OpenFPGA/openfpga_flow/benchmarks/iwls2005/pci/rtl/pci_conf_space.v

3933 lines
148 KiB
Verilog

//////////////////////////////////////////////////////////////////////
//// ////
//// File name: pci_conf_space.v ////
//// ////
//// This file is part of the "PCI bridge" project ////
//// http://www.opencores.org/cores/pci/ ////
//// ////
//// Author(s): ////
//// - tadej@opencores.org ////
//// - Tadej Markovic ////
//// ////
//// All additional information is avaliable in the README.txt ////
//// file. ////
//// ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Tadej Markovic, tadej@opencores.org ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// CVS Revision History
//
// $Log: pci_conf_space.v,v $
// Revision 1.10 2004/08/19 16:04:53 mihad
// Removed some unused signals.
//
// Revision 1.9 2004/08/19 15:27:34 mihad
// Changed minimum pci image size to 256 bytes because
// of some PC system problems with size of IO images.
//
// Revision 1.8 2004/07/07 12:45:01 mihad
// Added SubsystemVendorID, SubsystemID, MAXLatency, MinGnt defines.
// Enabled value loading from serial EEPROM for all of the above + VendorID and DeviceID registers.
//
// Revision 1.7 2004/01/24 11:54:18 mihad
// Update! SPOCI Implemented!
//
// Revision 1.6 2003/12/28 09:54:48 fr2201
// def_wb_imagex_addr_map defined correctly
//
// Revision 1.5 2003/12/28 09:20:00 fr2201
// Reset values for PCI, WB defined (PCI_TAx,WB_BAx,WB_TAx,WB_AMx,WB_BAx_MEM_IO)
//
// Revision 1.4 2003/12/19 11:11:30 mihad
// Compact PCI Hot Swap support added.
// New testcases added.
// Specification updated.
// Test application changed to support WB B3 cycles.
//
// Revision 1.3 2003/08/14 13:06:02 simons
// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
//
// Revision 1.2 2003/03/26 13:16:18 mihad
// Added the reset value parameter to the synchronizer flop module.
// Added resets to all synchronizer flop instances.
// Repaired initial sync value in fifos.
//
// Revision 1.1 2003/01/27 16:49:31 mihad
// Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
//
// Revision 1.4 2002/08/13 11:03:53 mihad
// Added a few testcases. Repaired wrong reset value for PCI_AM5 register. Repaired Parity Error Detected bit setting. Changed PCI_AM0 to always enabled(regardles of PCI_AM0 define), if image 0 is used as configuration image
//
// Revision 1.3 2002/02/01 15:25:12 mihad
// Repaired a few bugs, updated specification, added test bench files and design document
//
// Revision 1.2 2001/10/05 08:14:28 mihad
// Updated all files with inclusion of timescale file for simulation purposes.
//
// Revision 1.1.1.1 2001/10/02 15:33:46 mihad
// New project directory structure
//
//
`include "pci_constants.v"
// synopsys translate_off
`include "timescale.v"
// synopsys translate_on
/*-----------------------------------------------------------------------------------------------------------
w_ prefix is a sign for Write (and read) side of Dual-Port registers
r_ prefix is a sign for Read only side of Dual-Port registers
In the first line there are DATA and ADDRESS ports, in the second line there are write enable and read
enable signals with chip-select (conf_hit) for config. space.
In the third line there are output signlas from Command register of the PCI configuration header !!!
In the fourth line there are input signals to Status register of the PCI configuration header !!!
In the fifth line there is output from Latency Timer & r_Interrupt pin registers of the PCI conf. header !!!
Following are IMAGE specific registers, from which PCI_BASE_ADDR registers are the same as base address
registers from the PCI conf. header !!!
-----------------------------------------------------------------------------------------------------------*/
// normal R/W address, data and control
module pci_conf_space
( w_conf_address_in, w_conf_data_in, w_conf_data_out, r_conf_address_in, r_conf_data_out,
w_we_i, w_re, r_re, w_byte_en_in, w_clock, reset, pci_clk, wb_clk,
// outputs from command register of the PCI header
serr_enable, perr_response, pci_master_enable, memory_space_enable, io_space_enable,
// inputs to status register of the PCI header
perr_in, serr_in, master_abort_recv, target_abort_recv, target_abort_set, master_data_par_err,
// output from cache_line_size, latency timer and r_interrupt_pin register of the PCI header
cache_line_size_to_pci, cache_line_size_to_wb, cache_lsize_not_zero_to_wb,
latency_tim,
// output from all pci IMAGE registers
pci_base_addr0, pci_base_addr1, pci_base_addr2, pci_base_addr3, pci_base_addr4, pci_base_addr5,
pci_memory_io0, pci_memory_io1, pci_memory_io2, pci_memory_io3, pci_memory_io4, pci_memory_io5,
pci_addr_mask0, pci_addr_mask1, pci_addr_mask2, pci_addr_mask3, pci_addr_mask4, pci_addr_mask5,
pci_tran_addr0, pci_tran_addr1, pci_tran_addr2, pci_tran_addr3, pci_tran_addr4, pci_tran_addr5,
pci_img_ctrl0, pci_img_ctrl1, pci_img_ctrl2, pci_img_ctrl3, pci_img_ctrl4, pci_img_ctrl5,
// input to pci error control and status register, error address and error data registers
pci_error_be, pci_error_bc, pci_error_rty_exp, pci_error_es, pci_error_sig, pci_error_addr,
pci_error_data,
// output from all wishbone IMAGE registers
wb_base_addr0, wb_base_addr1, wb_base_addr2, wb_base_addr3, wb_base_addr4, wb_base_addr5,
wb_memory_io0, wb_memory_io1, wb_memory_io2, wb_memory_io3, wb_memory_io4, wb_memory_io5,
wb_addr_mask0, wb_addr_mask1, wb_addr_mask2, wb_addr_mask3, wb_addr_mask4, wb_addr_mask5,
wb_tran_addr0, wb_tran_addr1, wb_tran_addr2, wb_tran_addr3, wb_tran_addr4, wb_tran_addr5,
wb_img_ctrl0, wb_img_ctrl1, wb_img_ctrl2, wb_img_ctrl3, wb_img_ctrl4, wb_img_ctrl5,
// input to wb error control and status register, error address and error data registers
wb_error_be, wb_error_bc, wb_error_rty_exp, wb_error_es, wb_error_sig, wb_error_addr, wb_error_data,
// output from conf. cycle generation register (sddress), int. control register & interrupt output
config_addr, icr_soft_res, int_out,
// input to interrupt status register
isr_sys_err_int, isr_par_err_int, isr_int_prop,
pci_init_complete_out, wb_init_complete_out
`ifdef PCI_CPCI_HS_IMPLEMENT
,
pci_cpci_hs_enum_oe_o, pci_cpci_hs_led_oe_o, pci_cpci_hs_es_i
`endif
`ifdef PCI_SPOCI
,
spoci_scl_oe_o, spoci_sda_i, spoci_sda_oe_o
`endif
) ;
/*###########################################################################################################
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
Input and output ports
======================
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
###########################################################################################################*/
// output data
output [31 : 0] w_conf_data_out ;
output [31 : 0] r_conf_data_out ;
reg [31 : 0] w_conf_data_out ;
`ifdef NO_CNF_IMAGE
`else
reg [31 : 0] r_conf_data_out ;
`endif
// input data
input [31 : 0] w_conf_data_in ;
wire [31 : 0] w_conf_pdata_reduced ; // reduced data written into PCI image registers
wire [31 : 0] w_conf_wdata_reduced ; // reduced data written into WB image registers
// input address
input [11 : 0] w_conf_address_in ;
input [11 : 0] r_conf_address_in ;
// input control signals
input w_we_i ;
input w_re ;
input r_re ;
input [3 : 0] w_byte_en_in ;
input w_clock ;
input reset ;
input pci_clk ;
input wb_clk ;
// PCI header outputs from command register
output serr_enable ;
output perr_response ;
output pci_master_enable ;
output memory_space_enable ;
output io_space_enable ;
// PCI header inputs to status register
input perr_in ;
input serr_in ;
input master_abort_recv ;
input target_abort_recv ;
input target_abort_set ;
input master_data_par_err ;
// PCI header output from cache_line_size, latency timer and interrupt pin
output [7 : 0] cache_line_size_to_pci ; // sinchronized to PCI clock
output [7 : 0] cache_line_size_to_wb ; // sinchronized to WB clock
output cache_lsize_not_zero_to_wb ; // used in WBU and PCIU
output [7 : 0] latency_tim ;
//output [2 : 0] int_pin ; // only 3 LSbits are important!
// PCI output from image registers
`ifdef GUEST
output [31:12] pci_base_addr0 ;
`endif
`ifdef HOST
`ifdef NO_CNF_IMAGE
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_base_addr0 ;
`else
output [31:12] pci_base_addr0 ;
`endif
`endif
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_base_addr1 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_base_addr2 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_base_addr3 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_base_addr4 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_base_addr5 ;
output pci_memory_io0 ;
output pci_memory_io1 ;
output pci_memory_io2 ;
output pci_memory_io3 ;
output pci_memory_io4 ;
output pci_memory_io5 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_addr_mask0 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_addr_mask1 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_addr_mask2 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_addr_mask3 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_addr_mask4 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_addr_mask5 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_tran_addr0 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_tran_addr1 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_tran_addr2 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_tran_addr3 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_tran_addr4 ;
output [31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] pci_tran_addr5 ;
output [2 : 1] pci_img_ctrl0 ;
output [2 : 1] pci_img_ctrl1 ;
output [2 : 1] pci_img_ctrl2 ;
output [2 : 1] pci_img_ctrl3 ;
output [2 : 1] pci_img_ctrl4 ;
output [2 : 1] pci_img_ctrl5 ;
// PCI input to pci error control and status register, error address and error data registers
input [3 : 0] pci_error_be ;
input [3 : 0] pci_error_bc ;
input pci_error_rty_exp ;
input pci_error_es ;
input pci_error_sig ;
input [31 : 0] pci_error_addr ;
input [31 : 0] pci_error_data ;
// WISHBONE output from image registers
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_base_addr0 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_base_addr1 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_base_addr2 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_base_addr3 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_base_addr4 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_base_addr5 ;
output wb_memory_io0 ;
output wb_memory_io1 ;
output wb_memory_io2 ;
output wb_memory_io3 ;
output wb_memory_io4 ;
output wb_memory_io5 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_addr_mask0 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_addr_mask1 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_addr_mask2 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_addr_mask3 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_addr_mask4 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_addr_mask5 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_tran_addr0 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_tran_addr1 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_tran_addr2 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_tran_addr3 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_tran_addr4 ;
output [31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] wb_tran_addr5 ;
output [2 : 0] wb_img_ctrl0 ;
output [2 : 0] wb_img_ctrl1 ;
output [2 : 0] wb_img_ctrl2 ;
output [2 : 0] wb_img_ctrl3 ;
output [2 : 0] wb_img_ctrl4 ;
output [2 : 0] wb_img_ctrl5 ;
// WISHBONE input to wb error control and status register, error address and error data registers
input [3 : 0] wb_error_be ;
input [3 : 0] wb_error_bc ;
input wb_error_rty_exp ;
input wb_error_es ;
input wb_error_sig ;
input [31 : 0] wb_error_addr ;
input [31 : 0] wb_error_data ;
// GENERAL output from conf. cycle generation register & int. control register
output [23 : 0] config_addr ;
output icr_soft_res ;
output int_out ;
// GENERAL input to interrupt status register
input isr_sys_err_int ;
input isr_par_err_int ;
input isr_int_prop ;
output pci_init_complete_out ;
output wb_init_complete_out ;
`ifdef PCI_CPCI_HS_IMPLEMENT
output pci_cpci_hs_enum_oe_o ;
output pci_cpci_hs_led_oe_o ;
input pci_cpci_hs_es_i ;
reg pci_cpci_hs_enum_oe_o ;
reg pci_cpci_hs_led_oe_o ;
// set the hot swap ejector switch debounce counter width
// it is only 4 for simulation purposes
`ifdef PCI_CPCI_SIM
parameter hs_es_cnt_width = 4 ;
`else
`ifdef PCI33
parameter hs_es_cnt_width = 16 ;
`endif
`ifdef PCI66
parameter hs_es_cnt_width = 17 ;
`endif
`endif
`endif
`ifdef PCI_SPOCI
output spoci_scl_oe_o ;
input spoci_sda_i ;
output spoci_sda_oe_o ;
reg spoci_cs_nack,
spoci_cs_write,
spoci_cs_read;
reg [10: 0] spoci_cs_adr ;
reg [ 7: 0] spoci_cs_dat ;
`endif
/*###########################################################################################################
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
REGISTERS definition
====================
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
###########################################################################################################*/
// Decoded Register Select signals for writting (only one address decoder)
reg [56 : 0] w_reg_select_dec ;
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
PCI CONFIGURATION SPACE HEADER (type 00h) registers
BIST and some other registers are not implemented and therefor written in correct
place with comment line. There are also some registers with NOT all bits implemented and therefor uses
_bitX or _bitX2_X1 to sign which bit or range of bits are implemented.
Some special cases and examples are described below!
-------------------------------------------------------------------------------------------------------------
###########################################################################################################*/
/*-----------------------------------------------------------------------------------------------------------
[000h-00Ch] First 4 DWORDs (32-bit) of PCI configuration header - the same regardless of the HEADER type !
r_ prefix is a sign for read only registers
Vendor_ID is an ID for a specific vendor defined by PCI_SIG - 2321h does not belong to anyone (e.g.
Xilinx's Vendor_ID is 10EEh and Altera's Vendor_ID is 1172h). Device_ID and Revision_ID should be used
together by application. Class_Code has 3 bytes to define BASE class (06h for PCI Bridge), SUB class
(00h for HOST type, 80h for Other Bridge type) and Interface type (00h for normal).
-----------------------------------------------------------------------------------------------------------*/
reg [15: 0] r_vendor_id ;
reg [15: 0] r_device_id ;
reg [15: 0] r_subsys_vendor_id ;
reg [15: 0] r_subsys_id ;
reg command_bit8 ;
reg command_bit6 ;
reg [2 : 0] command_bit2_0 ;
reg [15 : 11] status_bit15_11 ;
parameter r_status_bit10_9 = 2'b01 ; // 2'b01 means MEDIUM devsel timing !!!
reg status_bit8 ;
parameter r_status_bit7 = 1'b1 ; // xfast back-to-back capable response !!!
parameter r_status_bit5 = `HEADER_66MHz ; // 1'b0 indicates 33 MHz capable !!!
`ifdef PCI_CPCI_HS_IMPLEMENT
wire r_status_bit4 = 1 ;
reg hs_ins ;
reg hs_ext ;
wire [ 1: 0] hs_pi = 2'b00 ;
reg hs_loo ;
reg hs_eim ;
wire [ 7: 0] hs_cap_id = 8'h06 ;
reg hs_ins_armed ;
reg hs_ext_armed ;
`else
wire r_status_bit4 = 0 ;
`endif
reg [ 7: 0] r_revision_id ;
`ifdef HOST
parameter r_class_code = 24'h06_00_00 ;
`else
parameter r_class_code = 24'h06_80_00 ;
`endif
reg [7 : 0] cache_line_size_reg ;
reg [7 : 0] latency_timer ;
parameter r_header_type = 8'h00 ;
// REG bist NOT implemented !!!
/*-----------------------------------------------------------------------------------------------------------
[010h-03Ch] all other DWORDs (32-bit) of PCI configuration header - only for HEADER type 00h !
r_ prefix is a sign for read only registers
BASE_ADDRESS_REGISTERS are the same as ones in the PCI Target configuration registers section. They
are duplicated and therefor defined just ones and used with the same name as written below. If
IMAGEx is NOT defined there is only parameter image_X assigned to '0' and this parameter is used
elsewhere in the code. This parameter is defined in the INTERNAL SIGNALS part !!!
Interrupt_Pin value 8'h01 is used for INT_A pin used.
MIN_GNT and MAX_LAT are used for device's desired values for Latency Timer value. The value in boath
registers specifies a period of time in units of 1/4 microsecond. ZERO indicates that there are no
major requirements for the settings of Latency Timer.
MIN_GNT specifieshow how long a burst period the device needs at 33MHz. MAX_LAT specifies how often
the device needs to gain access to the PCI bus. Values are choosen assuming that the target does not
insert any wait states. Follow the expamle of settings for simple display card.
If we use 64 (32-bit) FIFO locations for one burst then we need 8 x 1/4 microsecond periods at 33MHz
clock rate => MIN_GNT = 08h ! Resolution is 1024 x 768 (= 786432 pixels for one frame) with 16-bit
color mode. We can transfere 2 16-bit pixels in one FIFO location. From that we calculate, that for
one frame we need 6144 burst transferes in 1/25 second. So we need one burst every 6,51 microsecond
and that is 26 x 1/4 microsecond or 1Ah x 1/4 microsecond => MAX_LAT = 1Ah !
-----------------------------------------------------------------------------------------------------------*/
// REG x 6 base_address_register_X IMPLEMENTED as pci_ba_X !!!
// REG r_cardbus_cis_pointer NOT implemented !!!
