/* Prepacking: Group together technology-mapped netlist blocks before packing. This gives hints to the packer on what groups of blocks to keep together during packing. Primary purpose 1) "Forced" packs (eg LUT+FF pair) 2) Carry-chains Duties: Find pack patterns in architecture, find pack patterns in netlist. Author: Jason Luu March 12, 2012 */ #include #include #include #include "read_xml_arch_file.h" #include "util.h" #include "vpr_types.h" #include "globals.h" #include "hash.h" #include "prepack.h" #include "vpr_utils.h" #include "ReadOptions.h" /*****************************************/ /*Local Function Declaration */ /*****************************************/ static int add_pattern_name_to_hash(INOUTP struct s_hash **nhash, INP char *pattern_name, INOUTP int *ncount); static void discover_pattern_names_in_pb_graph_node( INOUTP t_pb_graph_node *pb_graph_node, INOUTP struct s_hash **nhash, INOUTP int *ncount); static void forward_infer_pattern(INOUTP t_pb_graph_pin *pb_graph_pin); static void backward_infer_pattern(INOUTP t_pb_graph_pin *pb_graph_pin); static t_pack_patterns *alloc_and_init_pattern_list_from_hash(INP int ncount, INOUTP struct s_hash **nhash); static t_pb_graph_edge * find_expansion_edge_of_pattern(INP int pattern_index, INP t_pb_graph_node *pb_graph_node); static void forward_expand_pack_pattern_from_edge( INP t_pb_graph_edge *expansion_edge, INOUTP t_pack_patterns *list_of_packing_patterns, INP int curr_pattern_index, INP int *L_num_blocks, INP boolean make_root_of_chain); static void backward_expand_pack_pattern_from_edge( INP t_pb_graph_edge* expansion_edge, INOUTP t_pack_patterns *list_of_packing_patterns, INP int curr_pattern_index, INP t_pb_graph_pin *destination_pin, INP t_pack_pattern_block *destination_block, INP int *L_num_blocks); static int compare_pack_pattern(const t_pack_patterns *pattern_a, const t_pack_patterns *pattern_b); static void free_pack_pattern(INOUTP t_pack_pattern_block *pattern_block, INOUTP t_pack_pattern_block **pattern_block_list); static t_pack_molecule *try_create_molecule( INP t_pack_patterns *list_of_pack_patterns, INP int pack_pattern_index, INP int block_index); static boolean try_expand_molecule(INOUTP t_pack_molecule *molecule, INP int logical_block_index, INP t_pack_pattern_block *current_pattern_block); static void print_pack_molecules(INP const char *fname, INP t_pack_patterns *list_of_pack_patterns, INP int num_pack_patterns, INP t_pack_molecule *list_of_molecules); static t_pb_graph_node *get_expected_lowest_cost_primitive_for_logical_block(INP int ilogical_block); static t_pb_graph_node *get_expected_lowest_cost_primitive_for_logical_block_in_pb_graph_node(INP int ilogical_block, INP t_pb_graph_node *curr_pb_graph_node, OUTP float *cost); static int find_new_root_atom_for_chain(INP int block_index, INP t_pack_patterns *list_of_pack_pattern); /*****************************************/ /*Function Definitions */ /*****************************************/ /** * Find all packing patterns in architecture * [0..num_packing_patterns-1] * * Limitations: Currently assumes that forced pack nets must be single-fanout as this covers all the reasonable architectures we wanted. More complicated structures should probably be handled either downstream (general packing) or upstream (in tech mapping) * If this limitation is too constraining, code is designed so that this limitation can be removed */ t_pack_patterns *alloc_and_load_pack_patterns(OUTP int *num_packing_patterns) { int i, j, ncount, k; int L_num_blocks; struct s_hash **nhash; t_pack_patterns *list_of_packing_patterns; t_pb_graph_edge *expansion_edge; /* alloc and initialize array of packing patterns based on architecture complex blocks */ nhash = alloc_hash_table(); ncount = 0; for (i = 0; i < num_types; i++) { discover_pattern_names_in_pb_graph_node(type_descriptors[i].pb_graph_head, nhash, &ncount); } list_of_packing_patterns = alloc_and_init_pattern_list_from_hash(ncount, nhash); /* load packing patterns by traversing the edges to find edges belonging to pattern */ for (i = 0; i < ncount; i++) { for (j = 0; j < num_types; j++) { expansion_edge = find_expansion_edge_of_pattern(i, type_descriptors[j].pb_graph_head); if (expansion_edge == NULL) { continue; } L_num_blocks = 0; list_of_packing_patterns[i].base_cost = 0; backward_expand_pack_pattern_from_edge(expansion_edge, list_of_packing_patterns, i, NULL, NULL, &L_num_blocks); list_of_packing_patterns[i].num_blocks = L_num_blocks; /* Default settings: A section of a netlist must match all blocks in a pack pattern before it can be made a molecule except for carry-chains. For carry-chains, since carry-chains are typically quite flexible in terms of size, it is optional whether or not an atom in a netlist matches any particular block inside the chain */ list_of_packing_patterns[i].is_block_optional = (boolean*) my_malloc(L_num_blocks * sizeof(boolean)); for(k = 0; k < L_num_blocks; k++) { list_of_packing_patterns[i].is_block_optional[k] = FALSE; if(list_of_packing_patterns[i].is_chain && list_of_packing_patterns[i].root_block->block_id != k) { list_of_packing_patterns[i].is_block_optional[k] = TRUE; } } break; } } free_hash_table(nhash); *num_packing_patterns = ncount; return list_of_packing_patterns; } /** * Adds pack pattern name to hashtable of pack pattern names. */ static int add_pattern_name_to_hash(INOUTP struct s_hash **nhash, INP char *pattern_name, INOUTP int *ncount) { struct s_hash *hash_value; hash_value = insert_in_hash_table(nhash, pattern_name, *ncount); if (hash_value->count == 1) { assert(*ncount == hash_value->index); (*ncount)++; } return hash_value->index; } /** * Locate all pattern names * Side-effect: set all pb_graph_node temp_scratch_pad field to NULL * For cases where a pattern inference is "obvious", mark it as obvious. */ static void discover_pattern_names_in_pb_graph_node( INOUTP t_pb_graph_node *pb_graph_node, INOUTP struct s_hash **nhash, INOUTP int *ncount) { int i, j, k, m; int index; boolean hasPattern; /* Iterate over all edges to discover if an edge in current physical block belongs to a pattern If edge does, then record the name of the pattern in a hash table */ if (pb_graph_node == NULL) { return; } pb_graph_node->temp_scratch_pad = NULL; for (i = 0; i < pb_graph_node->num_input_ports; i++) { for (j = 0; j < pb_graph_node->num_input_pins[i]; j++) { hasPattern = FALSE; for (k = 0; k < pb_graph_node->input_pins[i][j].num_output_edges; k++) { for (m = 0; m < pb_graph_node->input_pins[i][j].output_edges[k]->num_pack_patterns; m++) { hasPattern = TRUE; index = add_pattern_name_to_hash(nhash, pb_graph_node->input_pins[i][j].output_edges[k]->pack_pattern_names[m], ncount); if (pb_graph_node->input_pins[i][j].output_edges[k]->pack_pattern_indices == NULL) { pb_graph_node->input_pins[i][j].output_edges[k]->pack_pattern_indices = (int*) my_malloc(pb_graph_node->input_pins[i][j].output_edges[k]->num_pack_patterns * sizeof(int)); } pb_graph_node->input_pins[i][j].output_edges[k]->pack_pattern_indices[m] = index; } } if (hasPattern == TRUE) { forward_infer_pattern(&pb_graph_node->input_pins[i][j]); backward_infer_pattern(&pb_graph_node->input_pins[i][j]); } } } for (i = 0; i < pb_graph_node->num_output_ports; i++) { for (j = 0; j < pb_graph_node->num_output_pins[i]; j++) { hasPattern = FALSE; for (k = 0; k < pb_graph_node->output_pins[i][j].num_output_edges; k++) { for (m = 0; m < pb_graph_node->output_pins[i][j].output_edges[k]->num_pack_patterns; m++) { hasPattern = TRUE; index = add_pattern_name_to_hash(nhash, pb_graph_node->output_pins[i][j].output_edges[k]->pack_pattern_names[m], ncount); if (pb_graph_node->output_pins[i][j].output_edges[k]->pack_pattern_indices == NULL) { pb_graph_node->output_pins[i][j].output_edges[k]->pack_pattern_indices = (int*) my_malloc(pb_graph_node->output_pins[i][j].output_edges[k]->num_pack_patterns* sizeof(int)); } pb_graph_node->output_pins[i][j].output_edges[k]->pack_pattern_indices[m] = index; } } if (hasPattern == TRUE) { forward_infer_pattern(&pb_graph_node->output_pins[i][j]); backward_infer_pattern(&pb_graph_node->output_pins[i][j]); } } } for (i = 0; i < pb_graph_node->num_clock_ports; i++) { for (j = 0; j < pb_graph_node->num_clock_pins[i]; j++) { hasPattern = FALSE; for (k = 0; k < pb_graph_node->clock_pins[i][j].num_output_edges; k++) { for (m = 0; m < pb_graph_node->clock_pins[i][j].output_edges[k]->num_pack_patterns; m++) { hasPattern = TRUE; index = add_pattern_name_to_hash(nhash, pb_graph_node->clock_pins[i][j].output_edges[k]->pack_pattern_names[m], ncount); if (pb_graph_node->clock_pins[i][j].output_edges[k]->pack_pattern_indices == NULL) { pb_graph_node->clock_pins[i][j].output_edges[k]->pack_pattern_indices = (int*) my_malloc(pb_graph_node->clock_pins[i][j].output_edges[k]->num_pack_patterns * sizeof(int)); } pb_graph_node->clock_pins[i][j].output_edges[k]->pack_pattern_indices[m] = index; } } if (hasPattern == TRUE) { forward_infer_pattern(&pb_graph_node->clock_pins[i][j]); backward_infer_pattern(&pb_graph_node->clock_pins[i][j]); } } } for (i = 0; i < pb_graph_node->pb_type->num_modes; i++) { for (j = 0; j < pb_graph_node->pb_type->modes[i].num_pb_type_children; j++) { for (k = 0; k < pb_graph_node->pb_type->modes[i].pb_type_children[j].num_pb; k++) { discover_pattern_names_in_pb_graph_node(&pb_graph_node->child_pb_graph_nodes[i][j][k], nhash, ncount); } } } } /** * In obvious cases where a pattern edge has only one path to go, set that path to be inferred */ static void forward_infer_pattern(INOUTP t_pb_graph_pin *pb_graph_pin) { if (pb_graph_pin->num_output_edges == 1 && pb_graph_pin->output_edges[0]->num_pack_patterns == 0 && pb_graph_pin->output_edges[0]->infer_pattern == FALSE) { pb_graph_pin->output_edges[0]->infer_pattern = TRUE; if (pb_graph_pin->output_edges[0]->num_output_pins == 1) { forward_infer_pattern(pb_graph_pin->output_edges[0]->output_pins[0]); } } } static void backward_infer_pattern(INOUTP t_pb_graph_pin *pb_graph_pin) { if (pb_graph_pin->num_input_edges == 1 && pb_graph_pin->input_edges[0]->num_pack_patterns == 0 && pb_graph_pin->input_edges[0]->infer_pattern == FALSE) { pb_graph_pin->input_edges[0]->infer_pattern = TRUE; if (pb_graph_pin->input_edges[0]->num_input_pins == 1) { backward_infer_pattern(pb_graph_pin->input_edges[0]->input_pins[0]); } } } /** * Allocates memory for