OpenFPGA/openfpga_flow/benchmarks/iwls2005/spi/rtl/spi_top.v

288 lines
12 KiB
Verilog

//////////////////////////////////////////////////////////////////////
//// ////
//// spi_top.v ////
//// ////
//// This file is part of the SPI IP core project ////
//// http://www.opencores.org/projects/spi/ ////
//// ////
//// Author(s): ////
//// - Simon Srot (simons@opencores.org) ////
//// ////
//// All additional information is avaliable in the Readme.txt ////
//// file. ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2002 Authors ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`include "spi_defines.v"
`include "timescale.v"
module spi_top
(
// Wishbone signals
wb_clk_i, wb_rst_i, wb_adr_i, wb_dat_i, wb_dat_o, wb_sel_i,
wb_we_i, wb_stb_i, wb_cyc_i, wb_ack_o, wb_err_o, wb_int_o,
// SPI signals
ss_pad_o, sclk_pad_o, mosi_pad_o, miso_pad_i
);
parameter Tp = 1;
// Wishbone signals
input wb_clk_i; // master clock input
input wb_rst_i; // synchronous active high reset
input [4:0] wb_adr_i; // lower address bits
input [32-1:0] wb_dat_i; // databus input
output [32-1:0] wb_dat_o; // databus output
input [3:0] wb_sel_i; // byte select inputs
input wb_we_i; // write enable input
input wb_stb_i; // stobe/core select signal
input wb_cyc_i; // valid bus cycle input
output wb_ack_o; // bus cycle acknowledge output
output wb_err_o; // termination w/ error
output wb_int_o; // interrupt request signal output
// SPI signals
output [`SPI_SS_NB-1:0] ss_pad_o; // slave select
output sclk_pad_o; // serial clock
output mosi_pad_o; // master out slave in
input miso_pad_i; // master in slave out
reg [32-1:0] wb_dat_o;
reg wb_ack_o;
reg wb_int_o;
// Internal signals
reg [`SPI_DIVIDER_LEN-1:0] divider; // Divider register
reg [`SPI_CTRL_BIT_NB-1:0] ctrl; // Control and status register
reg [`SPI_SS_NB-1:0] ss; // Slave select register
reg [32-1:0] wb_dat; // wb data out
wire [`SPI_MAX_CHAR-1:0] rx; // Rx register
wire rx_negedge; // miso is sampled on negative edge
wire tx_negedge; // mosi is driven on negative edge
wire [`SPI_CHAR_LEN_BITS-1:0] char_len; // char len
wire go; // go
wire lsb; // lsb first on line
wire ie; // interrupt enable
wire ass; // automatic slave select
wire spi_divider_sel; // divider register select
wire spi_ctrl_sel; // ctrl register select
wire [3:0] spi_tx_sel; // tx_l register select
wire spi_ss_sel; // ss register select
wire tip; // transfer in progress
wire pos_edge; // recognize posedge of sclk
wire neg_edge; // recognize negedge of sclk
wire last_bit; // marks last character bit
// Address decoder