// REG r_subsystem_vendor_id NOT implemented !!!
// REG r_subsystem_id NOT implemented !!!
// REG r_expansion_rom_base_address NOT implemented !!!
// REG r_cap_list_pointer NOT implemented !!!
reg [7 : 0] interrupt_line ;
parameter r_interrupt_pin = 8'h01 ;
reg [7 : 0] r_min_gnt ;
reg [7 : 0] r_max_lat ;
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
PCI Target configuration registers
There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to
sign which bit or range of bits are implemented. Some special cases and examples are described below!
-------------------------------------------------------------------------------------------------------------
###########################################################################################################*/
/*-----------------------------------------------------------------------------------------------------------
[100h-168h]
Depending on defines (PCI_IMAGE1 or .. or PCI_IMAGE5 or (PCI_IMAGE0 and HOST)) in constants.v file,
there are registers corresponding to each IMAGE defined to REG and parameter pci_image_X assigned to '1'.
The maximum number of images is "6". By default there are first two images used and the first (PCI_IMAGE0)
is assigned to Configuration space! With a 'define' PCI_IMAGEx you choose the number of used PCI IMAGES
in a bridge without PCI_IMAGE0 (e.g. PCI_IMAGE3 tells, that PCI_IMAGE1, PCI_IMAGE2 and PCI_IMAGE3 are
used for mapping the space from WB to PCI. Offcourse, PCI_IMAGE0 is assigned to Configuration space).
That leave us PCI_IMAGE5 as the maximum number of images.
There is one exeption, when the core is implemented as HOST. If so, then the PCI specification allowes
the Configuration space NOT to be visible on the PCI bus. With `define PCI_IMAGE0 (and `define HOST), we
assign PCI_IMAGE0 to normal WB to PCI image and not to configuration space!
When error occurs, PCI ERR_ADDR and ERR_DATA registers stores address and data on the bus that
caused error. While ERR_CS register stores Byte Enables and Bus Command in the MSByte. In bits 10
and 8 it reports Retry Counter Expired (for posted writes), Error Source (Master Abort) and Error
Report Signal (signals that error has occured) respectively. With bit 0 we enable Error Reporting
mechanism.
-----------------------------------------------------------------------------------------------------------*/
`ifdef HOST
`ifdef NO_CNF_IMAGE
`ifdef PCI_IMAGE0 // if PCI bridge is HOST and IMAGE0 is assigned as general image space
reg [31 : 8] pci_ba0_bit31_8 ;
reg [2 : 1] pci_img_ctrl0_bit2_1 ;
reg pci_ba0_bit0 ;
reg [31 : 8] pci_am0 ;
reg [31 : 8] pci_ta0 ;
`else // if PCI bridge is HOST and IMAGE0 is not used
wire [31 : 8] pci_ba0_bit31_8 = 24'h0000_00 ; // NO base address needed
wire [2 : 1] pci_img_ctrl0_bit2_1 = 2'b00 ; // NO addr.transl. and pre-fetch
wire pci_ba0_bit0 = 0 ; // config. space is MEMORY space
wire [31 : 8] pci_am0 = 24'h0000_00 ; // NO address mask needed
wire [31 : 8] pci_ta0 = 24'h0000_00 ; // NO address translation needed
`endif
`else // if PCI bridge is HOST and IMAGE0 is assigned to PCI configuration space
reg [31 : 8] pci_ba0_bit31_8 ;
wire [2 : 1] pci_img_ctrl0_bit2_1 = 2'b00 ; // NO pre-fetch and read line support
wire pci_ba0_bit0 = 0 ; // config. space is MEMORY space
wire [31 : 8] pci_am0 = 24'hFFFF_F0 ; // address mask for configuration image always 20'hffff_f
wire [31 : 8] pci_ta0 = 24'h0000_00 ; // NO address translation needed
`endif
`endif
`ifdef GUEST // if PCI bridge is GUEST, then IMAGE0 is assigned to PCI configuration space
reg [31 : 8] pci_ba0_bit31_8 ;
wire [2 : 1] pci_img_ctrl0_bit2_1 = 2'b00 ; // NO addr.transl. and pre-fetch
wire pci_ba0_bit0 = 0 ; // config. space is MEMORY space
wire [31 : 8] pci_am0 = 24'hffff_f0 ; // address mask for configuration image always 24'hffff_f0 - 4KB mem image
wire [31 : 8] pci_ta0 = 24'h0000_00 ; // NO address translation needed
`endif
// IMAGE1 is included by default, meanwhile other IMAGEs are optional !!!
reg [2 : 1] pci_img_ctrl1_bit2_1 ;
reg [31 : 8] pci_ba1_bit31_8 ;
`ifdef HOST
reg pci_ba1_bit0 ;
`else
wire pci_ba1_bit0 = `PCI_BA1_MEM_IO ;
`endif
reg [31 : 8] pci_am1 ;
reg [31 : 8] pci_ta1 ;
`ifdef PCI_IMAGE2
reg [2 : 1] pci_img_ctrl2_bit2_1 ;
reg [31 : 8] pci_ba2_bit31_8 ;
`ifdef HOST
reg pci_ba2_bit0 ;
`else
wire pci_ba2_bit0 = `PCI_BA2_MEM_IO ;
`endif
reg [31 : 8] pci_am2 ;
reg [31 : 8] pci_ta2 ;
`else
wire [2 : 1] pci_img_ctrl2_bit2_1 = 2'b00 ;
wire [31 : 8] pci_ba2_bit31_8 = 24'h0000_00 ;
wire pci_ba2_bit0 = 1'b0 ;
wire [31 : 8] pci_am2 = 24'h0000_00 ;
wire [31 : 8] pci_ta2 = 24'h0000_00 ;
`endif
`ifdef PCI_IMAGE3
reg [2 : 1] pci_img_ctrl3_bit2_1 ;
reg [31 : 8] pci_ba3_bit31_8 ;
`ifdef HOST
reg pci_ba3_bit0 ;
`else
wire pci_ba3_bit0 = `PCI_BA3_MEM_IO ;
`endif
reg [31 : 8] pci_am3 ;
reg [31 : 8] pci_ta3 ;
`else
wire [2 : 1] pci_img_ctrl3_bit2_1 = 2'b00 ;
wire [31 : 8] pci_ba3_bit31_8 = 24'h0000_00 ;
wire pci_ba3_bit0 = 1'b0 ;
wire [31 : 8] pci_am3 = 24'h0000_00 ;
wire [31 : 8] pci_ta3 = 24'h0000_00 ;
`endif
`ifdef PCI_IMAGE4
reg [2 : 1] pci_img_ctrl4_bit2_1 ;
reg [31 : 8] pci_ba4_bit31_8 ;
`ifdef HOST
reg pci_ba4_bit0 ;
`else
wire pci_ba4_bit0 = `PCI_BA4_MEM_IO ;
`endif
reg [31 : 8] pci_am4 ;
reg [31 : 8] pci_ta4 ;
`else
wire [2 : 1] pci_img_ctrl4_bit2_1 = 2'b00 ;
wire [31 : 8] pci_ba4_bit31_8 = 24'h0000_00 ;
wire pci_ba4_bit0 = 1'b0 ;
wire [31 : 8] pci_am4 = 24'h0000_00 ;
wire [31 : 8] pci_ta4 = 24'h0000_00 ;
`endif
`ifdef PCI_IMAGE5
reg [2 : 1] pci_img_ctrl5_bit2_1 ;
reg [31 : 8] pci_ba5_bit31_8 ;
`ifdef HOST
reg pci_ba5_bit0 ;
`else
wire pci_ba5_bit0 = `PCI_BA5_MEM_IO ;
`endif
reg [31 : 8] pci_am5 ;
reg [31 : 8] pci_ta5 ;
`else
wire [2 : 1] pci_img_ctrl5_bit2_1 = 2'b00 ;
wire [31 : 8] pci_ba5_bit31_8 = 24'h0000_00 ;
wire pci_ba5_bit0 = 1'b0 ;
wire [31 : 8] pci_am5 = 24'h0000_00 ;
wire [31 : 8] pci_ta5 = 24'h0000_00 ;
`endif
reg [31 : 24] pci_err_cs_bit31_24 ;
reg pci_err_cs_bit10 ;
reg pci_err_cs_bit9 ;
reg pci_err_cs_bit8 ;
reg pci_err_cs_bit0 ;
reg [31 : 0] pci_err_addr ;
reg [31 : 0] pci_err_data ;
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
WISHBONE Slave configuration registers
There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to
sign which bit or range of bits are implemented. Some special cases and examples are described below!
-------------------------------------------------------------------------------------------------------------
###########################################################################################################*/
/*-----------------------------------------------------------------------------------------------------------
[800h-85Ch]
Depending on defines (WB_IMAGE1 or .. or WB_IMAGE4 or WB_IMAGE5) in constants.v file, there are
registers corresponding to each IMAGE defined to REG and parameter wb_image_X assigned to '1'.
The maximum number of images is "6". By default there are first two images used and the first (WB_IMAGE0)
is assigned to Configuration space! With a 'define' WB_IMAGEx you choose the number of used WB IMAGES in
a bridge without WB_IMAGE0 (e.g. WB_IMAGE3 tells, that WB_IMAGE1, WB_IMAGE2 and WB_IMAGE3 are used for
mapping the space from PCI to WB. Offcourse, WB_IMAGE0 is assigned to Configuration space). That leave
us WB_IMAGE5 as the maximum number of images.
When error occurs, WISHBONE ERR_ADDR and ERR_DATA registers stores address and data on the bus that
caused error. While ERR_CS register stores Byte Enables and Bus Command in the MSByte. In bits 10, 9
and 8 it reports Retry Counter Expired (for posted writes), Error Source (Master Abort) and Error
Report Signal (signals that error has occured) respectively. With bit 0 we enable Error Reporting
mechanism.
-----------------------------------------------------------------------------------------------------------*/
// WB_IMAGE0 is always assigned to config. space or is not used
wire [2 : 0] wb_img_ctrl0_bit2_0 = 3'b000 ; // NO addr.transl., pre-fetch and read-line
wire [31 : 12] wb_ba0_bit31_12 = `WB_CONFIGURATION_BASE ;
wire wb_ba0_bit0 = 0 ; // config. space is MEMORY space
wire [31 : 12] wb_am0 = `WB_AM0 ; // 4KBytes of configuration space is minimum
wire [31 : 12] wb_ta0 = 20'h0000_0 ; // NO address translation needed
// WB_IMAGE1 is included by default meanwhile others are optional !
reg [2 : 0] wb_img_ctrl1_bit2_0 ;
reg [31 : 12] wb_ba1_bit31_12 ;
reg wb_ba1_bit0 ;
reg [31 : 12] wb_am1 ;
reg [31 : 12] wb_ta1 ;
`ifdef WB_IMAGE2
reg [2 : 0] wb_img_ctrl2_bit2_0 ;
reg [31 : 12] wb_ba2_bit31_12 ;
reg wb_ba2_bit0 ;
reg [31 : 12] wb_am2 ;
reg [31 : 12] wb_ta2 ;
`else
wire [2 : 0] wb_img_ctrl2_bit2_0 = 3'b000 ;
wire [31 : 12] wb_ba2_bit31_12 = 20'h0000_0 ;
wire wb_ba2_bit0 = 1'b0 ;
wire [31 : 12] wb_am2 = 20'h0000_0 ;
wire [31 : 12] wb_ta2 = 20'h0000_0 ;
`endif
`ifdef WB_IMAGE3
reg [2 : 0] wb_img_ctrl3_bit2_0 ;
reg [31 : 12] wb_ba3_bit31_12 ;
reg wb_ba3_bit0 ;
reg [31 : 12] wb_am3 ;
reg [31 : 12] wb_ta3 ;
`else
wire [2 : 0] wb_img_ctrl3_bit2_0 = 3'b000 ;
wire [31 : 12] wb_ba3_bit31_12 = 20'h0000_0 ;
wire wb_ba3_bit0 = 1'b0 ;
wire [31 : 12] wb_am3 = 20'h0000_0 ;
wire [31 : 12] wb_ta3 = 20'h0000_0 ;
`endif
`ifdef WB_IMAGE4
reg [2 : 0] wb_img_ctrl4_bit2_0 ;
reg [31 : 12] wb_ba4_bit31_12 ;
reg wb_ba4_bit0 ;
reg [31 : 12] wb_am4 ;
reg [31 : 12] wb_ta4 ;
`else
wire [2 : 0] wb_img_ctrl4_bit2_0 = 3'b000 ;
wire [31 : 12] wb_ba4_bit31_12 = 20'h0000_0 ;
wire wb_ba4_bit0 = 1'b0 ;
wire [31 : 12] wb_am4 = 20'h0000_0 ;
wire [31 : 12] wb_ta4 = 20'h0000_0 ;
`endif
`ifdef WB_IMAGE5
reg [2 : 0] wb_img_ctrl5_bit2_0 ;
reg [31 : 12] wb_ba5_bit31_12 ;
reg wb_ba5_bit0 ;
reg [31 : 12] wb_am5 ;
reg [31 : 12] wb_ta5 ;
`else
wire [2 : 0] wb_img_ctrl5_bit2_0 = 3'b000 ;
wire [31 : 12] wb_ba5_bit31_12 = 20'h0000_0 ;
wire wb_ba5_bit0 = 1'b0 ;
wire [31 : 12] wb_am5 = 20'h0000_0 ;
wire [31 : 12] wb_ta5 = 20'h0000_0 ;
`endif
reg [31 : 24] wb_err_cs_bit31_24 ;
/* reg wb_err_cs_bit10 ;*/
reg wb_err_cs_bit9 ;
reg wb_err_cs_bit8 ;
reg wb_err_cs_bit0 ;
reg [31 : 0] wb_err_addr ;
reg [31 : 0] wb_err_data ;
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
Configuration Cycle address register
There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to
sign which bit or range of bits are implemented.
-------------------------------------------------------------------------------------------------------------
###########################################################################################################*/
/*-----------------------------------------------------------------------------------------------------------
[860h-868h]
PCI bridge must ignore Type 1 configuration cycles (Master Abort) since they are used for PCI to PCI
bridges. This is single function device, that means responding on configuration cycles to all functions
(or responding only to function 0). Configuration address register for generating configuration cycles
is prepared for all options (it includes Bus Number, Device, Function, Offset and Type).
Interrupt acknowledge register stores interrupt vector data returned during Interrupt Acknowledge cycle.
-----------------------------------------------------------------------------------------------------------*/
`ifdef HOST
reg [23 : 2] cnf_addr_bit23_2 ;
reg cnf_addr_bit0 ;
`else // GUEST
wire [23 : 2] cnf_addr_bit23_2 = 22'h0 ;
wire cnf_addr_bit0 = 1'b0 ;
`endif
// reg [31 : 0] cnf_data ; IMPLEMENTED elsewhere !!!!!
// reg [31 : 0] int_ack ; IMPLEMENTED elsewhere !!!!!
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
General Interrupt registers
There are also some registers with NOT all bits implemented and therefor uses _bitX or _bitX2_X1 to
sign which bit or range of bits are implemented.
-------------------------------------------------------------------------------------------------------------
###########################################################################################################*/
/*-----------------------------------------------------------------------------------------------------------
[FF8h-FFCh]
Bit 31 in the Interrupt Control register is set by software and used to generate SOFT RESET. Other 4
bits are used to enable interrupt generations.
5 LSbits in the Interrupt Status register are indicating System Error Int, Parity Error Int, PCI & WB
Error Int and Inerrupt respecively. System and Parity errors are implented only in HOST bridge
implementations!
-----------------------------------------------------------------------------------------------------------*/
reg icr_bit31 ;
`ifdef HOST
reg [4 : 3] icr_bit4_3 ;
reg [4 : 3] isr_bit4_3 ;
reg [2 : 0] icr_bit2_0 ;
reg [2 : 0] isr_bit2_0 ;
`else // GUEST
wire [4 : 3] icr_bit4_3 = 2'h0 ;
wire [4 : 3] isr_bit4_3 = 2'h0 ;
reg [2 : 0] icr_bit2_0 ;
reg [2 : 0] isr_bit2_0 ;
`endif
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
Initialization complete identifier
When using I2C or similar initialisation mechanism,
the bridge must not respond to transaction requests on PCI bus,
not even to configuration cycles.
Therefore, only when init_complete is set, the bridge starts
participating on the PCI bus as an active device.
Two additional flip flops are also provided for GUEST implementation,
to synchronize to the pci clock after PCI reset is asynchronously de-asserted.
