OpenFPGA/libs/libarchopenfpga/src/simulation_setting.h

287 lines
12 KiB
C++

#ifndef SIMULATION_SETTING_H
#define SIMULATION_SETTING_H
/********************************************************************
* This file include the declaration of simulation settings
* which are used by OpenFPGA
*******************************************************************/
#include <array>
#include <map>
#include <string>
#include "openfpga_port.h"
#include "simulation_setting_fwd.h"
#include "vtr_geometry.h"
#include "vtr_vector.h"
/********************************************************************
* Types of signal type in measurement and stimuli
*******************************************************************/
enum e_sim_signal_type {
SIM_SIGNAL_RISE,
SIM_SIGNAL_FALL,
NUM_SIM_SIGNAL_TYPES
};
/* Strings correspond to each delay type */
constexpr std::array<const char*, NUM_SIM_SIGNAL_TYPES> SIM_SIGNAL_TYPE_STRING =
{{"rise", "fall"}};
/********************************************************************
* Types of simulation accuracy type
* 1. Fraction to the operating clock frequency
* 2. Absolute value
*******************************************************************/
enum e_sim_accuracy_type {
SIM_ACCURACY_FRAC,
SIM_ACCURACY_ABS,
NUM_SIM_ACCURACY_TYPES
};
/* Strings correspond to each accuracy type */
constexpr std::array<const char*, NUM_SIM_ACCURACY_TYPES>
SIM_ACCURACY_TYPE_STRING = {{"frac", "abs"}};
/* namespace openfpga begins */
namespace openfpga {
/********************************************************************
* A data structure to describe simulation settings
*
* Typical usage:
* --------------
* // Create an empty technology library
* SimulationSetting sim_setting;
* // call your builder for sim_setting
*
*******************************************************************/
class SimulationSetting {
public: /* Types */
typedef vtr::vector<SimulationClockId, SimulationClockId>::const_iterator
simulation_clock_iterator;
/* Create range */
typedef vtr::Range<simulation_clock_iterator> simulation_clock_range;
public: /* Constructors */
SimulationSetting();
public: /* Accessors: aggregates */
simulation_clock_range clocks() const;
std::vector<SimulationClockId> operating_clocks() const;
std::vector<SimulationClockId> programming_clocks() const;
std::vector<SimulationClockId> programming_shift_register_clocks() const;
public: /* Public Accessors */
float default_operating_clock_frequency() const;
float programming_clock_frequency() const;
size_t num_simulation_clock_cycles() const;
std::string clock_name(const SimulationClockId& clock_id) const;
BasicPort clock_port(const SimulationClockId& clock_id) const;
float clock_frequency(const SimulationClockId& clock_id) const;
bool clock_is_programming(const SimulationClockId& clock_id) const;
bool clock_is_shift_register(const SimulationClockId& clock_id) const;
bool auto_select_num_clock_cycles() const;
size_t num_clock_cycles() const;
float operating_clock_frequency_slack() const;
float simulation_temperature() const;
bool verbose_output() const;
bool capacitance_output() const;
e_sim_accuracy_type simulation_accuracy_type() const;
float simulation_accuracy() const;
bool fast_simulation() const;
bool run_monte_carlo_simulation() const;
size_t monte_carlo_simulation_points() const;
float measure_slew_upper_threshold(
const e_sim_signal_type& signal_type) const;
float measure_slew_lower_threshold(
const e_sim_signal_type& signal_type) const;
float measure_delay_input_threshold(
const e_sim_signal_type& signal_type) const;
float measure_delay_output_threshold(
const e_sim_signal_type& signal_type) const;
e_sim_accuracy_type stimuli_clock_slew_type(
const e_sim_signal_type& signal_type) const;
float stimuli_clock_slew(const e_sim_signal_type& signal_type) const;
e_sim_accuracy_type stimuli_input_slew_type(
const e_sim_signal_type& signal_type) const;
float stimuli_input_slew(const e_sim_signal_type& signal_type) const;
public: /* Public Mutators */
void set_default_operating_clock_frequency(const float& clock_freq);
void set_programming_clock_frequency(const float& clock_freq);
/* Add a new simulation clock with
* - a given name
* - a given port description
* - a default zero frequency which can be overwritten by
* the operating_clock_frequency()
*/
SimulationClockId create_clock(const std::string& name);
void set_clock_port(const SimulationClockId& clock_id, const BasicPort& port);
void set_clock_frequency(const SimulationClockId& clock_id,
const float& frequency);
void set_clock_is_programming(const SimulationClockId& clock_id,
const float& is_prog);
void set_clock_is_shift_register(const SimulationClockId& clock_id,
const float& is_sr);
void set_num_clock_cycles(const size_t& num_clk_cycles);
void set_operating_clock_frequency_slack(const float& op_clk_freq_slack);
void set_simulation_temperature(const float& sim_temp);
void set_verbose_output(const bool& verbose_output);
void set_capacitance_output(const bool& cap_output);
void set_simulation_accuracy_type(const e_sim_accuracy_type& type);
void set_simulation_accuracy(const float& accuracy);
void set_fast_simulation(const bool& fast_sim);
void set_monte_carlo_simulation_points(const size_t& num_mc_points);
void set_measure_slew_upper_threshold(const e_sim_signal_type& signal_type,
const float& upper_thres);
void set_measure_slew_lower_threshold(const e_sim_signal_type& signal_type,
const float& lower_thres);
void set_measure_delay_input_threshold(const e_sim_signal_type& signal_type,
const float& input_thres);
void set_measure_delay_output_threshold(const e_sim_signal_type& signal_type,