assign spi_divider_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_DEVIDE);
assign spi_ctrl_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_CTRL);
assign spi_tx_sel[0] = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_TX_0);
assign spi_tx_sel[1] = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_TX_1);
assign spi_tx_sel[2] = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_TX_2);
assign spi_tx_sel[3] = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_TX_3);
assign spi_ss_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`SPI_OFS_BITS] == `SPI_SS);
// Read from registers
always @(wb_adr_i or rx or ctrl or divider or ss)
begin
case (wb_adr_i[`SPI_OFS_BITS])
`ifdef SPI_MAX_CHAR_128
`SPI_RX_0: wb_dat = rx[31:0];
`SPI_RX_1: wb_dat = rx[63:32];
`SPI_RX_2: wb_dat = rx[95:64];
`SPI_RX_3: wb_dat = {{128-`SPI_MAX_CHAR{1'b0}}, rx[`SPI_MAX_CHAR-1:96]};
`else
`ifdef SPI_MAX_CHAR_64
`SPI_RX_0: wb_dat = rx[31:0];
`SPI_RX_1: wb_dat = {{64-`SPI_MAX_CHAR{1'b0}}, rx[`SPI_MAX_CHAR-1:32]};
`SPI_RX_2: wb_dat = 32'b0;
`SPI_RX_3: wb_dat = 32'b0;
`else
`SPI_RX_0: wb_dat = {{32-`SPI_MAX_CHAR{1'b0}}, rx[`SPI_MAX_CHAR-1:0]};
`SPI_RX_1: wb_dat = 32'b0;
`SPI_RX_2: wb_dat = 32'b0;
`SPI_RX_3: wb_dat = 32'b0;
`endif
`endif
`SPI_CTRL: wb_dat = {{32-`SPI_CTRL_BIT_NB{1'b0}}, ctrl};
`SPI_DEVIDE: wb_dat = {{32-`SPI_DIVIDER_LEN{1'b0}}, divider};
`SPI_SS: wb_dat = {{32-`SPI_SS_NB{1'b0}}, ss};
default: wb_dat = 32'bx;
endcase
end
// Wb data out
always @(posedge wb_clk_i or posedge wb_rst_i)
begin
if (wb_rst_i)
wb_dat_o <= #Tp 32'b0;
else
wb_dat_o <= #Tp wb_dat;
end
// Wb acknowledge
always @(posedge wb_clk_i or posedge wb_rst_i)
begin
if (wb_rst_i)
wb_ack_o <= #Tp 1'b0;
else
wb_ack_o <= #Tp wb_cyc_i & wb_stb_i & ~wb_ack_o;
end
// Wb error
assign wb_err_o = 1'b0;
// Interrupt
always @(posedge wb_clk_i or posedge wb_rst_i)
begin
if (wb_rst_i)
wb_int_o <= #Tp 1'b0;
else if (ie && tip && last_bit && pos_edge)
wb_int_o <= #Tp 1'b1;
else if (wb_ack_o)
wb_int_o <= #Tp 1'b0;
end
// Divider register
always @(posedge wb_clk_i or posedge wb_rst_i)
begin
if (wb_rst_i)
divider <= #Tp {`SPI_DIVIDER_LEN{1'b0}};
else if (spi_divider_sel && wb_we_i && !tip)
begin
`ifdef SPI_DIVIDER_LEN_8
if (wb_sel_i[0])
divider <= #Tp wb_dat_i[`SPI_DIVIDER_LEN-1:0];
`endif
`ifdef SPI_DIVIDER_LEN_16
if (wb_sel_i[0])
divider[7:0] <= #Tp wb_dat_i[7:0];
if (wb_sel_i[1])
divider[`SPI_DIVIDER_LEN-1:8] <= #Tp wb_dat_i[`SPI_DIVIDER_LEN-1:8];
`endif
`ifdef SPI_DIVIDER_LEN_24
if (wb_sel_i[0])
divider[7:0] <= #Tp wb_dat_i[7:0];
if (wb_sel_i[1])
divider[15:8] <= #Tp wb_dat_i[15:8];