-------------------------------------------------------------------------------------------------------------
###########################################################################################################*/
`ifdef GUEST
reg rst_inactive_sync ;
reg rst_inactive ;
`else
wire rst_inactive = 1'b1 ;
`endif
reg init_complete ;
wire sync_init_complete ;
`ifdef HOST
assign wb_init_complete_out = init_complete ;
pci_synchronizer_flop #(1, 0) i_pci_init_complete_sync
(
.data_in ( init_complete ),
.clk_out ( pci_clk ),
.sync_data_out ( sync_init_complete ),
.async_reset ( reset )
);
reg pci_init_complete_out ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
pci_init_complete_out <= 1'b0 ;
else
pci_init_complete_out <= sync_init_complete ;
end
`endif
`ifdef GUEST
assign pci_init_complete_out = init_complete ;
pci_synchronizer_flop #(1, 0) i_wb_init_complete_sync
(
.data_in ( init_complete ),
.clk_out ( wb_clk ),
.sync_data_out ( sync_init_complete ),
.async_reset ( reset )
);
reg wb_init_complete_out ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
wb_init_complete_out <= 1'b0 ;
else
wb_init_complete_out <= sync_init_complete ;
end
`endif
/*###########################################################################################################
-------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------*/
`ifdef NO_CNF_IMAGE // if IMAGE0 is assigned as general image space
assign r_conf_data_out = 32'h0000_0000 ;
`else
always@(r_conf_address_in or
status_bit15_11 or status_bit8 or r_status_bit4 or command_bit8 or command_bit6 or command_bit2_0 or
latency_timer or cache_line_size_reg or r_vendor_id or r_device_id or r_revision_id or
r_subsys_vendor_id or r_subsys_id or r_max_lat or r_min_gnt or
pci_ba0_bit31_8 or
pci_img_ctrl0_bit2_1 or pci_am0 or pci_ta0 or pci_ba0_bit0 or
pci_img_ctrl1_bit2_1 or pci_am1 or pci_ta1 or pci_ba1_bit31_8 or pci_ba1_bit0 or
pci_img_ctrl2_bit2_1 or pci_am2 or pci_ta2 or pci_ba2_bit31_8 or pci_ba2_bit0 or
pci_img_ctrl3_bit2_1 or pci_am3 or pci_ta3 or pci_ba3_bit31_8 or pci_ba3_bit0 or
pci_img_ctrl4_bit2_1 or pci_am4 or pci_ta4 or pci_ba4_bit31_8 or pci_ba4_bit0 or
pci_img_ctrl5_bit2_1 or pci_am5 or pci_ta5 or pci_ba5_bit31_8 or pci_ba5_bit0 or
interrupt_line or
pci_err_cs_bit31_24 or pci_err_cs_bit10 or pci_err_cs_bit9 or pci_err_cs_bit8 or pci_err_cs_bit0 or
pci_err_addr or pci_err_data or
wb_ba0_bit31_12 or wb_ba0_bit0 or
wb_img_ctrl1_bit2_0 or wb_ba1_bit31_12 or wb_ba1_bit0 or wb_am1 or wb_ta1 or
wb_img_ctrl2_bit2_0 or wb_ba2_bit31_12 or wb_ba2_bit0 or wb_am2 or wb_ta2 or
wb_img_ctrl3_bit2_0 or wb_ba3_bit31_12 or wb_ba3_bit0 or wb_am3 or wb_ta3 or
wb_img_ctrl4_bit2_0 or wb_ba4_bit31_12 or wb_ba4_bit0 or wb_am4 or wb_ta4 or
wb_img_ctrl5_bit2_0 or wb_ba5_bit31_12 or wb_ba5_bit0 or wb_am5 or wb_ta5 or
wb_err_cs_bit31_24 or /*wb_err_cs_bit10 or*/ wb_err_cs_bit9 or wb_err_cs_bit8 or wb_err_cs_bit0 or
wb_err_addr or wb_err_data or
cnf_addr_bit23_2 or cnf_addr_bit0 or icr_bit31 or icr_bit4_3 or icr_bit2_0 or isr_bit4_3 or isr_bit2_0
`ifdef PCI_CPCI_HS_IMPLEMENT
or hs_ins or hs_ext or hs_pi or hs_loo or hs_eim or hs_cap_id
`endif
`ifdef PCI_SPOCI
or spoci_cs_nack or spoci_cs_write or spoci_cs_read or spoci_cs_adr or spoci_cs_dat
`endif
)
begin
case (r_conf_address_in[9:2])
// PCI header - configuration space
8'h0: r_conf_data_out = { r_device_id, r_vendor_id } ;
8'h1: r_conf_data_out = { status_bit15_11, r_status_bit10_9, status_bit8, r_status_bit7, 1'h0, r_status_bit5, r_status_bit4,
4'h0, 7'h00, command_bit8, 1'h0, command_bit6, 3'h0, command_bit2_0 } ;
8'h2: r_conf_data_out = { r_class_code, r_revision_id } ;
8'h3: r_conf_data_out = { 8'h00, r_header_type, latency_timer, cache_line_size_reg } ;
8'h4:
begin
`ifdef HOST
`ifdef NO_CNF_IMAGE
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba0_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba0_bit0 & pci_am0[31];
`else
r_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
r_conf_data_out[11: 0] = 12'h000 ;
`endif
`endif
`ifdef GUEST
r_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
r_conf_data_out[11: 0] = 12'h000 ;
`endif
end
8'h5:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba1_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba1_bit0 & pci_am1[31];
end
8'h6:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba2_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba2_bit0 & pci_am2[31];
end
8'h7:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba3_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba3_bit0 & pci_am3[31];
end
8'h8:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba4_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba4_bit0 & pci_am4[31];
end
8'h9:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba5_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba5_bit0 & pci_am5[31];
end
8'hB:
begin
r_conf_data_out = {r_subsys_id, r_subsys_vendor_id} ;
end
`ifdef PCI_CPCI_HS_IMPLEMENT
8'hD:
begin
r_conf_data_out = {24'h0000_00, `PCI_CAP_PTR_VAL} ;
end
`endif
8'hf: r_conf_data_out = { r_max_lat, r_min_gnt, r_interrupt_pin, interrupt_line } ;
`ifdef PCI_CPCI_HS_IMPLEMENT
(`PCI_CAP_PTR_VAL >> 2):
begin
r_conf_data_out = {8'h00, hs_ins, hs_ext, hs_pi, hs_loo, 1'b0, hs_eim, 1'b0, 8'h00, hs_cap_id} ;
end
`endif
// PCI target - configuration space
{2'b01, `P_IMG_CTRL0_ADDR}: r_conf_data_out = { 29'h00000000, pci_img_ctrl0_bit2_1, 1'h0 } ;
{2'b01, `P_BA0_ADDR} :
begin
`ifdef HOST
`ifdef NO_CNF_IMAGE
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba0_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba0_bit0 & pci_am0[31];
`else
r_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
r_conf_data_out[11: 0] = 12'h000 ;
`endif
`endif
`ifdef GUEST
r_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
r_conf_data_out[11: 0] = 12'h000 ;
`endif
end
{2'b01, `P_AM0_ADDR}:
begin
`ifdef HOST
`ifdef NO_CNF_IMAGE
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
`else
r_conf_data_out[31:12] = pci_am0[31:12] ;
r_conf_data_out[11: 0] = 12'h000 ;
`endif
`endif
`ifdef GUEST
r_conf_data_out[31:12] = pci_am0[31:12] ;
r_conf_data_out[11: 0] = 12'h000 ;
`endif
end
{2'b01, `P_TA0_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_IMG_CTRL1_ADDR}: r_conf_data_out = { 29'h00000000, pci_img_ctrl1_bit2_1, 1'h0 } ;
{2'b01, `P_BA1_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba1_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba1_bit0 & pci_am1[31];
end
{2'b01, `P_AM1_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_TA1_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_IMG_CTRL2_ADDR}: r_conf_data_out = { 29'h00000000, pci_img_ctrl2_bit2_1, 1'h0 } ;
{2'b01, `P_BA2_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba2_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba2_bit0 & pci_am2[31];
end
{2'b01, `P_AM2_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_TA2_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_IMG_CTRL3_ADDR}: r_conf_data_out = { 29'h00000000, pci_img_ctrl3_bit2_1, 1'h0 } ;
{2'b01, `P_BA3_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba3_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba3_bit0 & pci_am3[31];
end
{2'b01, `P_AM3_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_TA3_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_IMG_CTRL4_ADDR}: r_conf_data_out = { 29'h00000000, pci_img_ctrl4_bit2_1, 1'h0 } ;
{2'b01, `P_BA4_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba4_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba4_bit0 & pci_am4[31];
end
{2'b01, `P_AM4_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_TA4_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_IMG_CTRL5_ADDR}: r_conf_data_out = { 29'h00000000, pci_img_ctrl5_bit2_1, 1'h0 } ;
{2'b01, `P_BA5_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba5_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = pci_ba5_bit0 & pci_am5[31];
end
{2'b01, `P_AM5_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_TA5_ADDR}:
begin
r_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `P_ERR_CS_ADDR}: r_conf_data_out = { pci_err_cs_bit31_24, 13'h0000, pci_err_cs_bit10, pci_err_cs_bit9,
pci_err_cs_bit8, 7'h00, pci_err_cs_bit0 } ;
{2'b01, `P_ERR_ADDR_ADDR}: r_conf_data_out = pci_err_addr ;
{2'b01, `P_ERR_DATA_ADDR}: r_conf_data_out = pci_err_data ;
// WB slave - configuration space
{2'b01, `WB_CONF_SPC_BAR_ADDR}: r_conf_data_out = { wb_ba0_bit31_12, 11'h000, wb_ba0_bit0 } ;
{2'b01, `W_IMG_CTRL1_ADDR}: r_conf_data_out = { 29'h00000000, wb_img_ctrl1_bit2_0 } ;
{2'b01, `W_BA1_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba1_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = wb_ba1_bit0 ;
end
{2'b01, `W_AM1_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_TA1_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_IMG_CTRL2_ADDR}: r_conf_data_out = { 29'h00000000, wb_img_ctrl2_bit2_0 } ;
`W_BA2_ADDR :
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba2_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = wb_ba2_bit0 ;
end
{2'b01, `W_AM2_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_TA2_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_IMG_CTRL3_ADDR}: r_conf_data_out = { 29'h00000000, wb_img_ctrl3_bit2_0 } ;
{2'b01, `W_BA3_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba3_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = wb_ba3_bit0 ;
end
{2'b01, `W_AM3_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_TA3_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_IMG_CTRL4_ADDR}: r_conf_data_out = { 29'h00000000, wb_img_ctrl4_bit2_0 } ;
{2'b01, `W_BA4_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba4_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = wb_ba4_bit0 ;
end
{2'b01, `W_AM4_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_TA4_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_IMG_CTRL5_ADDR}: r_conf_data_out = { 29'h00000000, wb_img_ctrl5_bit2_0 } ;
{2'b01, `W_BA5_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba5_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
r_conf_data_out[0] = wb_ba5_bit0 ;
end
{2'b01, `W_AM5_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_TA5_ADDR}:
begin
r_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
r_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
end
{2'b01, `W_ERR_CS_ADDR}: r_conf_data_out = { wb_err_cs_bit31_24, /*13*/14'h0000, /*wb_err_cs_bit10,*/
wb_err_cs_bit9, wb_err_cs_bit8, 7'h00, wb_err_cs_bit0 } ;
{2'b01, `W_ERR_ADDR_ADDR}: r_conf_data_out = wb_err_addr ;
{2'b01, `W_ERR_DATA_ADDR}: r_conf_data_out = wb_err_data ;
{2'b01, `CNF_ADDR_ADDR}: r_conf_data_out = { 8'h00, cnf_addr_bit23_2, 1'h0, cnf_addr_bit0 } ;
// `CNF_DATA_ADDR: implemented elsewhere !!!
// `INT_ACK_ADDR : implemented elsewhere !!!
{2'b01, `ICR_ADDR}: r_conf_data_out = { icr_bit31, 26'h0000_000, icr_bit4_3, icr_bit2_0 } ;
{2'b01, `ISR_ADDR}: r_conf_data_out = { 27'h0000_000, isr_bit4_3, isr_bit2_0 } ;
`ifdef PCI_SPOCI
8'hff: r_conf_data_out = {spoci_cs_nack, 5'h0, spoci_cs_write, spoci_cs_read,
5'h0, spoci_cs_adr[10:8],
spoci_cs_adr[7:0],
spoci_cs_dat[7:0]} ;
`endif
default : r_conf_data_out = 32'h0000_0000 ;
endcase
end
`endif
`ifdef PCI_SPOCI
reg [ 7: 0] spoci_reg_num ;
wire [11: 0] w_conf_address = init_complete ? w_conf_address_in : {2'b00, spoci_reg_num, 2'b00} ;
`else
wire [11: 0] w_conf_address = w_conf_address_in ;
wire [ 7: 0] spoci_reg_num = 'hff ;
`endif
always@(w_conf_address or
status_bit15_11 or status_bit8 or r_status_bit4 or command_bit8 or command_bit6 or command_bit2_0 or
latency_timer or cache_line_size_reg or r_vendor_id or r_device_id or r_revision_id or
r_subsys_id or r_subsys_vendor_id or r_max_lat or r_min_gnt or
pci_ba0_bit31_8 or
pci_img_ctrl0_bit2_1 or pci_am0 or pci_ta0 or pci_ba0_bit0 or
pci_img_ctrl1_bit2_1 or pci_am1 or pci_ta1 or pci_ba1_bit31_8 or pci_ba1_bit0 or
pci_img_ctrl2_bit2_1 or pci_am2 or pci_ta2 or pci_ba2_bit31_8 or pci_ba2_bit0 or
pci_img_ctrl3_bit2_1 or pci_am3 or pci_ta3 or pci_ba3_bit31_8 or pci_ba3_bit0 or
pci_img_ctrl4_bit2_1 or pci_am4 or pci_ta4 or pci_ba4_bit31_8 or pci_ba4_bit0 or
pci_img_ctrl5_bit2_1 or pci_am5 or pci_ta5 or pci_ba5_bit31_8 or pci_ba5_bit0 or
interrupt_line or
pci_err_cs_bit31_24 or pci_err_cs_bit10 or pci_err_cs_bit9 or pci_err_cs_bit8 or pci_err_cs_bit0 or
pci_err_addr or pci_err_data or
wb_ba0_bit31_12 or wb_ba0_bit0 or
wb_img_ctrl1_bit2_0 or wb_ba1_bit31_12 or wb_ba1_bit0 or wb_am1 or wb_ta1 or
wb_img_ctrl2_bit2_0 or wb_ba2_bit31_12 or wb_ba2_bit0 or wb_am2 or wb_ta2 or
wb_img_ctrl3_bit2_0 or wb_ba3_bit31_12 or wb_ba3_bit0 or wb_am3 or wb_ta3 or
wb_img_ctrl4_bit2_0 or wb_ba4_bit31_12 or wb_ba4_bit0 or wb_am4 or wb_ta4 or
wb_img_ctrl5_bit2_0 or wb_ba5_bit31_12 or wb_ba5_bit0 or wb_am5 or wb_ta5 or
wb_err_cs_bit31_24 or /*wb_err_cs_bit10 or*/ wb_err_cs_bit9 or wb_err_cs_bit8 or wb_err_cs_bit0 or
wb_err_addr or wb_err_data or
cnf_addr_bit23_2 or cnf_addr_bit0 or icr_bit31 or icr_bit4_3 or icr_bit2_0 or isr_bit4_3 or isr_bit2_0
`ifdef PCI_CPCI_HS_IMPLEMENT
or hs_ins or hs_ext or hs_pi or hs_loo or hs_eim or hs_cap_id
`endif
`ifdef PCI_SPOCI
or spoci_cs_nack or spoci_cs_write or spoci_cs_read or spoci_cs_adr or spoci_cs_dat
`endif
)
begin
case (w_conf_address[9:2])
8'h0:
begin
w_conf_data_out = { r_device_id, r_vendor_id } ;
w_reg_select_dec = 57'h000_0000_0000_0000 ; // Read-Only register
end
8'h1: // w_reg_select_dec bit 0
begin
w_conf_data_out = { status_bit15_11, r_status_bit10_9, status_bit8, r_status_bit7, 1'h0, r_status_bit5, r_status_bit4,
4'h0, 7'h00, command_bit8, 1'h0, command_bit6, 3'h0, command_bit2_0 } ;
w_reg_select_dec = 57'h000_0000_0000_0001 ;
end
8'h2:
begin
w_conf_data_out = { r_class_code, r_revision_id } ;
w_reg_select_dec = 57'h000_0000_0000_0000 ; // Read-Only register
end
8'h3: // w_reg_select_dec bit 1
begin
w_conf_data_out = { 8'h00, r_header_type, latency_timer, cache_line_size_reg } ;
w_reg_select_dec = 57'h000_0000_0000_0002 ;
end
8'h4: // w_reg_select_dec bit 4
begin
`ifdef HOST
`ifdef NO_CNF_IMAGE