models and loads the name of the packing pattern so that it can be identified and loaded with * more complete information later */ static t_pack_patterns *alloc_and_init_pattern_list_from_hash(INP int ncount, INOUTP struct s_hash **nhash) { t_pack_patterns *nlist; struct s_hash_iterator hash_iter; struct s_hash *curr_pattern; nlist = (t_pack_patterns*)my_calloc(ncount, sizeof(t_pack_patterns)); hash_iter = start_hash_table_iterator(); curr_pattern = get_next_hash(nhash, &hash_iter); while (curr_pattern != NULL) { assert(nlist[curr_pattern->index].name == NULL); nlist[curr_pattern->index].name = my_strdup(curr_pattern->name); nlist[curr_pattern->index].root_block = NULL; nlist[curr_pattern->index].is_chain = FALSE; nlist[curr_pattern->index].index = curr_pattern->index; curr_pattern = get_next_hash(nhash, &hash_iter); } return nlist; } void free_list_of_pack_patterns(INP t_pack_patterns *list_of_pack_patterns, INP int num_packing_patterns) { int i, j, num_pack_pattern_blocks; t_pack_pattern_block **pattern_block_list; if (list_of_pack_patterns != NULL) { for (i = 0; i < num_packing_patterns; i++) { num_pack_pattern_blocks = list_of_pack_patterns[i].num_blocks; pattern_block_list = (t_pack_pattern_block **)my_calloc(num_pack_pattern_blocks, sizeof(t_pack_pattern_block *)); free(list_of_pack_patterns[i].name); free(list_of_pack_patterns[i].is_block_optional); free_pack_pattern(list_of_pack_patterns[i].root_block, pattern_block_list); for (j = 0; j < num_pack_pattern_blocks; j++) { free(pattern_block_list[j]); } free(pattern_block_list); } free(list_of_pack_patterns); } } /** * Locate first edge that belongs to pattern index */ static t_pb_graph_edge * find_expansion_edge_of_pattern(INP int pattern_index, INP t_pb_graph_node *pb_graph_node) { int i, j, k, m; t_pb_graph_edge * edge; /* Iterate over all edges to discover if an edge in current physical block belongs to a pattern If edge does, then return that edge */ if (pb_graph_node == NULL) { return NULL; } for (i = 0; i < pb_graph_node->num_input_ports; i++) { for (j = 0; j < pb_graph_node->num_input_pins[i]; j++) { for (k = 0; k < pb_graph_node->input_pins[i][j].num_output_edges; k++) { for (m = 0; m < pb_graph_node->input_pins[i][j].output_edges[k]->num_pack_patterns; m++) { if (pb_graph_node->input_pins[i][j].output_edges[k]->pack_pattern_indices[m] == pattern_index) { return pb_graph_node->input_pins[i][j].output_edges[k]; } } } } } for (i = 0; i < pb_graph_node->num_output_ports; i++) { for (j = 0; j < pb_graph_node->num_output_pins[i]; j++) { for (k = 0; k < pb_graph_node->output_pins[i][j].num_output_edges; k++) { for (m = 0; m < pb_graph_node->output_pins[i][j].output_edges[k]->num_pack_patterns; m++) { if (pb_graph_node->output_pins[i][j].output_edges[k]->pack_pattern_indices[m] == pattern_index) { return pb_graph_node->output_pins[i][j].output_edges[k]; } } } } } for (i = 0; i < pb_graph_node->num_clock_ports; i++) { for (j = 0; j < pb_graph_node->num_clock_pins[i]; j++) { for (k = 0; k < pb_graph_node->clock_pins[i][j].num_output_edges; k++) { for (m = 0; m < pb_graph_node->clock_pins[i][j].output_edges[k]->num_pack_patterns; m++) { if (pb_graph_node->clock_pins[i][j].output_edges[k]->pack_pattern_indices[m] == pattern_index) { return pb_graph_node->clock_pins[i][j].output_edges[k]; } } } } } /* Xifan TANG's note: Go recursively downto the children pb_graph_node*/ for (i = 0; i < pb_graph_node->pb_type->num_modes; i++) { for (j = 0; j < pb_graph_node->pb_type->modes[i].num_pb_type_children; j++) { for (k = 0; k < pb_graph_node->pb_type->modes[i].pb_type_children[j].num_pb; k++) { edge = find_expansion_edge_of_pattern(pattern_index, &pb_graph_node->child_pb_graph_nodes[i][j][k]); if (edge != NULL) { return edge; } } } } return NULL; } /** * Find if receiver of edge is in the same pattern, if yes, add to pattern * Convention: Connections are made on backward expansion only (to make future multi-fanout support easier) so this function will not update connections */ static void forward_expand_pack_pattern_from_edge( INP t_pb_graph_edge* expansion_edge, INOUTP t_pack_patterns *list_of_packing_patterns, INP int curr_pattern_index, INP int *L_num_blocks, INOUTP boolean make_root_of_chain) { int i, j, k; int iport, ipin, iedge; boolean found; /* Error checking, ensure only one fan-out for each pattern net */ t_pack_pattern_block *destination_block = NULL; t_pb_graph_node *destination_pb_graph_node = NULL; found = expansion_edge->infer_pattern; for (i = 0; !found && i < expansion_edge->num_pack_patterns; i++) { if (expansion_edge->pack_pattern_indices[i] == curr_pattern_index) { found = TRUE; } } if (!found) { return; } found = FALSE; for (i = 0; i < expansion_edge->num_output_pins; i++) { if (expansion_edge->output_pins[i]->parent_node->pb_type->num_modes == 0) { destination_pb_graph_node = expansion_edge->output_pins[i]->parent_node; assert(found == FALSE); /* Check assumption that each forced net has only one fan-out */ /* This is the destination node */ found = TRUE; /* If this pb_graph_node is part not of the current pattern index, put it in and expand all its edges */ if (destination_pb_graph_node->temp_scratch_pad == NULL || ((t_pack_pattern_block*) destination_pb_graph_node->temp_scratch_pad)->pattern_index != curr_pattern_index) { destination_block = (t_pack_pattern_block*)my_calloc(1, sizeof(t_pack_pattern_block)); list_of_packing_patterns[curr_pattern_index].base_cost += compute_primitive_base_cost(destination_pb_graph_node); destination_block->block_id = *L_num_blocks; (*L_num_blocks)++; destination_pb_graph_node->temp_scratch_pad = (void *) destination_block; destination_block->pattern_index = curr_pattern_index; destination_block->pb_type = destination_pb_graph_node->pb_type; for (iport = 0; iport < destination_pb_graph_node->num_input_ports; iport++) { for (ipin = 0; ipin < destination_pb_graph_node->num_input_pins[iport]; ipin++) { for (iedge = 0; iedge < destination_pb_graph_node->input_pins[iport][ipin].num_input_edges; iedge++) { backward_expand_pack_pattern_from_edge( destination_pb_graph_node->input_pins[iport][ipin].input_edges[iedge], list_of_packing_patterns, curr_pattern_index, &destination_pb_graph_node->input_pins[iport][ipin], destination_block, L_num_blocks); } } } for (iport = 0; iport < destination_pb_graph_node->num_output_ports; iport++) { for (ipin = 0; ipin < destination_pb_graph_node->num_output_pins[iport]; ipin++) { for (iedge = 0; iedge < destination_pb_graph_node->output_pins[iport][ipin].num_output_edges; iedge++) { forward_expand_pack_pattern_from_edge( destination_pb_graph_node->output_pins[iport][ipin].output_edges[iedge], list_of_packing_patterns, curr_pattern_index, L_num_blocks, FALSE); } } } for (iport = 0; iport < destination_pb_graph_node->num_clock_ports; iport++) { for (ipin = 0;ipin < destination_pb_graph_node->num_clock_pins[iport]; ipin++) { for (iedge = 0; iedge < destination_pb_graph_node->clock_pins[iport][ipin].num_input_edges; iedge++) { backward_expand_pack_pattern_from_edge( destination_pb_graph_node->clock_pins[iport][ipin].input_edges[iedge], list_of_packing_patterns, curr_pattern_index, &destination_pb_graph_node->clock_pins[iport][ipin], destination_block, L_num_blocks); } } } } if (((t_pack_pattern_block*) destination_pb_graph_node->temp_scratch_pad)->pattern_index == curr_pattern_index) { if(make_root_of_chain == TRUE) { list_of_packing_patterns[curr_pattern_index].chain_root_pin = expansion_edge->output_pins[i]; list_of_packing_patterns[curr_pattern_index].root_block = destination_block; } } } else { for (j = 0; j < expansion_edge->output_pins[i]->num_output_edges; j++) { if (expansion_edge->output_pins[i]->output_edges[j]->infer_pattern == TRUE) { forward_expand_pack_pattern_from_edge( expansion_edge->output_pins[i]->output_edges[j], list_of_packing_patterns, curr_pattern_index, L_num_blocks, make_root_of_chain); } else { for (k = 0; k < expansion_edge->output_pins[i]->output_edges[j]->num_pack_patterns; k++) { if (expansion_edge->output_pins[i]->output_edges[j]->pack_pattern_indices[k] == curr_pattern_index) { if (found == FALSE) { assert(found == FALSE); } /* Check assumption that each forced net has only one fan-out */ found = TRUE; forward_expand_pack_pattern_from_edge( expansion_edge->output_pins[i]->output_edges[j], list_of_packing_patterns, curr_pattern_index, L_num_blocks, make_root_of_chain); } } } } } } } /** * Find if driver of edge is in the same pattern, if yes, add to pattern * Convention: Connections are made on backward expansion only (to make future multi-fanout support easier) so this function must update both source and destination blocks */ static void backward_expand_pack_pattern_from_edge( INP t_pb_graph_edge* expansion_edge, INOUTP t_pack_patterns *list_of_packing_patterns, INP int curr_pattern_index, INP t_pb_graph_pin *destination_pin, INP t_pack_pattern_block *destination_block, INP int *L_num_blocks) { int i, j, k; int iport, ipin, iedge; boolean found; /* Error checking, ensure only one fan-out for each pattern net */ t_pack_pattern_block *source_block = NULL; t_pb_graph_node *source_pb_graph_node = NULL; t_pack_pattern_connections *pack_pattern_connection = NULL; found = expansion_edge->infer_pattern; for (i = 0; !found && i < expansion_edge->num_pack_patterns; i++) { if (expansion_edge->pack_pattern_indices[i] == curr_pattern_index) { found = TRUE; } } if (!found) { return; } found = FALSE; for (i = 0; i < expansion_edge->num_input_pins; i++) { if (expansion_edge->input_pins[i]->parent_node->pb_type->num_modes == 0) { source_pb_graph_node = expansion_edge->input_pins[i]->parent_node; assert(found == FALSE); /* Check assumption that each forced net has only one fan-out */ /* This is the source node for destination */ found = TRUE; /* If this pb_graph_node is part not of the current pattern index, put it in and expand all its edges */ source_block = (t_pack_pattern_block*) source_pb_graph_node->temp_scratch_pad; if (source_block == NULL || source_block->pattern_index != curr_pattern_index) { source_block = (t_pack_pattern_block *)my_calloc(1, sizeof(t_pack_pattern_block)); source_block->block_id = *L_num_blocks; (*L_num_blocks)++; list_of_packing_patterns[curr_pattern_index].base_cost += compute_primitive_base_cost(source_pb_graph_node); source_pb_graph_node->temp_scratch_pad = (void *) source_block; source_block->pattern_index = curr_pattern_index; source_block->pb_type = source_pb_graph_node->pb_type; if (list_of_packing_patterns[curr_pattern_index].root_block == NULL) { list_of_packing_patterns[curr_pattern_index].root_block = source_block; } for (iport = 0; iport < source_pb_graph_node->num_input_ports; iport++) { for (ipin = 0; ipin < source_pb_graph_node->num_input_pins[iport]; ipin++) { for (iedge = 0; iedge < source_pb_graph_node->input_pins[iport][ipin].num_input_edges; iedge++) { backward_expand_pack_pattern_from_edge( source_pb_graph_node->input_pins[iport][ipin].input_edges[iedge], list_of_packing_patterns, curr_pattern_index, &source_pb_graph_node->input_pins[iport][ipin], source_block, L_num_blocks); } } } for (iport = 0; iport < source_pb_graph_node->num_output_ports; iport++) { for (ipin = 0; ipin < source_pb_graph_node->num_output_pins[iport]; ipin++) { for (iedge = 0; iedge < source_pb_graph_node->output_pins[iport][ipin].num_output_edges; iedge++) { forward_expand_pack_pattern_from_edge( source_pb_graph_node->output_pins[iport][ipin].output_edges[iedge], list_of_packing_patterns, curr_pattern_index, L_num_blocks, FALSE); } } } for (iport = 0; iport < source_pb_graph_node->num_clock_ports; iport++) { for (ipin = 0; ipin < source_pb_graph_node->num_clock_pins[iport]; ipin++) { for (iedge = 0; iedge < source_pb_graph_node->clock_pins[iport][ipin].num_input_edges; iedge++) { backward_expand_pack_pattern_from_edge( source_pb_graph_node->clock_pins[iport][ipin].input_edges[iedge], list_of_packing_patterns, curr_pattern_index, &source_pb_graph_node->clock_pins[iport][ipin], source_block, L_num_blocks); } } } } if (destination_pin != NULL) { assert(((t_pack_pattern_block*)source_pb_graph_node->temp_scratch_pad)->pattern_index == curr_pattern_index); source_block = (t_pack_pattern_block*) source_pb_graph_node->temp_scratch_pad; pack_pattern_connection = (t_pack_pattern_connections *)my_calloc(1, sizeof(t_pack_pattern_connections)); pack_pattern_connection->from_block = source_block; pack_pattern_connection->from_pin = expansion_edge->input_pins[i]; pack_pattern_connection->to_block = destination_block; pack_pattern_connection->to_pin = destination_pin; pack_pattern_connection->next = source_block->connections; source_block->connections = pack_pattern_connection; pack_pattern_connection = (t_pack_pattern_connections *)my_calloc(1, sizeof(t_pack_pattern_connections)); pack_pattern_connection->from_block = source_block; pack_pattern_connection->from_pin = expansion_edge->input_pins[i]; pack_pattern_connection->to_block = destination_block; pack_pattern_connection->to_pin = destination_pin; pack_pattern_connection->next = destination_block->connections; destination_block->connections = pack_pattern_connection; if (source_block == destination_block) { vpr_printf(TIO_MESSAGE_ERROR, "Invalid packing pattern defined. Source and destination block are the same (%s).\n", source_block->pb_type->name); } } } else { if(expansion_edge->input_pins[i]->num_input_edges == 0) { if(expansion_edge->input_pins[i]->parent_node->pb_type->parent_mode == NULL) { /* This pack pattern extends to CLB input pin, thus it extends across multiple logic blocks, treat as a chain */ list_of_packing_patterns[curr_pattern_index].is_chain = TRUE; forward_expand_pack_pattern_from_edge( expansion_edge, list_of_packing_patterns, curr_pattern_index, L_num_blocks, TRUE); } } else { for (j = 0; j < expansion_edge->input_pins[i]->num_input_edges; j++) { if (expansion_edge->input_pins[i]->input_edges[j]->infer_pattern == TRUE) { backward_expand_pack_pattern_from_edge( expansion_edge->input_pins[i]->input_edges[j], list_of_packing_patterns, curr_pattern_index, destination_pin, destination_block, L_num_blocks); } else { for (k = 0; k < expansion_edge->input_pins[i]->input_edges[j]->num_pack_patterns; k++) { if (expansion_edge->input_pins[i]->input_edges[j]->pack_pattern_indices[k] == curr_pattern_index) { if (found == FALSE) { assert(found == FALSE); } /* Check assumption that each forced net has only one fan-out */ found = TRUE; backward_expand_pack_pattern_from_edge( expansion_edge->input_pins[i]->input_edges[j], list_of_packing_patterns, curr_pattern_index, destination_pin, destination_block, L_num_blocks); } } } } } } } } /** * Pre-pack atoms in netlist to molecules * 1. Single atoms are by definition a molecule. * 2. Forced pack molecules are groupings of atoms that matches a t_pack_pattern definition. * 3. Chained molecules are molecules that follow a carry-chain style pattern: ie. a single linear chain that can be split across multiple complex blocks */ t_pack_molecule *alloc_and_load_pack_molecules( INP t_pack_patterns *list_of_pack_patterns, INP int num_packing_patterns, OUTP int *num_pack_molecule) { int i, j, best_pattern; t_pack_molecule *list_of_molecules_head; t_pack_molecule *cur_molecule; boolean *is_used; is_used = (boolean*)my_calloc(num_packing_patterns, sizeof(boolean)); cur_molecule = list_of_molecules_head = NULL; /* Find forced pack patterns */ /* Simplifying assumptions: Each atom can map to at most one molecule, use first-fit mapping based on priority of pattern */ /* TODO: Need to investigate better mapping strategies than first-fit */ for (i = 0; i < num_packing_patterns; i++) { best_pattern = 0; for(j = 1; j < num_packing_patterns; j++) { if(is_used[best_pattern]) { best_pattern = j; } else if (is_used[j] == FALSE && compare_pack_pattern(&list_of_pack_patterns[j], &list_of_pack_patterns[best_pattern]) == 1) { best_pattern = j; } } assert(is_used[best_pattern] == FALSE); is_used[best_pattern] = TRUE; for (j = 0; j < num_logical_blocks; j++) { cur_molecule = try_create_molecule(list_of_pack_patterns, best_pattern, j); if (cur_molecule != NULL) { cur_molecule->next = list_of_molecules_head; /* In the event of multiple molecules with the same logical block pattern, bias to use the molecule with less costly physical resources first */ /* TODO: Need to normalize magical number 100 */ cur_molecule->base_gain = cur_molecule->num_blocks - (cur_molecule->pack_pattern->base_cost / 100); list_of_molecules_head = cur_molecule; if(logical_block[j].packed_molecules == NULL || logical_block[j].packed_molecules->data_vptr != cur_molecule) { /* molecule did not cover current atom (possibly because molecule created is part of a long chain that extends past multiple logic blocks), try again */ j--; } } } } free(is_used); /* List all logical blocks as a molecule for blocks that do not belong to any molecules. This allows the packer to be consistent as it now packs molecules only instead of atoms and molecules If a block belongs to a molecule, then carrying the single atoms around can make the packing problem more difficult because now it needs to consider splitting molecules. */ for (i = 0; i < num_logical_blocks; i++) { logical_block[i].expected_lowest_cost_primitive = get_expected_lowest_cost_primitive_for_logical_block(i); if (logical_block[i].packed_molecules == NULL) { cur_molecule = (t_pack_molecule*) my_calloc(1, sizeof(t_pack_molecule)); cur_molecule->valid = TRUE; cur_molecule->type = MOLECULE_SINGLE_ATOM; cur_molecule->num_blocks = 1; cur_molecule->root = 0; cur_molecule->num_ext_inputs = logical_block[i].used_input_pins; cur_molecule->chain_pattern = NULL; cur_molecule->pack_pattern = NULL; cur_molecule->logical_block_ptrs = (t_logical_block**) my_malloc(1 * sizeof(t_logical_block*)); cur_molecule->logical_block_ptrs[0] = &logical_block[i]; cur_molecule->next = list_of_molecules_head; cur_molecule->base_gain = 1; list_of_molecules_head = cur_molecule; logical_block[i].packed_molecules = (struct s_linked_vptr*) my_calloc(1, sizeof(struct s_linked_vptr)); logical_block[i].packed_molecules->data_vptr = (void*) cur_molecule; } } if (getEchoEnabled() && isEchoFileEnabled(E_ECHO_PRE_PACKING_MOLECULES_AND_PATTERNS)) { print_pack_molecules(getEchoFileName(E_ECHO_PRE_PACKING_MOLECULES_AND_PATTERNS), list_of_pack_patterns, num_packing_patterns, list_of_molecules_head); } return list_of_molecules_head; } static void free_pack_pattern(INOUTP t_pack_pattern_block *pattern_block, INOUTP t_pack_pattern_block **pattern_block_list) { t_pack_pattern_connections *connection, *next; if (pattern_block->block_id == OPEN) { /* already traversed, return */ return; } pattern_block_list[pattern_block->block_id] = pattern_block; pattern_block->block_id = OPEN; connection = pattern_block->connections; while (connection) { free_pack_pattern(connection->from_block, pattern_block_list); free_pack_pattern(connection->to_block, pattern_block_list); next = connection->next; free(connection); connection = next; } } /** * Given a pattern and a logical block to serve as the root block, determine if the candidate logical block serving as the root node matches the pattern * If yes, return the molecule with this logical block as the root, if not, return NULL * Limitations: Currently assumes that forced pack nets must be single-fanout as this covers all the reasonable architectures we wanted More complicated structures should probably be handled either downstream (general packing) or upstream (in tech mapping) * If this limitation is too constraining, code is designed so that this limitation can be removed * Side Effect: If successful, link atom to molecule */ static t_pack_molecule *try_create_molecule( INP t_pack_patterns *list_of_pack_patterns, INP int pack_pattern_index, INP int block_index) { int i; t_pack_molecule *molecule; struct s_linked_vptr *molecule_linked_list; molecule = (t_pack_molecule*)my_calloc(1, sizeof(t_pack_molecule)); molecule->valid = TRUE; molecule->type = MOLECULE_FORCED_PACK; molecule->pack_pattern = &list_of_pack_patterns[pack_pattern_index]; molecule->logical_block_ptrs = (t_logical_block **)my_calloc(molecule->pack_pattern->num_blocks, sizeof(t_logical_block *)); molecule->num_blocks = list_of_pack_patterns[pack_pattern_index].num_blocks; molecule->root = list_of_pack_patterns[pack_pattern_index].root_block->block_id; molecule->num_ext_inputs = 0; if(list_of_pack_patterns[pack_pattern_index].is_chain == TRUE) { /* A chain pattern extends beyond a single logic block so we must find the block_index that matches with the portion of a chain for this particular logic block */ block_index = find_new_root_atom_for_chain(block_index, &list_of_pack_patterns[pack_pattern_index]); } if (block_index != OPEN && try_expand_molecule(molecule, block_index, molecule->pack_pattern->root_block) == TRUE) { /* Success! commit module */ for (i = 0; i < molecule->pack_pattern->num_blocks; i++) { if(molecule->logical_block_ptrs[i] == NULL) { assert(list_of_pack_patterns[pack_pattern_index].is_block_optional[i] == TRUE); continue; } molecule_linked_list = (struct s_linked_vptr*) my_calloc(1, sizeof(struct s_linked_vptr)); molecule_linked_list->data_vptr = (void *) molecule; molecule_linked_list->next = molecule->logical_block_ptrs[i]->packed_molecules; molecule->logical_block_ptrs[i]->packed_molecules = molecule_linked_list; } } else { /* Does not match pattern, free molecule */ free(molecule->logical_block_ptrs); free(molecule); molecule = NULL; } return molecule; } /** * Determine if logical block can match with the pattern to form a molecule * return TRUE if it matches, return FALSE otherwise */ static boolean try_expand_molecule(INOUTP t_pack_molecule *molecule, INP int logical_block_index, INP t_pack_pattern_block *current_pattern_block) { int iport, ipin, inet; boolean success; boolean is_optional; boolean *is_block_optional; t_pack_pattern_connections *cur_pack_pattern_connection; is_block_optional = molecule->pack_pattern->is_block_optional; is_optional = is_block_optional[current_pattern_block->block_id]; /* If the block in the pattern has already been visited, then there is no need to revisit it */ if (molecule->logical_block_ptrs[current_pattern_block->block_id] != NULL) { if (molecule->logical_block_ptrs[current_pattern_block->block_id] != &logical_block[logical_block_index]) { /* Mismatch between the visited block and the current block implies that the current netlist structure does not match the expected pattern, return whether or not this matters */ return is_optional; } else { molecule->num_ext_inputs--; /* This block is revisited, implies net is entirely internal to molecule, reduce count */ return TRUE; } } /* This node has never been visited */ /* Simplifying assumption: An atom can only map to one molecule */ if(logical_block[logical_block_index].packed_molecules != NULL) { /* This block is already in a molecule, return whether or not this matters */ return is_optional; } if (primitive_type_feasible(logical_block_index, current_pattern_block->pb_type)) { success = TRUE; /* If the primitive types match, store it, expand it and explore neighbouring nodes */ molecule->logical_block_ptrs[current_pattern_block->block_id] = &logical_block[logical_block_index]; /* store that this node has been visited */ molecule->num_ext_inputs += logical_block[logical_block_index].used_input_pins; cur_pack_pattern_connection = current_pattern_block->connections; while (cur_pack_pattern_connection != NULL && success == TRUE) { if (cur_pack_pattern_connection->from_block == current_pattern_block) { /* find net corresponding to pattern */ iport = cur_pack_pattern_connection->from_pin->port->model_port->index; ipin = cur_pack_pattern_connection->from_pin->pin_number; inet = logical_block[logical_block_index].output_nets[iport][ipin]; /* Check if net is valid */ if (inet == OPEN || vpack_net[inet].num_sinks != 1) { /* One fanout assumption */ success = is_block_optional[cur_pack_pattern_connection->to_block->block_id]; } else { success = try_expand_molecule(molecule, vpack_net[inet].node_block[1], cur_pack_pattern_connection->to_block); } } else { assert( cur_pack_pattern_connection->to_block == current_pattern_block); /* find net corresponding to pattern */ iport = cur_pack_pattern_connection->to_pin->port->model_port->index; ipin = cur_pack_pattern_connection->to_pin->pin_number; if (cur_pack_pattern_connection->to_pin->port->model_port->is_clock) { inet = logical_block[logical_block_index].clock_net; } else { inet = logical_block[logical_block_index].input_nets[iport][ipin]; } /* Check if net is valid */ if (inet == OPEN || vpack_net[inet].num_sinks != 1) { /* One fanout assumption */ success = is_block_optional[cur_pack_pattern_connection->from_block->block_id]; } else { success = try_expand_molecule(molecule, vpack_net[inet].node_block[0], cur_pack_pattern_connection->from_block); } } cur_pack_pattern_connection = cur_pack_pattern_connection->next; } } else { success = is_optional; } return success; } static void print_pack_molecules(INP const char *fname, INP t_pack_patterns *list_of_pack_patterns, INP int num_pack_patterns, INP t_pack_molecule *list_of_molecules) { int i; FILE *fp; t_pack_molecule *list_of_molecules_current; fp = my_fopen(fname, "w", 0); fprintf(fp, "# of pack patterns %d\n", num_pack_patterns); for (i = 0; i < num_pack_patterns; i++) { fprintf(fp, "pack pattern index %d block count %d name %s root %s\n", list_of_pack_patterns[i].index, list_of_pack_patterns[i].num_blocks, list_of_pack_patterns[i].name, list_of_pack_patterns[i].root_block->pb_type->name); } list_of_molecules_current = list_of_molecules; while (list_of_molecules_current != NULL) { if (list_of_molecules_current->type == MOLECULE_SINGLE_ATOM) { fprintf(fp, "\nmolecule type: atom\n"); fprintf(fp, "\tpattern index %d: logical block [%d] name %s\n", i, list_of_molecules_current->logical_block_ptrs[0]->index, list_of_molecules_current->logical_block_ptrs[0]->name); } else if (list_of_molecules_current->type == MOLECULE_FORCED_PACK) { fprintf(fp, "\nmolecule type: %s\n", list_of_molecules_current->pack_pattern->name); for (i = 0; i < list_of_molecules_current->pack_pattern->num_blocks; i++) { if(list_of_molecules_current->logical_block_ptrs[i] == NULL) { fprintf(fp, "\tpattern index %d: empty \n", i); } else { fprintf(fp, "\tpattern index %d: logical block [%d] name %s", i, list_of_molecules_current->logical_block_ptrs[i]->index, list_of_molecules_current->logical_block_ptrs[i]->name); if(list_of_molecules_current->pack_pattern->root_block->block_id == i) { fprintf(fp, " root node\n"); } else { fprintf(fp, "\n"); } } } } else { assert(0); } list_of_molecules_current = list_of_molecules_current->next; } fclose(fp); } /* Search through all primitives and return the lowest cost primitive that fits this logical block */ static t_pb_graph_node *get_expected_lowest_cost_primitive_for_logical_block(INP int ilogical_block) { int i; float cost, best_cost; t_pb_graph_node *current, *best; best_cost = UNDEFINED; best = NULL; current = NULL; for(i = 0; i < num_types; i++) { cost = UNDEFINED; current = get_expected_lowest_cost_primitive_for_logical_block_in_pb_graph_node(ilogical_block, type_descriptors[i].pb_graph_head, &cost); if(cost != UNDEFINED) { if(best_cost == UNDEFINED || best_cost > cost) { best_cost = cost; best = current; } } } return best; } static t_pb_graph_node *get_expected_lowest_cost_primitive_for_logical_block_in_pb_graph_node(INP int ilogical_block, INP t_pb_graph_node *curr_pb_graph_node, OUTP float *cost) { t_pb_graph_node *best, *cur; float cur_cost, best_cost; int i, j; best = NULL; best_cost = UNDEFINED; if(curr_pb_graph_node == NULL) { return NULL; } if(curr_pb_graph_node->pb_type->blif_model != NULL) { if(primitive_type_feasible(ilogical_block, curr_pb_graph_node->pb_type)) { cur_cost = compute_primitive_base_cost(curr_pb_graph_node); if(best_cost == UNDEFINED || best_cost > cur_cost) { best_cost = cur_cost; best = curr_pb_graph_node; } } } else { for(i = 0; i < curr_pb_graph_node->pb_type->num_modes; i++) { for(j = 0; j < curr_pb_graph_node->pb_type->modes[i].num_pb_type_children; j++) { *cost = UNDEFINED; cur = get_expected_lowest_cost_primitive_for_logical_block_in_pb_graph_node(ilogical_block, &curr_pb_graph_node->child_pb_graph_nodes[i][j][0], cost); if(cur != NULL) { if(best == NULL || best_cost > *cost) { best = cur; best_cost = *cost; } } } } } *cost = best_cost; return best; } /* Determine which of two pack pattern should take priority */ static int compare_pack_pattern(const t_pack_patterns *pattern_a, const t_pack_patterns *pattern_b) { float base_gain_a, base_gain_b, diff; /* Bigger patterns should take higher priority than smaller patterns because they are harder to fit */ if (pattern_a->num_blocks > pattern_b->num_blocks) { return 1; } else if (pattern_a->num_blocks < pattern_b->num_blocks) { return -1; } base_gain_a = pattern_a->base_cost; base_gain_b = pattern_b->base_cost; diff = base_gain_a - base_gain_b; /* Less costly patterns should be used before more costly patterns */ if (diff < 0) { return 1; } if (diff > 0) { return -1; } return 0; } /* A chain can extend across multiple logic blocks. Must segment the chain to fit in a logic block by identifying the actual atom that forms the root of the new chain. * Returns OPEN if this block_index doesn't match up with any chain * * Assumes that the root of a chain is the primitive that starts the chain or is driven from outside the logic block * block_index: index of current atom * list_of_pack_pattern: ptr to current chain pattern */ static int find_new_root_atom_for_chain(INP int block_index, INP t_pack_patterns *list_of_pack_pattern) { int new_index = OPEN; t_pb_graph_pin *root_ipin; t_pb_graph_node *root_pb_graph_node; t_model_ports *model_port; int driver_net, driver_block; assert(list_of_pack_pattern->is_chain == TRUE); root_ipin = list_of_pack_pattern->chain_root_pin; root_pb_graph_node = root_ipin->parent_node; if(primitive_type_feasible(block_index, root_pb_graph_node->pb_type) == FALSE) { return OPEN; } /* Xifan TANG: this is trying to find the root logical_block which is the head of a carry chain */ /* Assign driver furthest up the chain that matches the root node and is unassigned to a molecule as the root */ model_port = root_ipin->port->model_port; driver_net = logical_block[block_index].input_nets[model_port->index][root_ipin->pin_number]; if(driver_net == OPEN) { /* The current block is the furthest up the chain, return it */ return block_index; } /* Xifan TANG: this is trying to find a possible starting logical block, whose preceding block is already assigned * to another molecule */ driver_block = vpack_net[driver_net].node_block[0]; if(logical_block[driver_block].packed_molecules != NULL) { /* Driver is used/invalid, so current block is the furthest up the chain, return it */ return block_index; } new_index = find_new_root_atom_for_chain(driver_block, list_of_pack_pattern); if(new_index == OPEN) { return block_index; } else { return new_index; } }