if (wb_sel_i[2])
divider[`SPI_DIVIDER_LEN-1:16] <= #Tp wb_dat_i[`SPI_DIVIDER_LEN-1:16];
`endif
`ifdef SPI_DIVIDER_LEN_32
if (wb_sel_i[0])
divider[7:0] <= #Tp wb_dat_i[7:0];
if (wb_sel_i[1])
divider[15:8] <= #Tp wb_dat_i[15:8];
if (wb_sel_i[2])
divider[23:16] <= #Tp wb_dat_i[23:16];
if (wb_sel_i[3])
divider[`SPI_DIVIDER_LEN-1:24] <= #Tp wb_dat_i[`SPI_DIVIDER_LEN-1:24];
`endif
end
end
// Ctrl register
always @(posedge wb_clk_i or posedge wb_rst_i)
begin
if (wb_rst_i)
ctrl <= #Tp {`SPI_CTRL_BIT_NB{1'b0}};
else if(spi_ctrl_sel && wb_we_i && !tip)
begin
if (wb_sel_i[0])
ctrl[7:0] <= #Tp wb_dat_i[7:0] | {7'b0, ctrl[0]};
if (wb_sel_i[1])
ctrl[`SPI_CTRL_BIT_NB-1:8] <= #Tp wb_dat_i[`SPI_CTRL_BIT_NB-1:8];
end
else if(tip && last_bit && pos_edge)
ctrl[`SPI_CTRL_GO] <= #Tp 1'b0;
end
assign rx_negedge = ctrl[`SPI_CTRL_RX_NEGEDGE];
assign tx_negedge = ctrl[`SPI_CTRL_TX_NEGEDGE];
assign go = ctrl[`SPI_CTRL_GO];
assign char_len = ctrl[`SPI_CTRL_CHAR_LEN];
assign lsb = ctrl[`SPI_CTRL_LSB];
assign ie = ctrl[`SPI_CTRL_IE];
assign ass = ctrl[`SPI_CTRL_ASS];
// Slave select register
always @(posedge wb_clk_i or posedge wb_rst_i)
begin
if (wb_rst_i)
ss <= #Tp {`SPI_SS_NB{1'b0}};
else if(spi_ss_sel && wb_we_i && !tip)
begin
`ifdef SPI_SS_NB_8
if (wb_sel_i[0])
ss <= #Tp wb_dat_i[`SPI_SS_NB-1:0];
`endif
`ifdef SPI_SS_NB_16
if (wb_sel_i[0])
ss[7:0] <= #Tp wb_dat_i[7:0];
if (wb_sel_i[1])
ss[`SPI_SS_NB-1:8] <= #Tp wb_dat_i[`SPI_SS_NB-1:8];
`endif
`ifdef SPI_SS_NB_24
if (wb_sel_i[0])
ss[7:0] <= #Tp wb_dat_i[7:0];
if (wb_sel_i[1])
ss[15:8] <= #Tp wb_dat_i[15:8];
if (wb_sel_i[2])
ss[`SPI_SS_NB-1:16] <= #Tp wb_dat_i[`SPI_SS_NB-1:16];
`endif
`ifdef SPI_SS_NB_32
if (wb_sel_i[0])
ss[7:0] <= #Tp wb_dat_i[7:0];
if (wb_sel_i[1])
ss[15:8] <= #Tp wb_dat_i[15:8];
if (wb_sel_i[2])
ss[23:16] <= #Tp wb_dat_i[23:16];
if (wb_sel_i[3])
ss[`SPI_SS_NB-1:24] <= #Tp wb_dat_i[`SPI_SS_NB-1:24];
`endif
end
end
assign ss_pad_o = ~((ss & {`SPI_SS_NB{tip & ass}}) | (ss & {`SPI_SS_NB{!ass}}));
spi_clgen clgen (.clk_in(wb_clk_i), .rst(wb_rst_i), .go(go), .enable(tip), .last_clk(last_bit),
.divider(divider), .clk_out(sclk_pad_o), .pos_edge(pos_edge),
.neg_edge(neg_edge));
spi_shift shift (.clk(wb_clk_i), .rst(wb_rst_i), .len(char_len[`SPI_CHAR_LEN_BITS-1:0]),
.latch(spi_tx_sel[3:0] & {4{wb_we_i}}), .byte_sel(wb_sel_i), .lsb(lsb),
.go(go), .pos_edge(pos_edge), .neg_edge(neg_edge),
.rx_negedge(rx_negedge), .tx_negedge(tx_negedge),
.tip(tip), .last(last_bit),
.p_in(wb_dat_i), .p_out(rx),
.s_clk(sclk_pad_o), .s_in(miso_pad_i), .s_out(mosi_pad_o));
endmodule