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba0_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba0_bit0 & pci_am0[31];
`else
w_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
w_conf_data_out[11: 0] = 12'h000 ;
`endif
`endif
`ifdef GUEST
w_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
w_conf_data_out[11: 0] = 12'h000 ;
`endif
w_reg_select_dec = 57'h000_0000_0000_0010 ; // The same for another address
end
8'h5: // w_reg_select_dec bit 8
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba1_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba1_bit0 & pci_am1[31];
w_reg_select_dec = 57'h000_0000_0000_0100 ; // The same for another address
end
8'h6: // w_reg_select_dec bit 12
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba2_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba2_bit0 & pci_am2[31];
w_reg_select_dec = 57'h000_0000_0000_1000 ; // The same for another address
end
8'h7: // w_reg_select_dec bit 16
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba3_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba3_bit0 & pci_am3[31];
w_reg_select_dec = 57'h000_0000_0001_0000 ; // The same for another address
end
8'h8: // w_reg_select_dec bit 20
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba4_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba4_bit0 & pci_am4[31];
w_reg_select_dec = 57'h000_0000_0010_0000 ; // The same for another address
end
8'h9: // w_reg_select_dec bit 24
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba5_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba5_bit0 & pci_am5[31];
w_reg_select_dec = 57'h000_0000_0100_0000 ; // The same for another address
end
8'hB:
begin
w_conf_data_out = {r_subsys_id, r_subsys_vendor_id} ;
w_reg_select_dec = 57'h000_0000_0000_0000 ;
end
`ifdef PCI_CPCI_HS_IMPLEMENT
8'hD:
begin
w_conf_data_out = {24'h0000_00, `PCI_CAP_PTR_VAL} ;
w_reg_select_dec = 57'h000_0000_0000_0000 ; // Read-Only register
end
`endif
8'hf: // w_reg_select_dec bit 2
begin
w_conf_data_out = { r_max_lat, r_min_gnt, r_interrupt_pin, interrupt_line } ;
w_reg_select_dec = 57'h000_0000_0000_0004 ;
end
`ifdef PCI_CPCI_HS_IMPLEMENT
(`PCI_CAP_PTR_VAL >> 2):
begin
w_reg_select_dec = 57'h100_0000_0000_0000 ;
w_conf_data_out = {8'h00, hs_ins, hs_ext, hs_pi, hs_loo, 1'b0, hs_eim, 1'b0, 8'h00, hs_cap_id} ;
end
`endif
{2'b01, `P_IMG_CTRL0_ADDR}: // w_reg_select_dec bit 3
begin
w_conf_data_out = { 29'h00000000, pci_img_ctrl0_bit2_1, 1'h0 } ;
w_reg_select_dec = 57'h000_0000_0000_0008 ;
end
{2'b01, `P_BA0_ADDR}: // w_reg_select_dec bit 4
begin
`ifdef HOST
`ifdef NO_CNF_IMAGE
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba0_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba0_bit0 & pci_am0[31];
`else
w_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
w_conf_data_out[11: 0] = 12'h000 ;
`endif
`endif
`ifdef GUEST
w_conf_data_out[31:12] = pci_ba0_bit31_8[31:12] ;
w_conf_data_out[11: 0] = 12'h000 ;
`endif
w_reg_select_dec = 57'h000_0000_0000_0010 ; // The same for another address
end
{2'b01, `P_AM0_ADDR}: // w_reg_select_dec bit 5
begin
`ifdef HOST
`ifdef NO_CNF_IMAGE
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
`else
w_conf_data_out[31:12] = pci_am0[31:12] ;
w_conf_data_out[11: 0] = 12'h000 ;
`endif
`endif
`ifdef GUEST
w_conf_data_out[31:12] = pci_am0[31:12] ;
w_conf_data_out[11: 0] = 12'h000 ;
`endif
w_reg_select_dec = 57'h000_0000_0000_0020 ;
end
{2'b01, `P_TA0_ADDR}: // w_reg_select_dec bit 6
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0000_0040 ;
end
{2'b01, `P_IMG_CTRL1_ADDR}: // w_reg_select_dec bit 7
begin
w_conf_data_out = { 29'h00000000, pci_img_ctrl1_bit2_1, 1'h0 } ;
w_reg_select_dec = 57'h000_0000_0000_0080 ;
end
{2'b01, `P_BA1_ADDR}: // w_reg_select_dec bit 8
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba1_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba1_bit0 & pci_am1[31];
w_reg_select_dec = 57'h000_0000_0000_0100 ; // The same for another address
end
{2'b01, `P_AM1_ADDR}: // w_reg_select_dec bit 9
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0000_0200 ;
end
{2'b01, `P_TA1_ADDR}: // w_reg_select_dec bit 10
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0000_0400 ;
end
{2'b01, `P_IMG_CTRL2_ADDR}: // w_reg_select_dec bit 11
begin
w_conf_data_out = { 29'h00000000, pci_img_ctrl2_bit2_1, 1'h0 } ;
w_reg_select_dec = 57'h000_0000_0000_0800 ;
end
{2'b01, `P_BA2_ADDR}: // w_reg_select_dec bit 12
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba2_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba2_bit0 & pci_am2[31];
w_reg_select_dec = 57'h000_0000_0000_1000 ; // The same for another address
end
{2'b01, `P_AM2_ADDR}: // w_reg_select_dec bit 13
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0000_2000 ;
end
{2'b01, `P_TA2_ADDR}: // w_reg_select_dec bit 14
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0000_4000 ;
end
{2'b01, `P_IMG_CTRL3_ADDR}: // w_reg_select_dec bit 15
begin
w_conf_data_out = { 29'h00000000, pci_img_ctrl3_bit2_1, 1'h0 } ;
w_reg_select_dec = 57'h000_0000_0000_8000 ;
end
{2'b01, `P_BA3_ADDR}: // w_reg_select_dec bit 16
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba3_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba3_bit0 & pci_am3[31];
w_reg_select_dec = 57'h000_0000_0001_0000 ; // The same for another address
end
{2'b01, `P_AM3_ADDR}: // w_reg_select_dec bit 17
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0002_0000 ;
end
{2'b01, `P_TA3_ADDR}: // w_reg_select_dec bit 18
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0004_0000 ;
end
{2'b01, `P_IMG_CTRL4_ADDR}: // w_reg_select_dec bit 19
begin
w_conf_data_out = { 29'h00000000, pci_img_ctrl4_bit2_1, 1'h0 } ;
w_reg_select_dec = 57'h000_0000_0008_0000 ;
end
{2'b01, `P_BA4_ADDR}: // w_reg_select_dec bit 20
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba4_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba4_bit0 & pci_am4[31];
w_reg_select_dec = 57'h000_0000_0010_0000 ; // The same for another address
end
{2'b01, `P_AM4_ADDR}: // w_reg_select_dec bit 21
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0020_0000 ;
end
{2'b01, `P_TA4_ADDR}: // w_reg_select_dec bit 22
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0040_0000 ;
end
{2'b01, `P_IMG_CTRL5_ADDR}: // w_reg_select_dec bit 23
begin
w_conf_data_out = { 29'h00000000, pci_img_ctrl5_bit2_1, 1'h0 } ;
w_reg_select_dec = 57'h000_0000_0080_0000 ;
end
{2'b01, `P_BA5_ADDR}: // w_reg_select_dec bit 24
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ba5_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] &
pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = pci_ba5_bit0 & pci_am5[31];
w_reg_select_dec = 57'h000_0000_0100_0000 ; // The same for another address
end
{2'b01, `P_AM5_ADDR}: // w_reg_select_dec bit 25
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0200_0000 ;
end
{2'b01, `P_TA5_ADDR}: // w_reg_select_dec bit 26
begin
w_conf_data_out[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = pci_ta5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`PCI_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0000_0400_0000 ;
end
{2'b01, `P_ERR_CS_ADDR}: // w_reg_select_dec bit 27
begin
w_conf_data_out = { pci_err_cs_bit31_24, 13'h0000, pci_err_cs_bit10, pci_err_cs_bit9,
pci_err_cs_bit8, 7'h00, pci_err_cs_bit0 } ;
w_reg_select_dec = 57'h000_0000_0800_0000 ;
end
{2'b01, `P_ERR_ADDR_ADDR}: // w_reg_select_dec bit 28
begin
w_conf_data_out = pci_err_addr ;
w_reg_select_dec = 57'h000_0000_0000_0000 ; // = 56'h00_0000_1000_0000 ;
end
{2'b01, `P_ERR_DATA_ADDR}: // w_reg_select_dec bit 29
begin
w_conf_data_out = pci_err_data ;
w_reg_select_dec = 57'h000_0000_0000_0000 ; // = 56'h00_0000_2000_0000 ;
end
// WB slave - configuration space
{2'b01, `WB_CONF_SPC_BAR_ADDR}:
begin
w_conf_data_out = { wb_ba0_bit31_12, 11'h000, wb_ba0_bit0 } ;
w_reg_select_dec = 57'h000_0000_0000_0000 ; // Read-Only register
end
{2'b01, `W_IMG_CTRL1_ADDR}: // w_reg_select_dec bit 30
begin
w_conf_data_out = { 29'h00000000, wb_img_ctrl1_bit2_0 } ;
w_reg_select_dec = 57'h000_0000_4000_0000 ;
end
{2'b01, `W_BA1_ADDR}: // w_reg_select_dec bit 31
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba1_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = wb_ba1_bit0 ;
w_reg_select_dec = 57'h000_0000_8000_0000 ;
end
{2'b01, `W_AM1_ADDR}: // w_reg_select_dec bit 32
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0001_0000_0000 ;
end
{2'b01, `W_TA1_ADDR}: // w_reg_select_dec bit 33
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0002_0000_0000 ;
end
{2'b01, `W_IMG_CTRL2_ADDR}: // w_reg_select_dec bit 34
begin
w_conf_data_out = { 29'h00000000, wb_img_ctrl2_bit2_0 } ;
w_reg_select_dec = 57'h000_0004_0000_0000 ;
end
{2'b01, `W_BA2_ADDR}: // w_reg_select_dec bit 35
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba2_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = wb_ba2_bit0 ;
w_reg_select_dec = 57'h000_0008_0000_0000 ;
end
{2'b01, `W_AM2_ADDR}: // w_reg_select_dec bit 36
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0010_0000_0000 ;
end
{2'b01, `W_TA2_ADDR}: // w_reg_select_dec bit 37
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0020_0000_0000 ;
end
{2'b01, `W_IMG_CTRL3_ADDR}: // w_reg_select_dec bit 38
begin
w_conf_data_out = { 29'h00000000, wb_img_ctrl3_bit2_0 } ;
w_reg_select_dec = 57'h000_0040_0000_0000 ;
end
{2'b01, `W_BA3_ADDR}: // w_reg_select_dec bit 39
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba3_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = wb_ba3_bit0 ;
w_reg_select_dec = 57'h000_0080_0000_0000 ;
end
{2'b01, `W_AM3_ADDR}: // w_reg_select_dec bit 40
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0100_0000_0000 ;
end
{2'b01, `W_TA3_ADDR}: // w_reg_select_dec bit 41
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_0200_0000_0000 ;
end
{2'b01, `W_IMG_CTRL4_ADDR}: // w_reg_select_dec bit 42
begin
w_conf_data_out = { 29'h00000000, wb_img_ctrl4_bit2_0 } ;
w_reg_select_dec = 57'h000_0400_0000_0000 ;
end
{2'b01, `W_BA4_ADDR}: // w_reg_select_dec bit 43
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba4_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = wb_ba4_bit0 ;
w_reg_select_dec = 57'h000_0800_0000_0000 ;
end
{2'b01, `W_AM4_ADDR}: // w_reg_select_dec bit 44
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_1000_0000_0000 ;
end
{2'b01, `W_TA4_ADDR}: // w_reg_select_dec bit 45
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h000_2000_0000_0000 ;
end
{2'b01, `W_IMG_CTRL5_ADDR}: // w_reg_select_dec bit 46
begin
w_conf_data_out = { 29'h00000000, wb_img_ctrl5_bit2_0 } ;
w_reg_select_dec = 57'h000_4000_0000_0000 ;
end
{2'b01, `W_BA5_ADDR}: // w_reg_select_dec bit 47
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ba5_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] &
wb_am5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):1] = 0 ;
w_conf_data_out[0] = wb_ba5_bit0 ;
w_reg_select_dec = 57'h000_8000_0000_0000 ;
end
{2'b01, `W_AM5_ADDR}: // w_reg_select_dec bit 48
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_am5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h001_0000_0000_0000 ;
end
{2'b01, `W_TA5_ADDR}: // w_reg_select_dec bit 49
begin
w_conf_data_out[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = wb_ta5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
w_conf_data_out[(31-`WB_NUM_OF_DEC_ADDR_LINES):0] = 0 ;
w_reg_select_dec = 57'h002_0000_0000_0000 ;
end
{2'b01, `W_ERR_CS_ADDR}: // w_reg_select_dec bit 50
begin
w_conf_data_out = { wb_err_cs_bit31_24, /*13*/14'h0000, /*wb_err_cs_bit10,*/
wb_err_cs_bit9, wb_err_cs_bit8, 7'h00, wb_err_cs_bit0 } ;
w_reg_select_dec = 57'h004_0000_0000_0000 ;
end
{2'b01, `W_ERR_ADDR_ADDR}: // w_reg_select_dec bit 51
begin
w_conf_data_out = wb_err_addr ;
w_reg_select_dec = 57'h008_0000_0000_0000 ;
end
{2'b01, `W_ERR_DATA_ADDR}: // w_reg_select_dec bit 52
begin
w_conf_data_out = wb_err_data ;
w_reg_select_dec = 57'h010_0000_0000_0000 ;
end
{2'b01, `CNF_ADDR_ADDR}: // w_reg_select_dec bit 53
begin
w_conf_data_out = { 8'h00, cnf_addr_bit23_2, 1'h0, cnf_addr_bit0 } ;
w_reg_select_dec = 57'h020_0000_0000_0000 ;
end
// `CNF_DATA_ADDR: implemented elsewhere !!!
// `INT_ACK_ADDR: implemented elsewhere !!!
{2'b01, `ICR_ADDR}: // w_reg_select_dec bit 54
begin
w_conf_data_out = { icr_bit31, 26'h0000_000, icr_bit4_3, icr_bit2_0 } ;
w_reg_select_dec = 57'h040_0000_0000_0000 ;
end
{2'b01, `ISR_ADDR}: // w_reg_select_dec bit 55
begin
w_conf_data_out = { 27'h0000_000, isr_bit4_3, isr_bit2_0 } ;
w_reg_select_dec = 57'h080_0000_0000_0000 ;
end
`ifdef PCI_SPOCI
8'hff:
begin
w_conf_data_out = {spoci_cs_nack, 5'h0, spoci_cs_write, spoci_cs_read,
5'h0, spoci_cs_adr[10:8],
spoci_cs_adr[7:0],
spoci_cs_dat[7:0]} ;
// this register is implemented separate from other registers, because
// it has special features implemented
w_reg_select_dec = 57'h000_0000_0000_0000 ;
end
`endif
default:
begin
w_conf_data_out = 32'h0000_0000 ;
w_reg_select_dec = 57'h000_0000_0000_0000 ;
end
endcase
end
`ifdef PCI_SPOCI
reg init_we ;
reg init_cfg_done ;
reg [31: 0] spoci_dat ;
wire [31: 0] w_conf_data = init_cfg_done ? w_conf_data_in : spoci_dat ;
wire [ 3: 0] w_byte_en = init_cfg_done ? w_byte_en_in : 4'b0000 ;
`else
wire init_we = 1'b0 ;
wire init_cfg_done = 1'b1 ;
wire [31: 0] w_conf_data = w_conf_data_in ;
wire [ 3: 0] w_byte_en = w_byte_en_in ;
wire [31: 0] spoci_dat = 'h0000_0000 ;
`endif
// Reduced write data for BASE, MASK and TRANSLATION registers of PCI and WB images
assign w_conf_pdata_reduced[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] = w_conf_data[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign w_conf_pdata_reduced[(31-`PCI_NUM_OF_DEC_ADDR_LINES): 0] = 0 ;
assign w_conf_wdata_reduced[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] = w_conf_data[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign w_conf_wdata_reduced[(31-`WB_NUM_OF_DEC_ADDR_LINES): 0] = 0 ;
wire w_we = w_we_i | init_we ;
always@(posedge w_clock or posedge reset)
begin
// Here are implemented all registers that are reset with RESET signal otherwise they can be normaly written!!!
