only
8'b??_10_10_?1: this_dpid <= 2'b01; // BULK transfers
8'b??_00_??_??: // CTRL Endpoint
casex({setup_token,in_op, out_op, uc_dpd}) // synopsys full_case parallel_case
5'b1_??_??: this_dpid <= 2'b00; // SETUP operation
5'b0_10_0?: this_dpid <= 2'b00; // IN operation
5'b0_10_1?: this_dpid <= 2'b01; // IN operation
5'b0_01_?0: this_dpid <= 2'b00; // OUT operation
5'b0_01_?1: this_dpid <= 2'b01; // OUT operation
endcase
endcase
// Assign PID for outgoing packets
assign data_pid_sel = this_dpid;
// Verify PID for incoming data packets
always @(posedge clk)
pid_seq_err <= !( (this_dpid==2'b00 & pid_DATA0) |
(this_dpid==2'b01 & pid_DATA1) |
(this_dpid==2'b10 & pid_DATA2) |
(this_dpid==2'b11 & pid_MDATA) );
///////////////////////////////////////////////////////////////////
//
// IDMA Setup & src/dst buffer select
//
// For Control endpoints things are different:
// buffer0 is used for OUT (incoming) data packets
// buffer1 is used for IN (outgoing) data packets
// Keep track of last token for control endpoints
`ifdef USBF_ASYNC_RESET
always @(posedge clk or negedge rst)
`else
always @(posedge clk)
`endif
if(!rst) in_token <= 1'b0;
else
if(pid_IN) in_token <= 1'b1;
else
if(pid_OUT || pid_SETUP) in_token <= 1'b0;
`ifdef USBF_ASYNC_RESET
always @(posedge clk or negedge rst)
`else
always @(posedge clk)
`endif
if(!rst) out_token <= 1'b0;
else
if(pid_OUT || pid_SETUP) out_token <= 1'b1;
else
if(pid_IN) out_token <= 1'b0;
`ifdef USBF_ASYNC_RESET
always @(posedge clk or negedge rst)
`else
always @(posedge clk)
`endif
if(!rst) setup_token <= 1'b0;
else
if(pid_SETUP) setup_token <= 1'b1;
else
if(pid_OUT || pid_IN) setup_token <= 1'b0;
// Indicates if we are performing an IN operation
assign in_op = IN_ep | (CTRL_ep & in_token);
// Indicates if we are performing an OUT operation
assign out_op = OUT_ep | (CTRL_ep & out_token);
// Select buffer: buf_sel==0 buffer0; buf_sel==1 buffer1
assign buf_sel = dma_en ? 1'b0 : CTRL_ep ? in_token : ((uc_bsel[0] | buf0_na) & !buf1_na);
// Select Address for IDMA
always @(posedge clk)
adr <= buf_sel ? buf1_adr : buf0_adr;
// Size from Buffer
assign buf_size = buf_sel ? buf1_sz : buf0_sz;
// Determine which is smaller: buffer or max_pl_sz
assign buf_smaller = buf_size < {3'h0, max_pl_sz};
// Determine actual size for this transfer (for IDMA) IN endpoint only
// (OUT endpoint uses sizeu_c from IDMA)
assign size_next = buf_smaller ? buf_size : max_pl_sz;
assign size = size_next; // "size" is an output for IDMA
// Buffer Full (only for OUT endpoints)
// Indicates that there is not enough space in the buffer for one
// more max_pl_sz packet
always @(posedge clk)
buffer_full <= new_size < {3'h0, max_pl_sz};
// Buffer Empty (only for IN endpoints)
// Indicates that there are zero bytes left in the buffer
always @(posedge clk)
buffer_empty <= (new_size == 14'h0);
// Joint buffer full/empty flag This is the "USED" flag
always @(posedge clk)
buffer_done <= in_op ? buffer_empty : buffer_full;