const float& output_thres);
void set_stimuli_clock_slew_type(const e_sim_signal_type& signal_type,
const e_sim_accuracy_type& slew_type);
void set_stimuli_clock_slew(const e_sim_signal_type& signal_type,
const float& clock_slew);
void set_stimuli_input_slew_type(const e_sim_signal_type& signal_type,
const e_sim_accuracy_type& slew_type);
void set_stimuli_input_slew(const e_sim_signal_type& signal_type,
const float& input_slew);
public: /* Public Validators */
bool valid_signal_threshold(const float& threshold) const;
bool valid_clock_id(const SimulationClockId& clock_id) const;
/** @brief Validate if a given clock is constrained or not */
bool constrained_clock(const SimulationClockId& clock_id) const;
private: /* Internal data */
/* Operating clock frequency: the default clock frequency to be applied to
* users' implemetation on FPGA This will be stored in the x() part of
* vtr::Point Programming clock frequency: the clock frequency to be applied
* to configuration protocol of FPGA This will be stored in the y() part of
* vtr::Point
*/
vtr::Point<float> default_clock_frequencies_;
/* Multiple simulation clocks with detailed information
* Each clock has
* - a unique id
* - a unique name
* - a unique port definition which is supposed
* to match the clock port definition in OpenFPGA documentation
* - a frequency which is only applicable to this clock name
*/
vtr::vector<SimulationClockId, SimulationClockId> clock_ids_;
vtr::vector<SimulationClockId, std::string> clock_names_;
vtr::vector<SimulationClockId, BasicPort> clock_ports_;
vtr::vector<SimulationClockId, float> clock_frequencies_;
vtr::vector<SimulationClockId, bool> clock_is_programming_;
vtr::vector<SimulationClockId, bool> clock_is_shift_register_;
/* Fast name-to-id lookup */
std::map<std::string, SimulationClockId> clock_name2ids_;
/* Number of clock cycles to be used in simulation
* If the value is 0, the clock cycles can be automatically
* inferred from the signal activities of users' implementation
*/
size_t num_clock_cycles_;
/* Slack or margin to be added to clock frequency
* if the operating clock frequency is automatically
* detemined by VPR's routing results
*/
float operating_clock_frequency_slack_;
/* Operating temperature to be use in simulation */
float simulation_temperature_;
/* Options support by simulators
* verbose_output: This is an option to turn on verbose output in
* simulators Simulation runtime can be slow when this option is on for large
* FPGA fabrics! capacitance_output: Show capacitance of each nodes in the log
* file This is an option provided by SPICE simulators Simulation runtime can
* be slow when this option is on for large FPGA fabrics! accuracy_type: type
* of accuracy to be used in simulation See the definition in enumeration
* e_sim_accuracy_type Simulation runtime can be slow when a high accuracy is
* enable for large FPGA fabrics! accuracy: the absolute value of
* accuracy to be used in simulation. If fractional accuarcy is specified, the
* value will be determined by the maximum operating frequency after VPR
* routing finished If absolute accuracy is specified, the value will be given
* by users
*/
bool verbose_output_;
bool capacitance_output_;
e_sim_accuracy_type simulation_accuracy_type_;
float simulation_accuracy_;
/* Enable fast simulation
* Note: this may impact the accuracy of simulation results
*/
bool fast_simulation_;
/* Number of simulation points to be used in Monte Carlo simulation
* If a zero is given, monte carlo simulation will not be applied
* The larger number of simulation points is used, the slower runtime will be
*/
size_t monte_carlo_simulation_points_;
/* The thresholds (in percentage) to be used in the measuring signal slews
* Thresholds related to rising edge will be stored in the first element
* Thresholds related to falling edge will be stored in the second element
*/
std::array<float, NUM_SIM_SIGNAL_TYPES> slew_upper_thresholds_;
std::array<float, NUM_SIM_SIGNAL_TYPES> slew_lower_thresholds_;
/* The thresholds (in percentage) to be used in the measuring signal delays
* Thresholds related to rising edge will be stored in the first element
* Thresholds related to falling edge will be stored in the second element
*
* An example of delay measurement in rising edge
* from 50% of input signal to 50% of output signal
* (delay_input_threshold=0.5; delay_output_threshold=0.5)
*
* Input signal
*
* 50% of full swing of input signal
* ^ +--------------------------
* |/
* +----------------+
* / | |
* -------+ | |
* v |
* rise delay |
* |
* Output signal |
* | +--------
* |/
* +
* /|
* -------------------------+ |
* v
* 50% of full swing of output signal
*/
std::array<float, NUM_SIM_SIGNAL_TYPES> delay_input_thresholds_;
std::array<float, NUM_SIM_SIGNAL_TYPES> delay_output_thresholds_;
/* Stimulus to be given to each type of port.
* We support two types of ports:
* 1. clock ports
* 2. regular input ports
*
* Slew time related to rising edge will be stored in the first element
* Slew time related to falling edge will be stored in the second element
*
* accuracy_type: type of accuracy to be used in simulation
* Fractional accuracy will be determined by the clock
* frequency to be defined by user in the clock_setting
*/
std::array<e_sim_accuracy_type, NUM_SIM_ACCURACY_TYPES> clock_slew_types_;
std::array<float, NUM_SIM_ACCURACY_TYPES> clock_slews_;
std::array<e_sim_accuracy_type, NUM_SIM_ACCURACY_TYPES> input_slew_types_;
std::array<float, NUM_SIM_ACCURACY_TYPES> input_slews_;
};
} // namespace openfpga
#endif