// Registers that are commented are implemented after this alwasy statement, because they are e.g. reset with
// RESET signal, set with some status signal and they are erased with writting '1' into them !!!
if (reset)
begin
/*status_bit15_11 ; status_bit8 ;*/ command_bit8 <= 1'h0 ; command_bit6 <= 1'h0 ; command_bit2_0 <= 3'h0 ;
latency_timer <= 8'h00 ; cache_line_size_reg <= 8'h00 ;
// ALL pci_base address registers are the same as pci_baX registers !
interrupt_line <= 8'h00 ;
`ifdef HOST
`ifdef NO_CNF_IMAGE // if PCI bridge is HOST and IMAGE0 is assigned as general image space
`ifdef PCI_IMAGE0
pci_img_ctrl0_bit2_1 <= {`PCI_AT_EN0, 1'b0} ;
pci_ba0_bit31_8 <= 24'h0000_00 ;
pci_ba0_bit0 <= `PCI_BA0_MEM_IO ;
pci_am0 <= `PCI_AM0 ;
pci_ta0 <= `PCI_TA0 ;//fr2201 translation address
`endif
`else
pci_ba0_bit31_8 <= 24'h0000_00 ;
`endif
`endif
`ifdef GUEST
pci_ba0_bit31_8 <= 24'h0000_00 ;
`endif
pci_img_ctrl1_bit2_1 <= {`PCI_AT_EN1, 1'b0} ;
pci_ba1_bit31_8 <= 24'h0000_00 ;
`ifdef HOST
pci_ba1_bit0 <= `PCI_BA1_MEM_IO ;
`endif
pci_am1 <= `PCI_AM1;
pci_ta1 <= `PCI_TA1 ;//FR2201 translation address ;
`ifdef PCI_IMAGE2
pci_img_ctrl2_bit2_1 <= {`PCI_AT_EN2, 1'b0} ;
pci_ba2_bit31_8 <= 24'h0000_00 ;
`ifdef HOST
pci_ba2_bit0 <= `PCI_BA2_MEM_IO ;
`endif
pci_am2 <= `PCI_AM2;
pci_ta2 <= `PCI_TA2 ;//FR2201 translation address ;
`endif
`ifdef PCI_IMAGE3
pci_img_ctrl3_bit2_1 <= {`PCI_AT_EN3, 1'b0} ; //FR2201 when defined enabled
pci_ba3_bit31_8 <= 24'h0000_00 ;
`ifdef HOST
pci_ba3_bit0 <= `PCI_BA3_MEM_IO ;
`endif
pci_am3 <= `PCI_AM3;
pci_ta3 <= `PCI_TA3 ;//FR2201 translation address ;
`endif
`ifdef PCI_IMAGE4
pci_img_ctrl4_bit2_1 <= {`PCI_AT_EN4, 1'b0} ; //FR2201 when defined enabled
pci_ba4_bit31_8 <= 24'h0000_00 ;
`ifdef HOST
pci_ba4_bit0 <= `PCI_BA4_MEM_IO ;
`endif
pci_am4 <= `PCI_AM4;
pci_ta4 <= `PCI_TA4 ;//FR2201 translation address ;
`endif
`ifdef PCI_IMAGE5
pci_img_ctrl5_bit2_1 <= {`PCI_AT_EN5, 1'b0} ; //FR2201 when defined enabled
pci_ba5_bit31_8 <= 24'h0000_00 ;
`ifdef HOST
pci_ba5_bit0 <= `PCI_BA5_MEM_IO ;
`endif
pci_am5 <= `PCI_AM5; //FR2201 pci_am0
pci_ta5 <= `PCI_TA5 ;//FR2201 translation address ;
`endif
/*pci_err_cs_bit31_24 ; pci_err_cs_bit10; pci_err_cs_bit9 ; pci_err_cs_bit8 ;*/ pci_err_cs_bit0 <= 1'h0 ;
/*pci_err_addr ;*/
/*pci_err_data ;*/
//
wb_img_ctrl1_bit2_0 <= {`WB_AT_EN1, 2'b00} ;
wb_ba1_bit31_12 <=`WB_BA1; //FR2201 Address bar
wb_ba1_bit0 <=`WB_BA1_MEM_IO;//
wb_am1 <= `WB_AM1 ;//FR2201 Address mask
wb_ta1 <= `WB_TA1 ;//FR2201 20'h0000_0 ;
`ifdef WB_IMAGE2
wb_img_ctrl2_bit2_0 <= {`WB_AT_EN2, 2'b00} ;
wb_ba2_bit31_12 <=`WB_BA2; //FR2201 Address bar
wb_ba2_bit0 <=`WB_BA2_MEM_IO;//
wb_am2 <=`WB_AM2 ;//FR2201 Address mask
wb_ta2 <=`WB_TA2 ;//FR2201 translation address ;
`endif
`ifdef WB_IMAGE3
wb_img_ctrl3_bit2_0 <= {`WB_AT_EN3, 2'b00} ;
wb_ba3_bit31_12 <=`WB_BA3; //FR2201 Address bar
wb_ba3_bit0 <=`WB_BA3_MEM_IO;//
wb_am3 <=`WB_AM3 ;//FR2201 Address mask
wb_ta3 <=`WB_TA3 ;//FR2201 translation address ;
`endif
`ifdef WB_IMAGE4
wb_img_ctrl4_bit2_0 <= {`WB_AT_EN4, 2'b00} ;
wb_ba4_bit31_12 <=`WB_BA4; //FR2201 Address bar
wb_ba4_bit0 <=`WB_BA4_MEM_IO;//
wb_am4 <=`WB_AM4 ;//FR2201 Address mask
wb_ta4 <=`WB_TA4 ;//FR2201 translation address ;
`endif
`ifdef WB_IMAGE5
wb_img_ctrl5_bit2_0 <= {`WB_AT_EN5, 2'b00} ;
wb_ba5_bit31_12 <=`WB_BA5; //FR2201 Address bar ;
wb_ba5_bit0 <=`WB_BA5_MEM_IO;//FR2201 1'h0 ;
wb_am5 <=`WB_AM5 ;//FR2201 Address mask
wb_ta5 <=`WB_TA5 ;//FR2201 translation address ;
`endif
/*wb_err_cs_bit31_24 ; wb_err_cs_bit10 ; wb_err_cs_bit9 ; wb_err_cs_bit8 ;*/ wb_err_cs_bit0 <= 1'h0 ;
/*wb_err_addr ;*/
/*wb_err_data ;*/
`ifdef HOST
cnf_addr_bit23_2 <= 22'h0000_00 ; cnf_addr_bit0 <= 1'h0 ;
`endif
icr_bit31 <= 1'h0 ;
`ifdef HOST
icr_bit2_0 <= 3'h0 ;
icr_bit4_3 <= 2'h0 ;
`else
icr_bit2_0[2:0] <= 3'h0 ;
`endif
/*isr_bit4_3 ; isr_bit2_0 ;*/
// Not register bit; used only internally after reset!
init_complete <= 1'b0 ;
`ifdef GUEST
rst_inactive_sync <= 1'b0 ;
rst_inactive <= 1'b0 ;
`endif
`ifdef PCI_CPCI_HS_IMPLEMENT
/*hs_ins hs_ext*/ hs_loo <= 1'b0; hs_eim <= 1'b0;
// Not register bits; used only internally after reset!
/*hs_ins_armed hs_ext_armed*/
`endif
end
/* -----------------------------------------------------------------------------------------------------------
Following register bits should have asynchronous RESET & SET! That is why they are IMPLEMENTED separately
after this ALWAYS block!!! (for every register bit, there are two D-FF implemented)
status_bit15_11[15] <= 1'b1 ;
status_bit15_11[14] <= 1'b1 ;
status_bit15_11[13] <= 1'b1 ;
status_bit15_11[12] <= 1'b1 ;
status_bit15_11[11] <= 1'b1 ;
status_bit8 <= 1'b1 ;
pci_err_cs_bit10 <= 1'b1 ;
pci_err_cs_bit9 <= 1'b1 ;
pci_err_cs_bit8 <= 1'b1 ;
pci_err_cs_bit31_24 <= { pci_error_be, pci_error_bc } ;
pci_err_addr <= pci_error_addr ;
pci_err_data <= pci_error_data ;
wb_err_cs_bit10 <= 1'b1 ;
wb_err_cs_bit9 <= 1'b1 ;
wb_err_cs_bit8 <= 1'b1 ;
wb_err_cs_bit31_24 <= { wb_error_be, wb_error_bc } ;
wb_err_addr <= wb_error_addr ;
wb_err_data <= wb_error_data ;
isr_bit4_0[4] <= 1'b1 & icr_bit4_0[4] ;
isr_bit4_0[3] <= 1'b1 & icr_bit4_0[3] ;
isr_bit4_0[2] <= 1'b1 & icr_bit4_0[2] ;
isr_bit4_0[1] <= 1'b1 & icr_bit4_0[1] ;
isr_bit4_0[0] <= 1'b1 & icr_bit4_0[0] ;
hs_ins; hs_ext;
-----------------------------------------------------------------------------------------------------------*/
// Here follows normal writting to registers (only to their valid bits) !
else
begin
if (w_we)
begin
// PCI header - configuration space
if (w_reg_select_dec[0]) // w_conf_address[5:2] = 4'h1:
begin
if (~w_byte_en[1])
command_bit8 <= w_conf_data[8] ;
if (~w_byte_en[0])
begin
command_bit6 <= w_conf_data[6] ;
command_bit2_0 <= w_conf_data[2:0] ;
end
end
if (w_reg_select_dec[1]) // w_conf_address[5:2] = 4'h3:
begin
if (~w_byte_en[1])
latency_timer <= w_conf_data[15:8] ;
if (~w_byte_en[0])
cache_line_size_reg <= w_conf_data[7:0] ;
end
// if (w_reg_select_dec[4]) // w_conf_address[5:2] = 4'h4:
// Also used with IMAGE0
// if (w_reg_select_dec[8]) // w_conf_address[5:2] = 4'h5:
// Also used with IMAGE1
// if (w_reg_select_dec[12]) // w_conf_address[5:2] = 4'h6:
// Also used with IMAGE2
// if (w_reg_select_dec[16]) // w_conf_address[5:2] = 4'h7:
// Also used with IMAGE3
// if (w_reg_select_dec[20]) // w_conf_address[5:2] = 4'h8:
// Also used with IMAGE4
// if (w_reg_select_dec[24]) // w_conf_address[5:2] = 4'h9:
// Also used with IMAGE5 and IMAGE6
if (w_reg_select_dec[2]) // w_conf_address[5:2] = 4'hf:
begin
if (~w_byte_en[0])
interrupt_line <= w_conf_data[7:0] ;
end
// PCI target - configuration space
`ifdef HOST
`ifdef NO_CNF_IMAGE
`ifdef PCI_IMAGE0 // if PCI bridge is HOST and IMAGE0 is assigned as general image space
if (w_reg_select_dec[3]) // case (w_conf_address[7:2]) = `P_IMG_CTRL0_ADDR:
begin
if (~w_byte_en[0])
pci_img_ctrl0_bit2_1 <= w_conf_data[2:1] ;
end
if (w_reg_select_dec[4]) // case (w_conf_address[7:2]) = `P_BA0_ADDR:
begin
if (~w_byte_en[3])
pci_ba0_bit31_8[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ba0_bit31_8[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ba0_bit31_8[15: 8] <= w_conf_pdata_reduced[15: 8] ;
if (~w_byte_en[0])
pci_ba0_bit0 <= w_conf_data[0] ;
end
if (w_reg_select_dec[5]) // case (w_conf_address[7:2]) = `P_AM0_ADDR:
begin
if (~w_byte_en[3])
pci_am0[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_am0[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_am0[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
if (w_reg_select_dec[6]) // case (w_conf_address[7:2]) = `P_TA0_ADDR:
begin
if (~w_byte_en[3])
pci_ta0[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ta0[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ta0[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
`endif
`else
if (w_reg_select_dec[4]) // case (w_conf_address[7:2]) = `P_BA0_ADDR:
begin
if (~w_byte_en[3])
pci_ba0_bit31_8[31:24] <= w_conf_data[31:24] ;
if (~w_byte_en[2])
pci_ba0_bit31_8[23:16] <= w_conf_data[23:16] ;
if (~w_byte_en[1])
pci_ba0_bit31_8[15:12] <= w_conf_data[15:12] ;
end
`endif
`endif
`ifdef GUEST
if (w_reg_select_dec[4]) // case (w_conf_address[7:2]) = `P_BA0_ADDR:
begin
if (~w_byte_en[3])
pci_ba0_bit31_8[31:24] <= w_conf_data[31:24] ;
if (~w_byte_en[2])
pci_ba0_bit31_8[23:16] <= w_conf_data[23:16] ;
if (~w_byte_en[1])
pci_ba0_bit31_8[15:12] <= w_conf_data[15:12] ;
end
`endif
if (w_reg_select_dec[7]) // case (w_conf_address[7:2]) = `P_IMG_CTRL1_ADDR:
begin
if (~w_byte_en[0])
pci_img_ctrl1_bit2_1 <= w_conf_data[2:1] ;
end
if (w_reg_select_dec[8]) // case (w_conf_address[7:2]) = `P_BA1_ADDR:
begin
if (~w_byte_en[3])
pci_ba1_bit31_8[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ba1_bit31_8[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ba1_bit31_8[15: 8] <= w_conf_pdata_reduced[15: 8] ;
`ifdef HOST
if (~w_byte_en[0])
pci_ba1_bit0 <= w_conf_data[0] ;
`endif
end
if (w_reg_select_dec[9]) // case (w_conf_address[7:2]) = `P_AM1_ADDR:
begin
if (~w_byte_en[3])
pci_am1[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_am1[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_am1[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
if (w_reg_select_dec[10]) // case (w_conf_address[7:2]) = `P_TA1_ADDR:
begin
if (~w_byte_en[3])
pci_ta1[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ta1[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ta1[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
`ifdef PCI_IMAGE2
if (w_reg_select_dec[11]) // case (w_conf_address[7:2]) = `P_IMG_CTRL2_ADDR:
begin
if (~w_byte_en[0])
pci_img_ctrl2_bit2_1 <= w_conf_data[2:1] ;
end
if (w_reg_select_dec[12]) // case (w_conf_address[7:2]) = `P_BA2_ADDR:
begin
if (~w_byte_en[3])
pci_ba2_bit31_8[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ba2_bit31_8[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ba2_bit31_8[15: 8] <= w_conf_pdata_reduced[15: 8] ;
`ifdef HOST
if (~w_byte_en[0])
pci_ba2_bit0 <= w_conf_data[0] ;
`endif
end
if (w_reg_select_dec[13]) // case (w_conf_address[7:2]) = `P_AM2_ADDR:
begin
if (~w_byte_en[3])
pci_am2[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_am2[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_am2[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
if (w_reg_select_dec[14]) // case (w_conf_address[7:2]) = `P_TA2_ADDR:
begin
if (~w_byte_en[3])
pci_ta2[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ta2[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ta2[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
`endif
`ifdef PCI_IMAGE3
if (w_reg_select_dec[15]) // case (w_conf_address[7:2]) = `P_IMG_CTRL3_ADDR:
begin
if (~w_byte_en[0])
pci_img_ctrl3_bit2_1 <= w_conf_data[2:1] ;
end
if (w_reg_select_dec[16]) // case (w_conf_address[7:2]) = `P_BA3_ADDR:
begin
if (~w_byte_en[3])
pci_ba3_bit31_8[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ba3_bit31_8[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ba3_bit31_8[15: 8] <= w_conf_pdata_reduced[15: 8] ;
`ifdef HOST
if (~w_byte_en[0])
pci_ba3_bit0 <= w_conf_data[0] ;
`endif
end
if (w_reg_select_dec[17]) // case (w_conf_address[7:2]) = `P_AM3_ADDR:
begin
if (~w_byte_en[3])
pci_am3[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_am3[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_am3[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
if (w_reg_select_dec[18]) // case (w_conf_address[7:2]) = `P_TA3_ADDR:
begin
if (~w_byte_en[3])
pci_ta3[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ta3[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ta3[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
`endif
`ifdef PCI_IMAGE4
if (w_reg_select_dec[19]) // case (w_conf_address[7:2]) = `P_IMG_CTRL4_ADDR:
begin
if (~w_byte_en[0])
pci_img_ctrl4_bit2_1 <= w_conf_data[2:1] ;
end
if (w_reg_select_dec[20]) // case (w_conf_address[7:2]) = `P_BA4_ADDR:
begin
if (~w_byte_en[3])
pci_ba4_bit31_8[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ba4_bit31_8[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ba4_bit31_8[15: 8] <= w_conf_pdata_reduced[15: 8] ;
`ifdef HOST
if (~w_byte_en[0])
pci_ba4_bit0 <= w_conf_data[0] ;
`endif
end
if (w_reg_select_dec[21]) // case (w_conf_address[7:2]) = `P_AM4_ADDR:
begin
if (~w_byte_en[3])
pci_am4[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_am4[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_am4[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
if (w_reg_select_dec[22]) // case (w_conf_address[7:2]) = `P_TA4_ADDR:
begin
if (~w_byte_en[3])
pci_ta4[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ta4[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ta4[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
`endif
`ifdef PCI_IMAGE5
if (w_reg_select_dec[23]) // case (w_conf_address[7:2]) = `P_IMG_CTRL5_ADDR:
begin
if (~w_byte_en[0])
pci_img_ctrl5_bit2_1 <= w_conf_data[2:1] ;
end
if (w_reg_select_dec[24]) // case (w_conf_address[7:2]) = `P_BA5_ADDR:
begin
if (~w_byte_en[3])
pci_ba5_bit31_8[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ba5_bit31_8[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ba5_bit31_8[15: 8] <= w_conf_pdata_reduced[15: 8] ;
`ifdef HOST
if (~w_byte_en[0])
pci_ba5_bit0 <= w_conf_data[0] ;
`endif
end
if (w_reg_select_dec[25]) // case (w_conf_address[7:2]) = `P_AM5_ADDR:
begin
if (~w_byte_en[3])
pci_am5[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_am5[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_am5[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
if (w_reg_select_dec[26]) // case (w_conf_address[7:2]) = `P_TA5_ADDR:
begin
if (~w_byte_en[3])
pci_ta5[31:24] <= w_conf_pdata_reduced[31:24] ;
if (~w_byte_en[2])
pci_ta5[23:16] <= w_conf_pdata_reduced[23:16] ;
if (~w_byte_en[1])
pci_ta5[15: 8] <= w_conf_pdata_reduced[15: 8] ;
end
`endif
if (w_reg_select_dec[27]) // case (w_conf_address[7:2]) = `P_ERR_CS_ADDR:
begin
if (~w_byte_en[0])
pci_err_cs_bit0 <= w_conf_data[0] ;
end
// WB slave - configuration space
if (w_reg_select_dec[30]) // case (w_conf_address[7:2]) = `W_IMG_CTRL1_ADDR:
begin
if (~w_byte_en[0])
wb_img_ctrl1_bit2_0 <= w_conf_data[2:0] ;
end
if (w_reg_select_dec[31]) // case (w_conf_address[7:2]) = `W_BA1_ADDR:
begin
if (~w_byte_en[3])