// No More buffer space at all (For high speed out - issue NYET)
assign no_buf0_dma = dma_en &
((IN_ep & !dma_in_buf_sz1) | (OUT_ep & !dma_out_buf_avail));
always @(posedge clk)
buf0_st_max <= (buf0_sz < {3'h0, max_pl_sz});
always @(posedge clk)
buf1_st_max <= (buf1_sz < {3'h0, max_pl_sz});
always @(posedge clk)
no_bufs0 <= buf0_na | no_buf0_dma |
(buf_sel ? buf0_st_max : (buffer_full & !dma_en));
always @(posedge clk)
no_bufs1 <= buf1_na | (buf_sel ? buffer_full : buf1_st_max);
assign no_bufs = no_bufs0 & no_bufs1;
// New Size (to be written to register file)
always @(posedge clk)
new_sizeb <= (out_op && dma_en) ? max_pl_sz : (in_op ? size_next : sizu_c);
always @(posedge clk)
new_size <= buf_size - new_sizeb;
// New Buffer Address (to be written to register file)
always @(posedge clk)
adr_r <= adr;
always @(posedge clk)
size_next_r <= size_next;
assign new_adr = adr_r[SSRAM_HADR + 2:0] +
((out_op && dma_en) ? {{SSRAM_HADR + 2-10{1'b0}}, max_pl_sz[10:0]} :
(in_op ? {{SSRAM_HADR + 2-13{1'b0}}, size_next_r[13:0] } :
{ {SSRAM_HADR + 2-10{1'b0}}, sizu_c[10:0]}));
// Buffer Overflow
always @(posedge clk)
buffer_overflow <= ( {3'h0, sizu_c} > buf_size) & rx_data_valid;
// OUT packet smaller than MAX_PL_SZ in DMA operation
always @(posedge clk)
out_to_small_r <= uc_stat_set_d & out_op & dma_en & (sizu_c != max_pl_sz);
always @(posedge clk)
out_to_small <= out_to_small_r;
///////////////////////////////////////////////////////////////////
//
// Determine if packet is to small or to large
// This is used to NACK and ignore packet for OUT endpoints
//
always @(posedge clk)
to_small <= !sml_ok & (sizu_c < max_pl_sz);
always @(posedge clk)
to_large <= !lrg_ok & (sizu_c > max_pl_sz);
///////////////////////////////////////////////////////////////////
//
// Register File Update Logic
//
assign next_bsel = dma_en ? 2'h0 : buffer_done ? uc_bsel + 2'h1 : uc_bsel; // FIX_ME
always @(posedge clk)
idin[31:17] <= out_to_small_r ? {4'h0,sizu_c} : {buffer_done,new_size};
always @(posedge clk)
idin[SSRAM_HADR + 2:4] <= out_to_small_r ? buf0_adr[SSRAM_HADR + 2:4] :
new_adr[SSRAM_HADR + 2:4];
always @(posedge clk)
if(buf_set_d) idin[3:0] <= new_adr[3:0];
else
if(out_to_small_r) idin[3:0] <= buf0_adr[3:0];
else idin[3:0] <= {next_dpid, next_bsel};
always @(posedge clk)
buf0_set <= !buf_sel & buf_set_d;
always @(posedge clk)
buf1_set <= buf_sel & buf_set_d;
always @(posedge clk)
uc_bsel_set <= uc_stat_set_d;
always @(posedge clk)
uc_dpd_set <= uc_stat_set_d;
always @(posedge clk)
buf0_rl <= buf0_rl_d;
// Abort signal
always @(posedge clk)
abort <= buffer_overflow | (match & (state != IDLE) ) | (match_r & to_large);
///////////////////////////////////////////////////////////////////
//
// TIME OUT TIMERS
//
// After sending Data in response to an IN token from host, the
// host must reply with an ack. The host has 622nS in Full Speed
// mode and 400nS in High Speed mode to reply.
// "rx_ack_to" indicates when this time has expired.