wb_ba1_bit31_12[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ba1_bit31_12[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ba1_bit31_12[15:12] <= w_conf_wdata_reduced[15:12] ;
if (~w_byte_en[0])
wb_ba1_bit0 <= w_conf_data[0] ;
end
if (w_reg_select_dec[32]) // case (w_conf_address[7:2]) = `W_AM1_ADDR:
begin
if (~w_byte_en[3])
wb_am1[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_am1[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_am1[15:12] <= w_conf_wdata_reduced[15:12] ;
end
if (w_reg_select_dec[33]) // case (w_conf_address[7:2]) = `W_TA1_ADDR:
begin
if (~w_byte_en[3])
wb_ta1[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ta1[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ta1[15:12] <= w_conf_wdata_reduced[15:12] ;
end
`ifdef WB_IMAGE2
if (w_reg_select_dec[34]) // case (w_conf_address[7:2]) = `W_IMG_CTRL2_ADDR:
begin
if (~w_byte_en[0])
wb_img_ctrl2_bit2_0 <= w_conf_data[2:0] ;
end
if (w_reg_select_dec[35]) // case (w_conf_address[7:2]) = `W_BA2_ADDR:
begin
if (~w_byte_en[3])
wb_ba2_bit31_12[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ba2_bit31_12[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ba2_bit31_12[15:12] <= w_conf_wdata_reduced[15:12] ;
if (~w_byte_en[0])
wb_ba2_bit0 <= w_conf_data[0] ;
end
if (w_reg_select_dec[36]) // case (w_conf_address[7:2]) = `W_AM2_ADDR:
begin
if (~w_byte_en[3])
wb_am2[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_am2[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_am2[15:12] <= w_conf_wdata_reduced[15:12] ;
end
if (w_reg_select_dec[37]) // case (w_conf_address[7:2]) = `W_TA2_ADDR:
begin
if (~w_byte_en[3])
wb_ta2[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ta2[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ta2[15:12] <= w_conf_wdata_reduced[15:12] ;
end
`endif
`ifdef WB_IMAGE3
if (w_reg_select_dec[38]) // case (w_conf_address[7:2]) = `W_IMG_CTRL3_ADDR:
begin
if (~w_byte_en[0])
wb_img_ctrl3_bit2_0 <= w_conf_data[2:0] ;
end
if (w_reg_select_dec[39]) // case (w_conf_address[7:2]) = `W_BA3_ADDR:
begin
if (~w_byte_en[3])
wb_ba3_bit31_12[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ba3_bit31_12[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ba3_bit31_12[15:12] <= w_conf_wdata_reduced[15:12] ;
if (~w_byte_en[0])
wb_ba3_bit0 <= w_conf_data[0] ;
end
if (w_reg_select_dec[40]) // case (w_conf_address[7:2]) = `W_AM3_ADDR:
begin
if (~w_byte_en[3])
wb_am3[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_am3[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_am3[15:12] <= w_conf_wdata_reduced[15:12] ;
end
if (w_reg_select_dec[41]) // case (w_conf_address[7:2]) = `W_TA3_ADDR:
begin
if (~w_byte_en[3])
wb_ta3[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ta3[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ta3[15:12] <= w_conf_wdata_reduced[15:12] ;
end
`endif
`ifdef WB_IMAGE4
if (w_reg_select_dec[42]) // case (w_conf_address[7:2]) = `W_IMG_CTRL4_ADDR:
begin
if (~w_byte_en[0])
wb_img_ctrl4_bit2_0 <= w_conf_data[2:0] ;
end
if (w_reg_select_dec[43]) // case (w_conf_address[7:2]) = `W_BA4_ADDR:
begin
if (~w_byte_en[3])
wb_ba4_bit31_12[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ba4_bit31_12[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ba4_bit31_12[15:12] <= w_conf_wdata_reduced[15:12] ;
if (~w_byte_en[0])
wb_ba4_bit0 <= w_conf_data[0] ;
end
if (w_reg_select_dec[44]) // case (w_conf_address[7:2]) = `W_AM4_ADDR:
begin
if (~w_byte_en[3])
wb_am4[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_am4[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_am4[15:12] <= w_conf_wdata_reduced[15:12] ;
end
if (w_reg_select_dec[45]) // case (w_conf_address[7:2]) = `W_TA4_ADDR:
begin
if (~w_byte_en[3])
wb_ta4[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ta4[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ta4[15:12] <= w_conf_wdata_reduced[15:12] ;
end
`endif
`ifdef WB_IMAGE5
if (w_reg_select_dec[46]) // case (w_conf_address[7:2]) = `W_IMG_CTRL5_ADDR:
begin
if (~w_byte_en[0])
wb_img_ctrl5_bit2_0 <= w_conf_data[2:0] ;
end
if (w_reg_select_dec[47]) // case (w_conf_address[7:2]) = `W_BA5_ADDR:
begin
if (~w_byte_en[3])
wb_ba5_bit31_12[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ba5_bit31_12[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ba5_bit31_12[15:12] <= w_conf_wdata_reduced[15:12] ;
if (~w_byte_en[0])
wb_ba5_bit0 <= w_conf_data[0] ;
end
if (w_reg_select_dec[48]) // case (w_conf_address[7:2]) = `W_AM5_ADDR:
begin
if (~w_byte_en[3])
wb_am5[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_am5[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_am5[15:12] <= w_conf_wdata_reduced[15:12] ;
end
if (w_reg_select_dec[49]) // case (w_conf_address[7:2]) = `W_TA5_ADDR:
begin
if (~w_byte_en[3])
wb_ta5[31:24] <= w_conf_wdata_reduced[31:24] ;
if (~w_byte_en[2])
wb_ta5[23:16] <= w_conf_wdata_reduced[23:16] ;
if (~w_byte_en[1])
wb_ta5[15:12] <= w_conf_wdata_reduced[15:12] ;
end
`endif
if (w_reg_select_dec[50]) // case (w_conf_address[7:2]) = `W_ERR_CS_ADDR:
begin
if (~w_byte_en[0])
wb_err_cs_bit0 <= w_conf_data[0] ;
end
`ifdef HOST
if (w_reg_select_dec[53]) // case (w_conf_address[7:2]) = `CNF_ADDR_ADDR:
begin
if (~w_byte_en[2])
cnf_addr_bit23_2[23:16] <= w_conf_data[23:16] ;
if (~w_byte_en[1])
cnf_addr_bit23_2[15:8] <= w_conf_data[15:8] ;
if (~w_byte_en[0])
begin
cnf_addr_bit23_2[7:2] <= w_conf_data[7:2] ;
cnf_addr_bit0 <= w_conf_data[0] ;
end
end
`endif
// `CNF_DATA_ADDR: implemented elsewhere !!!
// `INT_ACK_ADDR : implemented elsewhere !!!
if (w_reg_select_dec[54]) // case (w_conf_address[7:2]) = `ICR_ADDR:
begin
if (~w_byte_en[3])
icr_bit31 <= w_conf_data[31] ;
if (~w_byte_en[0])
begin
`ifdef HOST
icr_bit4_3 <= w_conf_data[4:3] ;
icr_bit2_0 <= w_conf_data[2:0] ;
`else
icr_bit2_0[2:0] <= w_conf_data[2:0] ;
`endif
end
end
`ifdef PCI_CPCI_HS_IMPLEMENT
if (w_reg_select_dec[56])
begin
if (~w_byte_en[2])
begin
hs_loo <= w_conf_data[19];
hs_eim <= w_conf_data[17];
end
end
`endif
end // end of we
// Not register bits; used only internally after reset!
`ifdef GUEST
rst_inactive_sync <= 1'b1 ;
rst_inactive <= rst_inactive_sync ;
`endif
if (rst_inactive & ~init_complete & init_cfg_done)
init_complete <= 1'b1 ;
end
end
// implementation of read only device identification registers
always@(posedge w_clock or posedge reset)
begin
if (reset)
begin
r_vendor_id <= `HEADER_VENDOR_ID ;
r_device_id <= `HEADER_DEVICE_ID ;
r_revision_id <= `HEADER_REVISION_ID ;
r_subsys_vendor_id <= `HEADER_SUBSYS_VENDOR_ID ;
r_subsys_id <= `HEADER_SUBSYS_ID ;
r_max_lat <= `HEADER_MAX_LAT ;
r_min_gnt <= `HEADER_MIN_GNT ;
end else
begin
if (init_we)
begin
if (spoci_reg_num == 'h0)
begin
r_vendor_id <= spoci_dat[15: 0] ;
r_device_id <= spoci_dat[31:16] ;
end
if (spoci_reg_num == 'hB)
begin
r_subsys_vendor_id <= spoci_dat[15: 0] ;
r_subsys_id <= spoci_dat[31:16] ;
end
if (spoci_reg_num == 'h2)
begin
r_revision_id <= spoci_dat[ 7: 0] ;
end
if (spoci_reg_num == 'hF)
begin
r_max_lat <= spoci_dat[31:24] ;
r_min_gnt <= spoci_dat[23:16] ;
end
end
end
end
// This signals are synchronous resets for registers, whic occures when asynchronous RESET is '1' or
// data '1' is synchronously written into them!
reg delete_status_bit15 ;
reg delete_status_bit14 ;
reg delete_status_bit13 ;
reg delete_status_bit12 ;
reg delete_status_bit11 ;
reg delete_status_bit8 ;
reg delete_pci_err_cs_bit8 ;
reg delete_wb_err_cs_bit8 ;
reg delete_isr_bit4 ;
reg delete_isr_bit3 ;
reg delete_isr_bit2 ;
reg delete_isr_bit1 ;
// This are aditional register bits, which are resets when their value is '1' !!!
always@(w_we or w_reg_select_dec or w_conf_data or w_byte_en)
begin
// I' is written into, then it also sets signals to '1'
delete_status_bit15 = w_conf_data[31] & !w_byte_en[3] & w_we & w_reg_select_dec[0] ;
delete_status_bit14 = w_conf_data[30] & !w_byte_en[3] & w_we & w_reg_select_dec[0] ;
delete_status_bit13 = w_conf_data[29] & !w_byte_en[3] & w_we & w_reg_select_dec[0] ;
delete_status_bit12 = w_conf_data[28] & !w_byte_en[3] & w_we & w_reg_select_dec[0] ;
delete_status_bit11 = w_conf_data[27] & !w_byte_en[3] & w_we & w_reg_select_dec[0] ;
delete_status_bit8 = w_conf_data[24] & !w_byte_en[3] & w_we & w_reg_select_dec[0] ;
delete_pci_err_cs_bit8 = w_conf_data[8] & !w_byte_en[1] & w_we & w_reg_select_dec[27] ;
delete_wb_err_cs_bit8 = w_conf_data[8] & !w_byte_en[1] & w_we & w_reg_select_dec[50] ;
delete_isr_bit4 = w_conf_data[4] & !w_byte_en[0] & w_we & w_reg_select_dec[55] ;
delete_isr_bit3 = w_conf_data[3] & !w_byte_en[0] & w_we & w_reg_select_dec[55] ;
delete_isr_bit2 = w_conf_data[2] & !w_byte_en[0] & w_we & w_reg_select_dec[55] ;
delete_isr_bit1 = w_conf_data[1] & !w_byte_en[0] & w_we & w_reg_select_dec[55] ;
end
// STATUS BITS of PCI Header status register
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[15] <= 1'b0 ;
else
begin
if (perr_in) // Synchronous set
status_bit15_11[15] <= 1'b1 ;
else if (delete_status_bit15) // Synchronous reset
status_bit15_11[15] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[14] <= 1'b0 ;
else
begin
if (serr_in) // Synchronous set
status_bit15_11[14] <= 1'b1 ;
else if (delete_status_bit14) // Synchronous reset
status_bit15_11[14] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[13] <= 1'b0 ;
else
begin
if (master_abort_recv) // Synchronous set
status_bit15_11[13] <= 1'b1 ;
else if (delete_status_bit13) // Synchronous reset
status_bit15_11[13] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[12] <= 1'b0 ;
else
begin
if (target_abort_recv) // Synchronous set
status_bit15_11[12] <= 1'b1 ;
else if (delete_status_bit12) // Synchronous reset
status_bit15_11[12] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[11] <= 1'b0 ;
else
begin
if (target_abort_set) // Synchronous set
status_bit15_11[11] <= 1'b1 ;
else if (delete_status_bit11) // Synchronous reset
status_bit15_11[11] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit8 <= 1'b0 ;
else
begin
if (master_data_par_err) // Synchronous set
status_bit8 <= 1'b1 ;
else if (delete_status_bit8) // Synchronous reset
status_bit8 <= 1'b0 ;
end
end
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
`ifdef HOST
reg [15:11] set_status_bit15_11;
reg set_status_bit8;
wire delete_set_status_bit15;
wire delete_set_status_bit14;
wire delete_set_status_bit13;
wire delete_set_status_bit12;
wire delete_set_status_bit11;
wire delete_set_status_bit8;
wire block_set_status_bit15;
wire block_set_status_bit14;
wire block_set_status_bit13;
wire block_set_status_bit12;
wire block_set_status_bit11;
wire block_set_status_bit8;
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_status_15
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_status_bit15),
.block_set_out (block_set_status_bit15),
.delete_in (delete_status_bit15)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_status_bit15_11[15] <= 1'b0 ;
else
begin
if (perr_in) // Synchronous set
set_status_bit15_11[15] <= 1'b1 ;
else if (delete_set_status_bit15) // Synchronous reset
set_status_bit15_11[15] <= 1'b0 ;
end
end
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_status_14
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_status_bit14),
.block_set_out (block_set_status_bit14),
.delete_in (delete_status_bit14)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_status_bit15_11[14] <= 1'b0 ;
else
begin
if (serr_in) // Synchronous set
set_status_bit15_11[14] <= 1'b1 ;
else if (delete_set_status_bit14) // Synchronous reset
set_status_bit15_11[14] <= 1'b0 ;
end
end
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_status_13
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_status_bit13),
.block_set_out (block_set_status_bit13),
.delete_in (delete_status_bit13)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_status_bit15_11[13] <= 1'b0 ;
else
begin
if (master_abort_recv) // Synchronous set
set_status_bit15_11[13] <= 1'b1 ;
else if (delete_set_status_bit13) // Synchronous reset
set_status_bit15_11[13] <= 1'b0 ;
end
end
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_status_12
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_status_bit12),
.block_set_out (block_set_status_bit12),
.delete_in (delete_status_bit12)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_status_bit15_11[12] <= 1'b0 ;
else
begin
if (target_abort_recv) // Synchronous set
set_status_bit15_11[12] <= 1'b1 ;
else if (delete_set_status_bit12) // Synchronous reset
set_status_bit15_11[12] <= 1'b0 ;
end
end
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_status_11
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_status_bit11),
.block_set_out (block_set_status_bit11),
.delete_in (delete_status_bit11)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_status_bit15_11[11] <= 1'b0 ;
else
begin
if (target_abort_set) // Synchronous set
set_status_bit15_11[11] <= 1'b1 ;
else if (delete_set_status_bit11) // Synchronous reset
set_status_bit15_11[11] <= 1'b0 ;
end
end
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_status_8
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_status_bit8),
.block_set_out (block_set_status_bit8),
.delete_in (delete_status_bit8)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_status_bit8 <= 1'b0 ;
else
begin
if (master_data_par_err) // Synchronous set
set_status_bit8 <= 1'b1 ;
else if (delete_set_status_bit8) // Synchronous reset
set_status_bit8 <= 1'b0 ;
end
end
wire [5:0] status_bits = {set_status_bit15_11[15] && !block_set_status_bit15,
set_status_bit15_11[14] && !block_set_status_bit14,
set_status_bit15_11[13] && !block_set_status_bit13,
set_status_bit15_11[12] && !block_set_status_bit12,
set_status_bit15_11[11] && !block_set_status_bit11,
set_status_bit8 && !block_set_status_bit8 } ;
wire [5:0] meta_status_bits ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(6, 0) status_bits_sync
(
.data_in (status_bits),
.clk_out (wb_clk),
.sync_data_out (meta_status_bits),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
begin
status_bit15_11[15:11] <= 5'b0 ;
status_bit8 <= 1'b0 ;
end
else
begin
status_bit15_11[15:11] <= meta_status_bits[5:1] ;
status_bit8 <= meta_status_bits[0] ;
end
end
`else // GUEST
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[15] <= 1'b0 ;
else
begin
if (perr_in) // Synchronous set
status_bit15_11[15] <= 1'b1 ;