// rx_ack_to_clr, clears the timer
always @(posedge clk)
rx_ack_to_clr <= tx_valid | rx_ack_to_clr_d;
always @(posedge clk)
if(rx_ack_to_clr) rx_ack_to_cnt <= 8'h0;
else rx_ack_to_cnt <= rx_ack_to_cnt + 8'h1;
always @(posedge clk)
rx_ack_to <= (rx_ack_to_cnt == rx_ack_to_val);
assign rx_ack_to_val = mode_hs ? `USBF_RX_ACK_TO_VAL_HS : `USBF_RX_ACK_TO_VAL_FS;
// After sending a OUT token the host must send a data packet.
// The host has 622nS in Full Speed mode and 400nS in High Speed
// mode to send the data packet.
// "tx_data_to" indicates when this time has expired.
// "tx_data_to_clr" clears the timer
assign tx_data_to_clr = rx_active;
always @(posedge clk)
if(tx_data_to_clr) tx_data_to_cnt <= 8'h0;
else tx_data_to_cnt <= tx_data_to_cnt + 8'h1;
always @(posedge clk)
tx_data_to <= (tx_data_to_cnt == tx_data_to_val);
assign tx_data_to_val = mode_hs ? `USBF_TX_DATA_TO_VAL_HS : `USBF_TX_DATA_TO_VAL_FS;
///////////////////////////////////////////////////////////////////
//
// Interrupts
//
reg pid_OUT_r, pid_IN_r, pid_PING_r, pid_SETUP_r;
assign int_buf1_set = !buf_sel & buffer_done & int_set_en & !buf1_not_aloc;
assign int_buf0_set = buf_sel & buffer_done & int_set_en & !buf0_not_aloc;
always @(posedge clk)
pid_OUT_r <= pid_OUT;
always @(posedge clk)
pid_IN_r <= pid_IN;
always @(posedge clk)
pid_PING_r <= pid_PING;
always @(posedge clk)
pid_SETUP_r <= pid_SETUP;
always @(posedge clk)
int_upid_set <= match_r & !pid_SOF & (
( OUT_ep & !(pid_OUT_r | pid_PING_r)) |
( IN_ep & !pid_IN_r) |
(CTRL_ep & !(pid_IN_r | pid_OUT_r | pid_PING_r | pid_SETUP_r))
);
assign int_to_set = ((state == IN2) & rx_ack_to) | ((state == OUT) & tx_data_to);
assign int_crc16_set = rx_data_done & crc16_err;
always @(posedge clk)
int_seqerr_set <= int_seqerr_set_d;
///////////////////////////////////////////////////////////////////
//
// Main Protocol State Machine
//
`ifdef USBF_ASYNC_RESET
always @(posedge clk or negedge rst)
`else
always @(posedge clk)
`endif
if(!rst) state <= IDLE;
else
if(match) state <= IDLE;
else state <= next_state;
always @(state or ep_stall or buf0_na or buf1_na or
pid_seq_err or idma_done or token_valid or pid_ACK or rx_data_done or
tx_data_to or crc16_err or ep_disabled or no_bufs or mode_hs
or dma_en or rx_ack_to or pid_PING or txfr_iso or to_small or to_large or
CTRL_ep or pid_IN or pid_OUT or IN_ep or OUT_ep or pid_SETUP or pid_SOF
or match_r or abort or buffer_done or no_buf0_dma or max_pl_sz)
begin
next_state = state;
token_pid_sel_d = ACK;
send_token_d = 1'b0;
rx_dma_en = 1'b0;
tx_dma_en = 1'b0;
buf_set_d = 1'b0;
uc_stat_set_d = 1'b0;
buf0_rl_d = 1'b0;
int_set_en = 1'b0;
rx_ack_to_clr_d = 1'b1;
int_seqerr_set_d = 1'b0;
send_zero_length = 1'b0;
case(state) // synopsys full_case parallel_case
IDLE:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state IDLE (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(rst && match_r && !ep_disabled && !pid_SOF)
begin
if(match_r === 1'bx) $display("ERROR: IDLE: match_r is unknown. (%t)", $time);
if(ep_disabled === 1'bx)$display("ERROR: IDLE: ep_disabled is unknown. (%t)", $time);