else if (delete_status_bit15) // Synchronous reset
status_bit15_11[15] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[14] <= 1'b0 ;
else
begin
if (serr_in) // Synchronous set
status_bit15_11[14] <= 1'b1 ;
else if (delete_status_bit14) // Synchronous reset
status_bit15_11[14] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[13] <= 1'b0 ;
else
begin
if (master_abort_recv) // Synchronous set
status_bit15_11[13] <= 1'b1 ;
else if (delete_status_bit13) // Synchronous reset
status_bit15_11[13] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[12] <= 1'b0 ;
else
begin
if (target_abort_recv) // Synchronous set
status_bit15_11[12] <= 1'b1 ;
else if (delete_status_bit12) // Synchronous reset
status_bit15_11[12] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit15_11[11] <= 1'b0 ;
else
begin
if (target_abort_set) // Synchronous set
status_bit15_11[11] <= 1'b1 ;
else if (delete_status_bit11) // Synchronous reset
status_bit15_11[11] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
status_bit8 <= 1'b0 ;
else
begin
if (master_data_par_err) // Synchronous set
status_bit8 <= 1'b1 ;
else if (delete_status_bit8) // Synchronous reset
status_bit8 <= 1'b0 ;
end
end
`endif
`endif
// STATUS BITS of P_ERR_CS - PCI error control and status register
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
pci_err_cs_bit8 <= 1'b0 ;
else
begin
if (pci_error_sig && pci_err_cs_bit0) // Synchronous set
pci_err_cs_bit8 <= 1'b1 ;
else if (delete_pci_err_cs_bit8) // Synchronous reset
pci_err_cs_bit8 <= 1'b0 ;
end
end
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
`ifdef HOST
// Set and clear FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
pci_err_cs_bit8 <= 1'b0 ;
else
begin
if (pci_error_sig && pci_err_cs_bit0) // Synchronous set
pci_err_cs_bit8 <= 1'b1 ;
else if (delete_pci_err_cs_bit8) // Synchronous reset
pci_err_cs_bit8 <= 1'b0 ;
end
end
`else // GUEST
reg set_pci_err_cs_bit8;
wire delete_set_pci_err_cs_bit8;
wire block_set_pci_err_cs_bit8;
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_pci_err_cs_8
(
.set_clk_in (wb_clk),
.delete_clk_in (pci_clk),
.reset_in (reset),
.delete_set_out (delete_set_pci_err_cs_bit8),
.block_set_out (block_set_pci_err_cs_bit8),
.delete_in (delete_pci_err_cs_bit8)
);
// Setting FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_pci_err_cs_bit8 <= 1'b0 ;
else
begin
if (pci_error_sig && pci_err_cs_bit0) // Synchronous set
set_pci_err_cs_bit8 <= 1'b1 ;
else if (delete_set_pci_err_cs_bit8) // Synchronous reset
set_pci_err_cs_bit8 <= 1'b0 ;
end
end
wire pci_err_cs_bits = set_pci_err_cs_bit8 && !block_set_pci_err_cs_bit8 ;
wire meta_pci_err_cs_bits ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1,0) pci_err_cs_bits_sync
(
.data_in (pci_err_cs_bits),
.clk_out (pci_clk),
.sync_data_out (meta_pci_err_cs_bits),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
pci_err_cs_bit8 <= 1'b0 ;
else
pci_err_cs_bit8 <= meta_pci_err_cs_bits ;
end
`endif
`endif
// Set and clear FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
pci_err_cs_bit10 <= 1'b0 ;
else
begin
if (pci_error_sig) // Synchronous report
pci_err_cs_bit10 <= pci_error_rty_exp ;
end
end
// Set and clear FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
pci_err_cs_bit9 <= 1'b0 ;
else
begin
if (pci_error_sig) // Synchronous report
pci_err_cs_bit9 <= pci_error_es ;
end
end
// Set and clear FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
begin
pci_err_cs_bit31_24 <= 8'h00 ;
pci_err_addr <= 32'h0000_0000 ;
pci_err_data <= 32'h0000_0000 ;
end
else
if (pci_error_sig) // Synchronous report
begin
pci_err_cs_bit31_24 <= { pci_error_be, pci_error_bc } ;
pci_err_addr <= pci_error_addr ;
pci_err_data <= pci_error_data ;
end
end
// STATUS BITS of W_ERR_CS - WB error control and status register
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
wb_err_cs_bit8 <= 1'b0 ;
else
begin
if (wb_error_sig && wb_err_cs_bit0) // Synchronous set
wb_err_cs_bit8 <= 1'b1 ;
else if (delete_wb_err_cs_bit8) // Synchronous reset
wb_err_cs_bit8 <= 1'b0 ;
end
end
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
`ifdef HOST
reg set_wb_err_cs_bit8;
wire delete_set_wb_err_cs_bit8;
wire block_set_wb_err_cs_bit8;
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_wb_err_cs_8
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_wb_err_cs_bit8),
.block_set_out (block_set_wb_err_cs_bit8),
.delete_in (delete_wb_err_cs_bit8)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_wb_err_cs_bit8 <= 1'b0 ;
else
begin
if (wb_error_sig && wb_err_cs_bit0) // Synchronous set
set_wb_err_cs_bit8 <= 1'b1 ;
else if (delete_set_wb_err_cs_bit8) // Synchronous reset
set_wb_err_cs_bit8 <= 1'b0 ;
end
end
wire wb_err_cs_bits = set_wb_err_cs_bit8 && !block_set_wb_err_cs_bit8 ;
wire meta_wb_err_cs_bits ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1,0) wb_err_cs_bits_sync
(
.data_in (wb_err_cs_bits),
.clk_out (wb_clk),
.sync_data_out (meta_wb_err_cs_bits),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
wb_err_cs_bit8 <= 1'b0 ;
else
wb_err_cs_bit8 <= meta_wb_err_cs_bits ;
end
`else // GUEST
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
wb_err_cs_bit8 <= 1'b0 ;
else
begin
if (wb_error_sig && wb_err_cs_bit0) // Synchronous set
wb_err_cs_bit8 <= 1'b1 ;
else if (delete_wb_err_cs_bit8) // Synchronous reset
wb_err_cs_bit8 <= 1'b0 ;
end
end
`endif
`endif
/* // Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
wb_err_cs_bit10 <= 1'b0 ;
else
begin
if (wb_error_sig) // Synchronous report
wb_err_cs_bit10 <= wb_error_rty_exp ;
end
end */
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
wb_err_cs_bit9 <= 1'b0 ;
else
begin
if (wb_error_sig) // Synchronous report
wb_err_cs_bit9 <= wb_error_es ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
begin
wb_err_cs_bit31_24 <= 8'h00 ;
wb_err_addr <= 32'h0000_0000 ;
wb_err_data <= 32'h0000_0000 ;
end
else
if (wb_error_sig)
begin
wb_err_cs_bit31_24 <= { wb_error_be, wb_error_bc } ;
wb_err_addr <= wb_error_addr ;
wb_err_data <= wb_error_data ;
end
end
// SERR_INT and PERR_INT STATUS BITS of ISR - interrupt status register
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
`ifdef HOST
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
isr_bit4_3[4] <= 1'b0 ;
else
begin
if (isr_sys_err_int && icr_bit4_3[4]) // Synchronous set
isr_bit4_3[4] <= 1'b1 ;
else if (delete_isr_bit4) // Synchronous reset
isr_bit4_3[4] <= 1'b0 ;
end
end
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
isr_bit4_3[3] <= 1'b0 ;
else
begin
if (isr_par_err_int && icr_bit4_3[3]) // Synchronous set
isr_bit4_3[3] <= 1'b1 ;
else if (delete_isr_bit3) // Synchronous reset
isr_bit4_3[3] <= 1'b0 ;
end
end
`endif
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
`ifdef HOST
reg [4:3] set_isr_bit4_3;
wire delete_set_isr_bit4;
wire delete_set_isr_bit3;
wire block_set_isr_bit4;
wire block_set_isr_bit3;
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_isr_4
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_isr_bit4),
.block_set_out (block_set_isr_bit4),
.delete_in (delete_isr_bit4)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_isr_bit4_3[4] <= 1'b0 ;
else
begin
if (isr_sys_err_int && icr_bit4_3[4]) // Synchronous set
set_isr_bit4_3[4] <= 1'b1 ;
else if (delete_set_isr_bit4) // Synchronous reset
set_isr_bit4_3[4] <= 1'b0 ;
end
end
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_isr_3
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_isr_bit3),
.block_set_out (block_set_isr_bit3),
.delete_in (delete_isr_bit3)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_isr_bit4_3[3] <= 1'b0 ;
else
begin
if (isr_par_err_int && icr_bit4_3[3]) // Synchronous set
set_isr_bit4_3[3] <= 1'b1 ;
else if (delete_set_isr_bit3) // Synchronous reset
set_isr_bit4_3[3] <= 1'b0 ;
end
end
wire [4:3] isr_bits4_3 = {set_isr_bit4_3[4] && !block_set_isr_bit4,
set_isr_bit4_3[3] && !block_set_isr_bit3 } ;
wire [4:3] meta_isr_bits4_3 ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(2, 0) isr_bits_sync
(
.data_in (isr_bits4_3),
.clk_out (wb_clk),
.sync_data_out (meta_isr_bits4_3),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
isr_bit4_3[4:3] <= 2'b0 ;
else
isr_bit4_3[4:3] <= meta_isr_bits4_3[4:3] ;
end
`endif
`endif
// PCI_EINT and WB_EINT STATUS BITS of ISR - interrupt status register
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
// WB_EINT STATUS BIT
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
isr_bit2_0[1] <= 1'b0 ;
else
begin
if (wb_error_sig && icr_bit2_0[1] && wb_err_cs_bit0) // Synchronous set
isr_bit2_0[1] <= 1'b1 ;
else if (delete_isr_bit1) // Synchronous reset
isr_bit2_0[1] <= 1'b0 ;
end
end
// PCI_EINT STATUS BIT
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
isr_bit2_0[2] <= 1'b0 ;
else
begin
if (pci_error_sig && icr_bit2_0[2] && pci_err_cs_bit0) // Synchronous set
isr_bit2_0[2] <= 1'b1 ;
else if (delete_isr_bit2) // Synchronous reset
isr_bit2_0[2] <= 1'b0 ;
end
end
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
`ifdef HOST
// WB_EINT STATUS BIT
reg set_isr_bit1;
wire delete_set_isr_bit1;
wire block_set_isr_bit1;
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_isr_1
(
.set_clk_in (pci_clk),
.delete_clk_in (wb_clk),
.reset_in (reset),
.delete_set_out (delete_set_isr_bit1),
.block_set_out (block_set_isr_bit1),
.delete_in (delete_isr_bit1)
);
// Setting FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_isr_bit1 <= 1'b0 ;
else
begin
if (wb_error_sig && icr_bit2_0[1] && wb_err_cs_bit0) // Synchronous set
set_isr_bit1 <= 1'b1 ;
else if (delete_set_isr_bit1) // Synchronous reset
set_isr_bit1 <= 1'b0 ;
end
end
wire isr_bit1 = set_isr_bit1 && !block_set_isr_bit1 ;
wire meta_isr_bit1 ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1, 0) isr_bit1_sync
(
.data_in (isr_bit1),
.clk_out (wb_clk),
.sync_data_out (meta_isr_bit1),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
isr_bit2_0[1] <= 1'b0 ;
else
isr_bit2_0[1] <= meta_isr_bit1 ;
end
// PCI_EINT STATUS BIT
// Set and clear FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
isr_bit2_0[2] <= 1'b0 ;
else
begin
if (pci_error_sig && icr_bit2_0[2] && pci_err_cs_bit0) // Synchronous set
isr_bit2_0[2] <= 1'b1 ;
else if (delete_isr_bit2) // Synchronous reset
isr_bit2_0[2] <= 1'b0 ;
end
end
`else // GUEST
// WB_EINT STATUS BIT
// Set and clear FF
always@(posedge pci_clk or posedge reset)
begin
if (reset) // Asynchronous reset
isr_bit2_0[1] <= 1'b0 ;
else
begin
if (wb_error_sig && icr_bit2_0[1] && wb_err_cs_bit0) // Synchronous set
isr_bit2_0[1] <= 1'b1 ;
else if (delete_isr_bit1) // Synchronous reset
isr_bit2_0[1] <= 1'b0 ;
end
end
// PCI_EINT STATUS BIT
reg set_isr_bit2;
wire delete_set_isr_bit2;
wire block_set_isr_bit2;
// Synchronization module for clearing FF between two clock domains
pci_sync_module sync_isr_2
(
.set_clk_in (wb_clk),
.delete_clk_in (pci_clk),
.reset_in (reset),
.delete_set_out (delete_set_isr_bit2),
.block_set_out (block_set_isr_bit2),
.delete_in (delete_isr_bit2)
);
// Setting FF
always@(posedge wb_clk or posedge reset)
begin
if (reset) // Asynchronous reset
set_isr_bit2 <= 1'b0 ;
else
begin
if (pci_error_sig && icr_bit2_0[2] && pci_err_cs_bit0) // Synchronous set
set_isr_bit2 <= 1'b1 ;
else if (delete_set_isr_bit2) // Synchronous reset
set_isr_bit2 <= 1'b0 ;
end
end
wire isr_bit2 = set_isr_bit2 && !block_set_isr_bit2 ;
wire meta_isr_bit2 ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1, 0) isr_bit2_sync
(
.data_in (isr_bit2),
.clk_out (pci_clk),
.sync_data_out (meta_isr_bit2),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
isr_bit2_0[2] <= 1'b0 ;
else
isr_bit2_0[2] <= meta_isr_bit2 ;
end
`endif
`endif
// INT BIT of ISR - interrupt status register
`ifdef HOST
wire isr_int_prop_bit = isr_int_prop && icr_bit2_0[0] ;
wire meta_isr_int_prop_bit ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1, 0) isr_bit0_sync
(
.data_in (isr_int_prop_bit),
.clk_out (wb_clk),
.sync_data_out (meta_isr_int_prop_bit),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
isr_bit2_0[0] <= 1'b0 ;
else
isr_bit2_0[0] <= meta_isr_int_prop_bit ;
end
`else // GUEST
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
wire isr_int_prop_bit = isr_int_prop && icr_bit2_0[0] ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
isr_bit2_0[0] <= 1'b0 ;
else
isr_bit2_0[0] <= isr_int_prop_bit ;
end
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
wire isr_int_prop_bit = isr_int_prop && icr_bit2_0[0] ;
wire meta_isr_int_prop_bit ;
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1, 0) isr_bit0_sync
(
.data_in (isr_int_prop_bit),
.clk_out (pci_clk),
.sync_data_out (meta_isr_int_prop_bit),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
isr_bit2_0[0] <= 1'b0 ;
else
isr_bit2_0[0] <= meta_isr_int_prop_bit ;
end
`endif
`endif
// INT PIN
wire int_in;
wire int_meta;
reg interrupt_out;
`ifdef HOST
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
assign int_in = isr_int_prop_bit || isr_bit2_0[1] || isr_bit2_0[2] || isr_bit4_3[3] || isr_bit4_3[4];
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
assign int_in = isr_int_prop_bit || isr_bit1 || isr_bit2_0[2] || isr_bits4_3[3] || isr_bits4_3[4];
`endif
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1, 0) int_pin_sync
(
.data_in (int_in),
.clk_out (wb_clk),
.sync_data_out (int_meta),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
interrupt_out <= 1'b0 ;
else
interrupt_out <= int_meta ;
end
`else // GUEST
`ifdef SYNCHRONEOUS_CLOCK_DOMAINS
assign int_in = isr_int_prop_bit || isr_bit2_0[1] || isr_bit2_0[2];
`else // not SYNCHRONEOUS_CLOCK_DOMAINS
assign int_in = isr_int_prop_bit || isr_bit2_0[1] || isr_bit2;
`endif
// interemediate stage to clk synchronization flip - flops - this ones are prone to metastability
pci_synchronizer_flop #(1, 0) int_pin_sync
(
.data_in (int_in),
.clk_out (pci_clk),
.sync_data_out (int_meta),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
interrupt_out <= 1'b0 ;
else
interrupt_out <= int_meta ;
end
`endif
`ifdef PCI_CPCI_HS_IMPLEMENT
reg [hs_es_cnt_width - 1:0] hs_es_cnt ; // debounce counter
reg hs_es_in_state, // current state of ejector switch input - synchronized
hs_es_sync, // synchronization flop for ejector switch input
hs_es_cur_state ; // current valid state of ejector switch
`ifdef ACTIVE_HIGH_OE
wire oe_active_val = 1'b1 ;
`endif
`ifdef ACTIVE_LOW_OE
wire oe_active_val = 1'b0 ;
`endif
always@(posedge pci_clk or posedge reset)
begin
if (reset)
begin
hs_ins <= 1'b0 ;
hs_ins_armed <= 1'b1 ;
hs_ext <= 1'b0 ;
hs_ext_armed <= 1'b0 ;
hs_es_in_state <= 1'b0 ;
hs_es_sync <= 1'b0 ;
hs_es_cur_state <= 1'b0 ;
hs_es_cnt <= 'h0 ;
`ifdef ACTIVE_LOW_OE
pci_cpci_hs_enum_oe_o <= 1'b1 ;
pci_cpci_hs_led_oe_o <= 1'b0 ;
`endif
`ifdef ACTIVE_HIGH_OE
pci_cpci_hs_enum_oe_o <= 1'b0 ;
pci_cpci_hs_led_oe_o <= 1'b1 ;
`endif
end
else
begin
// INS
if (hs_ins)
begin
if (w_conf_data[23] & ~w_byte_en[2] & w_we & w_reg_select_dec[56]) // clear
hs_ins <= 1'b0 ;
end
else if (hs_ins_armed) // set
hs_ins <= init_complete & (hs_es_cur_state == 1'b1) ;
// INS armed
if (~hs_ins & hs_ins_armed & init_complete & (hs_es_cur_state == 1'b1)) // clear
hs_ins_armed <= 1'b0 ;
else if (hs_ext) // set
hs_ins_armed <= w_conf_data[22] & ~w_byte_en[2] & w_we & w_reg_select_dec[56] ;
// EXT
if (hs_ext) // clear
begin
if (w_conf_data[22] & ~w_byte_en[2] & w_we & w_reg_select_dec[56])
hs_ext <= 1'b0 ;
end
else if (hs_ext_armed) // set
hs_ext <= (hs_es_cur_state == 1'b0) ;
// EXT armed
if (~hs_ext & hs_ext_armed & (hs_es_cur_state == 1'b0)) // clear
hs_ext_armed <= 1'b0 ;
else if (hs_ins) // set
hs_ext_armed <= w_conf_data[23] & !w_byte_en[2] & w_we & w_reg_select_dec[56] ;
// ejector switch debounce counter logic
hs_es_sync <= pci_cpci_hs_es_i ;
hs_es_in_state <= hs_es_sync ;
if (hs_es_in_state == hs_es_cur_state)
hs_es_cnt <= 'h0 ;
else
hs_es_cnt <= hs_es_cnt + 1'b1 ;
if (hs_es_cnt == {hs_es_cnt_width{1'b1}})
hs_es_cur_state <= hs_es_in_state ;
if ((hs_ins | hs_ext) & ~hs_eim)
pci_cpci_hs_enum_oe_o <= oe_active_val ;
else
pci_cpci_hs_enum_oe_o <= ~oe_active_val ;
if (~init_complete | hs_loo)
pci_cpci_hs_led_oe_o <= oe_active_val ;
else
pci_cpci_hs_led_oe_o <= ~oe_active_val ;
end
end
`endif
`ifdef PCI_SPOCI
wire spoci_write_done,
spoci_dat_rdy ,
spoci_no_ack ;
wire [ 7: 0] spoci_wdat ;
wire [ 7: 0] spoci_rdat ;
// power on configuration control and status register
always@(posedge pci_clk or posedge reset)
begin
if (reset)
begin
spoci_cs_nack <= 1'b0 ;
spoci_cs_write <= 1'b0 ;
spoci_cs_read <= 1'b0 ;
spoci_cs_adr <= 'h0 ;
spoci_cs_dat <= 'h0 ;
end
else
begin
if (spoci_cs_write)
begin
if (spoci_write_done | spoci_no_ack)
spoci_cs_write <= 1'b0 ;
end
else if ( w_we & (w_conf_address[9:2] == 8'hFF) & ~w_byte_en[3])
spoci_cs_write <= w_conf_data[25] ;
if (spoci_cs_read)
begin
if (spoci_dat_rdy | spoci_no_ack)
spoci_cs_read <= 1'b0 ;
end
else if ( w_we & (w_conf_address[9:2] == 8'hFF) & ~w_byte_en[3] )
spoci_cs_read <= w_conf_data[24] ;
if (spoci_cs_nack)
begin
if ( w_we & (w_conf_address[9:2] == 8'hFF) & ~w_byte_en[3] & w_conf_data[31] )
spoci_cs_nack <= 1'b0 ;
end
else if (spoci_cs_write | spoci_cs_read | ~init_cfg_done)
begin
spoci_cs_nack <= spoci_no_ack ;
end
if ( w_we & (w_conf_address[9:2] == 8'hFF) )
begin
if (~w_byte_en[2])
spoci_cs_adr[10: 8] <= w_conf_data[18:16] ;
if (~w_byte_en[1])
spoci_cs_adr[ 7: 0] <= w_conf_data[15: 8] ;
end
if ( w_we & (w_conf_address[9:2] == 8'hFF) & ~w_byte_en[0] )
spoci_cs_dat <= w_conf_data[ 7: 0] ;
else if (spoci_cs_read & spoci_dat_rdy)
spoci_cs_dat <= spoci_rdat ;
end
end
reg [ 2 : 0] bytes_received ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
begin
init_we <= 1'b0 ;
init_cfg_done <= 1'b0 ;
bytes_received <= 1'b0 ;
spoci_dat <= 'h0 ;
spoci_reg_num <= 'h0 ;
end
else if (~init_cfg_done)
begin
if (spoci_dat_rdy)
begin
case (bytes_received)
'h0:spoci_reg_num <= spoci_rdat ;
'h1:spoci_dat[ 7: 0] <= spoci_rdat ;
'h2:spoci_dat[15: 8] <= spoci_rdat ;
'h3:spoci_dat[23:16] <= spoci_rdat ;
'h4:spoci_dat[31:24] <= spoci_rdat ;
default:
begin
spoci_dat <= 32'hxxxx_xxxx ;
spoci_reg_num <= 'hxx ;
end
endcase
end
if (init_we)
bytes_received <= 'h0 ;
else if (spoci_dat_rdy)
bytes_received <= bytes_received + 1'b1 ;
if (init_we)
init_we <= 1'b0 ;
else if (bytes_received == 'h5)
init_we <= 1'b1 ;
if (spoci_no_ack | ((bytes_received == 'h1) & (spoci_reg_num == 'hff)) )
init_cfg_done <= 1'b1 ;
end
end
assign spoci_wdat = spoci_cs_dat ;
pci_spoci_ctrl i_pci_spoci_ctrl
(
.reset_i (reset ),
.clk_i (pci_clk ),
.do_rnd_read_i (spoci_cs_read ),
.do_seq_read_i (rst_inactive & ~init_cfg_done ),
.do_write_i (spoci_cs_write ),
.write_done_o (spoci_write_done ),
.dat_rdy_o (spoci_dat_rdy ),
.no_ack_o (spoci_no_ack ),
.adr_i (spoci_cs_adr ),
.dat_i (spoci_wdat ),
.dat_o (spoci_rdat ),
.pci_spoci_sda_i (spoci_sda_i ),
.pci_spoci_sda_oe_o (spoci_sda_oe_o ),
.pci_spoci_scl_oe_o (spoci_scl_oe_o )
);
`endif
/*-----------------------------------------------------------------------------------------------------------
OUTPUTs from registers !!!
-----------------------------------------------------------------------------------------------------------*/
// if bridge is HOST then write clock is equal to WB clock, and synchronization of outputs has to be done
`ifdef HOST
wire [3:0] command_bits = {command_bit8, command_bit6, command_bit2_0[1:0]} ;
wire [3:0] meta_command_bits ;
reg [3:0] sync_command_bits ;
pci_synchronizer_flop #(4, 0) command_bits_sync
(
.data_in (command_bits),
.clk_out (pci_clk),
.sync_data_out (meta_command_bits),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
sync_command_bits <= 4'b0 ;
else
sync_command_bits <= meta_command_bits ;
end
wire sync_command_bit8 = sync_command_bits[3] ;
wire sync_command_bit6 = sync_command_bits[2] ;
wire sync_command_bit1 = sync_command_bits[1] ;
wire sync_command_bit0 = sync_command_bits[0] ;
wire sync_command_bit2 = command_bit2_0[2] ;
`else // GUEST
wire command_bit = command_bit2_0[2] ;
wire meta_command_bit ;
reg sync_command_bit ;
pci_synchronizer_flop #(1, 0) command_bit_sync
(
.data_in (command_bit),
.clk_out (pci_clk),
.sync_data_out (meta_command_bit),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
sync_command_bit <= 1'b0 ;
else
sync_command_bit <= meta_command_bit ;
end
wire sync_command_bit8 = command_bit8 ;
wire sync_command_bit6 = command_bit6 ;
wire sync_command_bit1 = command_bit2_0[1] ;
wire sync_command_bit0 = command_bit2_0[0] ;
wire sync_command_bit2 = sync_command_bit ;
`endif
// PCI header outputs from command register
assign serr_enable = sync_command_bit8 & pci_init_complete_out ; // to PCI clock
assign perr_response = sync_command_bit6 & pci_init_complete_out ; // to PCI clock
assign pci_master_enable = sync_command_bit2 & wb_init_complete_out ; // to WB clock
assign memory_space_enable = sync_command_bit1 & pci_init_complete_out ; // to PCI clock
assign io_space_enable = sync_command_bit0 & pci_init_complete_out ; // to PCI clock
// if bridge is HOST then write clock is equal to WB clock, and synchronization of outputs has to be done
// We don't support cache line sizes smaller that 4 and it must have last two bits zero!!!
wire cache_lsize_not_zero = ((cache_line_size_reg[7] || cache_line_size_reg[6] || cache_line_size_reg[5] ||
cache_line_size_reg[4] || cache_line_size_reg[3] || cache_line_size_reg[2]) &&
(!cache_line_size_reg[1] && !cache_line_size_reg[0]) );
`ifdef HOST
wire [7:2] cache_lsize_to_pci_bits = { cache_line_size_reg[7:2] } ;
wire [7:2] meta_cache_lsize_to_pci_bits ;
reg [7:2] sync_cache_lsize_to_pci_bits ;
pci_synchronizer_flop #(6, 0) cache_lsize_to_pci_bits_sync
(
.data_in (cache_lsize_to_pci_bits),
.clk_out (pci_clk),
.sync_data_out (meta_cache_lsize_to_pci_bits),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
sync_cache_lsize_to_pci_bits <= 6'b0 ;
else
sync_cache_lsize_to_pci_bits <= meta_cache_lsize_to_pci_bits ;
end
wire [7:2] sync_cache_line_size_to_pci_reg = sync_cache_lsize_to_pci_bits[7:2] ;
wire [7:2] sync_cache_line_size_to_wb_reg = cache_line_size_reg[7:2] ;
wire sync_cache_lsize_not_zero_to_wb = cache_lsize_not_zero ;
// Latency timer is sinchronized only to PCI clock when bridge implementation is HOST
wire [7:0] latency_timer_bits = latency_timer ;
wire [7:0] meta_latency_timer_bits ;
reg [7:0] sync_latency_timer_bits ;
pci_synchronizer_flop #(8, 0) latency_timer_bits_sync
(
.data_in (latency_timer_bits),
.clk_out (pci_clk),
.sync_data_out (meta_latency_timer_bits),
.async_reset (reset)
) ;
always@(posedge pci_clk or posedge reset)
begin
if (reset)
sync_latency_timer_bits <= 8'b0 ;
else
sync_latency_timer_bits <= meta_latency_timer_bits ;
end
wire [7:0] sync_latency_timer = sync_latency_timer_bits ;
`else // GUEST
wire [8:2] cache_lsize_to_wb_bits = { cache_lsize_not_zero, cache_line_size_reg[7:2] } ;
wire [8:2] meta_cache_lsize_to_wb_bits ;
reg [8:2] sync_cache_lsize_to_wb_bits ;
pci_synchronizer_flop #(7, 0) cache_lsize_to_wb_bits_sync
(
.data_in (cache_lsize_to_wb_bits),
.clk_out (wb_clk),
.sync_data_out (meta_cache_lsize_to_wb_bits),
.async_reset (reset)
) ;
always@(posedge wb_clk or posedge reset)
begin
if (reset)
sync_cache_lsize_to_wb_bits <= 7'b0 ;
else
sync_cache_lsize_to_wb_bits <= meta_cache_lsize_to_wb_bits ;
end
wire [7:2] sync_cache_line_size_to_pci_reg = cache_line_size_reg[7:2] ;
wire [7:2] sync_cache_line_size_to_wb_reg = sync_cache_lsize_to_wb_bits[7:2] ;
wire sync_cache_lsize_not_zero_to_wb = sync_cache_lsize_to_wb_bits[8] ;
// Latency timer
wire [7:0] sync_latency_timer = latency_timer ;
`endif
// PCI header output from cache_line_size, latency timer and interrupt pin
assign cache_line_size_to_pci = {sync_cache_line_size_to_pci_reg, 2'h0} ; // [7 : 0] to PCI clock
assign cache_line_size_to_wb = {sync_cache_line_size_to_wb_reg, 2'h0} ; // [7 : 0] to WB clock
assign cache_lsize_not_zero_to_wb = sync_cache_lsize_not_zero_to_wb ;
assign latency_tim[7 : 0] = sync_latency_timer ; // to PCI clock
//assign int_pin[2 : 0] = r_interrupt_pin ;
assign int_out = interrupt_out ;
// PCI output from image registers
// base address, address mask, translation address and control registers are sinchronized in PCI_DECODER.V module
`ifdef HOST
`ifdef NO_CNF_IMAGE
assign pci_base_addr0 = pci_ba0_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
`else
assign pci_base_addr0 = pci_ba0_bit31_8[31:12] ;
`endif
`endif
`ifdef GUEST
assign pci_base_addr0 = pci_ba0_bit31_8[31:12] ;
`endif
assign pci_base_addr1 = pci_ba1_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_base_addr2 = pci_ba2_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_base_addr3 = pci_ba3_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_base_addr4 = pci_ba4_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_base_addr5 = pci_ba5_bit31_8[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_memory_io0 = pci_ba0_bit0 ;
assign pci_memory_io1 = pci_ba1_bit0 ;
assign pci_memory_io2 = pci_ba2_bit0 ;
assign pci_memory_io3 = pci_ba3_bit0 ;
assign pci_memory_io4 = pci_ba4_bit0 ;
assign pci_memory_io5 = pci_ba5_bit0 ;
assign pci_addr_mask0 = pci_am0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_addr_mask1 = pci_am1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_addr_mask2 = pci_am2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_addr_mask3 = pci_am3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_addr_mask4 = pci_am4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_addr_mask5 = pci_am5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_tran_addr0 = pci_ta0[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_tran_addr1 = pci_ta1[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_tran_addr2 = pci_ta2[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_tran_addr3 = pci_ta3[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_tran_addr4 = pci_ta4[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_tran_addr5 = pci_ta5[31:(32-`PCI_NUM_OF_DEC_ADDR_LINES)] ;
assign pci_img_ctrl0[2 : 1] = pci_img_ctrl0_bit2_1 ;
assign pci_img_ctrl1[2 : 1] = pci_img_ctrl1_bit2_1 ;
assign pci_img_ctrl2[2 : 1] = pci_img_ctrl2_bit2_1 ;
assign pci_img_ctrl3[2 : 1] = pci_img_ctrl3_bit2_1 ;
assign pci_img_ctrl4[2 : 1] = pci_img_ctrl4_bit2_1 ;
assign pci_img_ctrl5[2 : 1] = pci_img_ctrl5_bit2_1 ;
// WISHBONE output from image registers
// base address, address mask, translation address and control registers are sinchronized in DECODER.V module
assign wb_base_addr0 = wb_ba0_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_base_addr1 = wb_ba1_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_base_addr2 = wb_ba2_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_base_addr3 = wb_ba3_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_base_addr4 = wb_ba4_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_base_addr5 = wb_ba5_bit31_12[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_memory_io0 = wb_ba0_bit0 ;
assign wb_memory_io1 = wb_ba1_bit0 ;
assign wb_memory_io2 = wb_ba2_bit0 ;
assign wb_memory_io3 = wb_ba3_bit0 ;
assign wb_memory_io4 = wb_ba4_bit0 ;
assign wb_memory_io5 = wb_ba5_bit0 ;
assign wb_addr_mask0 = wb_am0[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_addr_mask1 = wb_am1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_addr_mask2 = wb_am2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_addr_mask3 = wb_am3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_addr_mask4 = wb_am4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_addr_mask5 = wb_am5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_tran_addr0 = wb_ta0[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_tran_addr1 = wb_ta1[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_tran_addr2 = wb_ta2[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_tran_addr3 = wb_ta3[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_tran_addr4 = wb_ta4[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_tran_addr5 = wb_ta5[31:(32-`WB_NUM_OF_DEC_ADDR_LINES)] ;
assign wb_img_ctrl0[2 : 0] = wb_img_ctrl0_bit2_0 ;
assign wb_img_ctrl1[2 : 0] = wb_img_ctrl1_bit2_0 ;
assign wb_img_ctrl2[2 : 0] = wb_img_ctrl2_bit2_0 ;
assign wb_img_ctrl3[2 : 0] = wb_img_ctrl3_bit2_0 ;
assign wb_img_ctrl4[2 : 0] = wb_img_ctrl4_bit2_0 ;
assign wb_img_ctrl5[2 : 0] = wb_img_ctrl5_bit2_0 ;
// GENERAL output from conf. cycle generation register & int. control register
assign config_addr[23 : 0] = { cnf_addr_bit23_2, 1'b0, cnf_addr_bit0 } ;
assign icr_soft_res = icr_bit31 ;
endmodule