if(pid_SOF === 1'bx) $display("ERROR: IDLE: pid_SOF is unknown. (%t)", $time);
if(ep_stall === 1'bx) $display("ERROR: IDLE: ep_stall is unknown. (%t)", $time);
if(buf0_na === 1'bx) $display("ERROR: IDLE: buf0_na is unknown. (%t)", $time);
if(buf1_na === 1'bx) $display("ERROR: IDLE: buf1_na is unknown. (%t)", $time);
if(no_buf0_dma === 1'bx)$display("ERROR: IDLE: no_buf0_dma is unknown. (%t)", $time);
if(CTRL_ep === 1'bx) $display("ERROR: IDLE: CTRL_ep is unknown. (%t)", $time);
if(pid_IN === 1'bx) $display("ERROR: IDLE: pid_IN is unknown. (%t)", $time);
if(pid_OUT === 1'bx) $display("ERROR: IDLE: pid_OUT is unknown. (%t)", $time);
if(pid_SETUP === 1'bx) $display("ERROR: IDLE: pid_SETUP is unknown. (%t)", $time);
if(pid_PING === 1'bx) $display("ERROR: IDLE: pid_PING is unknown. (%t)", $time);
if(mode_hs === 1'bx) $display("ERROR: IDLE: mode_hs is unknown. (%t)", $time);
if(IN_ep === 1'bx) $display("ERROR: IDLE: IN_ep is unknown. (%t)", $time);
if(OUT_ep === 1'bx) $display("ERROR: IDLE: OUT_ep is unknown. (%t)", $time);
end
`endif
// synopsys translate_on
if(match_r && !ep_disabled && !pid_SOF)
begin
if(ep_stall) // Halt Forced send STALL
begin
token_pid_sel_d = STALL;
send_token_d = 1'b1;
next_state = TOKEN;
end
else
if( (buf0_na && buf1_na) || no_buf0_dma ||
(CTRL_ep && pid_IN && buf1_na) ||
(CTRL_ep && pid_OUT && buf0_na)
)
begin // No buffers send NAK
token_pid_sel_d = NACK;
send_token_d = 1'b1;
next_state = TOKEN;
end
else
if(pid_PING && mode_hs)
begin
token_pid_sel_d = ACK;
send_token_d = 1'b1;
next_state = TOKEN;
end
else
if(IN_ep || (CTRL_ep && pid_IN))
begin
if(max_pl_sz == 11'h0) send_zero_length = 1'b1;
tx_dma_en = 1'b1;
next_state = IN;
end
else
if(OUT_ep || (CTRL_ep && (pid_OUT || pid_SETUP)))
begin
rx_dma_en = 1'b1;
next_state = OUT;
end
end
end
TOKEN:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state TOKEN (%t)", $time);
`endif
// synopsys translate_on
next_state = IDLE;
end
IN:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state IN (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(idma_done === 1'bx) $display("ERROR: IN: idma_done is unknown. (%t)", $time);
if(txfr_iso === 1'bx) $display("ERROR: IN: txfr_iso is unknown. (%t)", $time);
`endif
// synopsys translate_on
rx_ack_to_clr_d = 1'b0;
if(idma_done)
begin
if(txfr_iso) next_state = UPDATE;
else next_state = IN2;
end
end
IN2:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state IN2 (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(rx_ack_to === 1'bx) $display("ERROR: IN2: rx_ack_to is unknown. (%t)", $time);
if(token_valid === 1'bx)$display("ERROR: IN2: token_valid is unknown. (%t)", $time);
if(pid_ACK === 1'bx) $display("ERROR: IN2: pid_ACK is unknown. (%t)", $time);
`endif
// synopsys translate_on
rx_ack_to_clr_d = 1'b0;
// Wait for ACK from HOST or Timeout
if(rx_ack_to) next_state = IDLE;
else
if(token_valid && pid_ACK)
begin
next_state = UPDATE;
end
end
OUT:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state OUT (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(tx_data_to === 1'bx) $display("ERROR: OUT: tx_data_to is unknown. (%t)", $time);
if(crc16_err === 1'bx) $display("ERROR: OUT: crc16_err is unknown. (%t)", $time);
if(abort === 1'bx) $display("ERROR: OUT: abort is unknown. (%t)", $time);
if(rx_data_done === 1'bx)$display("ERROR: OUT: rx_data_done is unknown. (%t)", $time);
if(txfr_iso === 1'bx) $display("ERROR: OUT: txfr_iso is unknown. (%t)", $time);
if(pid_seq_err === 1'bx)$display("ERROR: OUT: rx_data_done is unknown. (%t)", $time);
`endif
// synopsys translate_on
if(tx_data_to || crc16_err || abort )
next_state = IDLE;
else
if(rx_data_done)
begin // Send Ack
if(txfr_iso)
begin
if(pid_seq_err) int_seqerr_set_d = 1'b1;
next_state = UPDATEW;
end
else next_state = OUT2A;
end
end
OUT2A:
begin // This is a delay State to NACK to small or to
// large packets. this state could be skipped
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state OUT2A (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(abort === 1'bx) $display("ERROR: OUT2A: abort is unknown. (%t)", $time);
`endif
// synopsys translate_on
if(abort) next_state = IDLE;
else next_state = OUT2B;
end
OUT2B:
begin // Send ACK/NACK/NYET
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state OUT2B (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(abort === 1'bx) $display("ERROR: OUT2B: abort is unknown. (%t)", $time);
if(to_small === 1'bx) $display("ERROR: OUT2B: to_small is unknown. (%t)", $time);
if(to_large === 1'bx) $display("ERROR: OUT2B: to_large is unknown. (%t)", $time);
if(pid_seq_err === 1'bx)$display("ERROR: OUT2B: rx_data_done is unknown. (%t)", $time);
if(mode_hs === 1'bx) $display("ERROR: OUT2B: mode_hs is unknown. (%t)", $time);
if(no_bufs === 1'bx) $display("ERROR: OUT2B: no_bufs is unknown. (%t)", $time);
`endif
// synopsys translate_on
if(abort) next_state = IDLE;
else
if(to_small || to_large)
begin
token_pid_sel_d = NACK;
next_state = IDLE;
end
else
if(pid_seq_err)
begin
token_pid_sel_d = ACK;
send_token_d = 1'b1;
next_state = IDLE;
end
else
begin
if(mode_hs && no_bufs) token_pid_sel_d = NYET;
else token_pid_sel_d = ACK;
send_token_d = 1'b1;
next_state = UPDATE;
end
end
UPDATEW:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state UPDATEW (%t)", $time);
`endif
// synopsys translate_on
next_state = UPDATE;
end
UPDATE:
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state UPDATE (%t)", $time);
`endif
`ifdef USBF_DEBUG
if(buffer_done === 1'bx) $display("ERROR: UPDATE: buffer_done is unknown. (%t)", $time);
if(dma_en === 1'bx) $display("ERROR: UPDATE: dma_en is unknown. (%t)", $time);
`endif
// synopsys translate_on
// Interrupts
int_set_en = 1'b1;
// Buffer (used, size, adr) set or reload
if(buffer_done && dma_en)
begin
buf0_rl_d = 1'b1;
end
else
begin
buf_set_d = 1'b1;
end
next_state = UPDATE2;
end
UPDATE2: // Update Register File & state
begin
// synopsys translate_off
`ifdef USBF_VERBOSE_DEBUG
$display("PE: Entered state UPDATE2 (%t)", $time);
`endif
// synopsys translate_on
// pid sequence & buffer usage
uc_stat_set_d = 1'b1;
next_state = IDLE;
end
endcase
end
endmodule