/*********************************************** * This file includes functions to generate * Verilog submodules for multiplexers. * including both fundamental submodules * such as a branch in a multiplexer * and the full multiplexer **********************************************/ #include #include #include "util.h" #include "vtr_assert.h" /* Device-level header files */ #include "mux_graph.h" #include "module_manager.h" #include "physical_types.h" #include "vpr_types.h" #include "mux_utils.h" /* FPGA-X2P context header files */ #include "spice_types.h" #include "fpga_x2p_naming.h" #include "fpga_x2p_utils.h" /* FPGA-Verilog context header files */ #include "verilog_global.h" #include "verilog_writer_utils.h" #include "verilog_mux.h" /********************************************************************* * Generate structural Verilog codes (consist of transmission-gates or * pass-transistor) modeling an branch circuit * for a multiplexer with the given size *********************************************************************/ static void generate_verilog_cmos_mux_branch_body_structural(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& tgate_model, const ModuleId& module_id, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& mem_port, const BasicPort& mem_inv_port, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Get the module id of tgate in Module manager */ ModuleId tgate_module_id = module_manager.find_module(circuit_lib.model_name(tgate_model)); VTR_ASSERT(ModuleId::INVALID() != tgate_module_id); /* TODO: move to check_circuit_library? Get model ports of tgate */ std::vector tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true); std::vector tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true); VTR_ASSERT(3 == tgate_input_ports.size()); VTR_ASSERT(1 == tgate_output_ports.size()); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Structure-level description -----")); /* Output the netlist following the connections in mux_graph */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* Output a tgate use a module manager */ /* Create a port-to-port name map */ std::map port2port_name_map; /* input port */ port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[0])] = cur_input_port; /* output port */ port2port_name_map[circuit_lib.port_lib_name(tgate_output_ports[0])] = cur_output_port; /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); BasicPort cur_mem_port(mem_port.get_name(), size_t(mux_mem), size_t(mux_mem)); BasicPort cur_mem_inv_port(mem_inv_port.get_name(), size_t(mux_mem), size_t(mux_mem)); /* mem port */ if (false == mux_graph.is_edge_use_inv_mem(edges[0])) { /* wire mem to mem of module, and wire mem_inv to mem_inv of module */ port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_port; port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_inv_port; } else { /* wire mem_inv to mem of module, wire mem to mem_inv of module */ port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_inv_port; port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_port; } /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, tgate_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(tgate_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, tgate_module_id); } } } /********************************************************************* * Generate behavior-level Verilog codes modeling an branch circuit * for a multiplexer with the given size *********************************************************************/ static void generate_verilog_cmos_mux_branch_body_behavioral(std::fstream& fp, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& mem_port, const MuxGraph& mux_graph, const size_t& default_mem_val) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Behavioral-level description -----")); /* Add an internal register for the output */ BasicPort outreg_port("out_reg", mux_graph.num_outputs()); /* Print the port */ fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl; /* Generate the case-switch table */ fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port) << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl; fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl; /* Output the netlist following the connections in mux_graph */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* For each case, generate the logic levels for all the inputs */ /* In each case, only one mem is enabled */ fp << "\t\t" << mem_port.get_width() << "'b"; std::string case_code(mem_port.get_width(), default_mem_val); /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); /* Flip a bit by the mem_id */ if (false == mux_graph.is_edge_use_inv_mem(edges[0])) { case_code[size_t(mux_mem)] = '1'; } else { case_code[size_t(mux_mem)] = '0'; } fp << case_code << ": " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= "; fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";" << std::endl; } } /* Default case: outputs are at high-impedance state 'z' */ std::string default_case(mux_graph.num_outputs(), 'z'); fp << "\t\tdefault: " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= "; fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl; /* End the case */ fp << "\tendcase" << std::endl; /* Wire registers to output ports */ fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << " = "; fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";" << std::endl; } /********************************************************************* * Generate Verilog codes modeling an branch circuit * for a CMOS multiplexer with the given size * Support structural and behavioral Verilog codes *********************************************************************/ static void generate_verilog_cmos_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const std::string& module_name, const MuxGraph& mux_graph, const bool& use_structural_verilog) { /* Get the tgate model */ CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model); /* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */ if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) { VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model)); return; } std::vector tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true); /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of inputs */ size_t num_inputs = mux_graph.num_inputs(); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 output */ VTR_ASSERT(1 == num_outputs); /* MUX graph must have only 1 level*/ VTR_ASSERT(1 == mux_graph.num_levels()); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.add_module(module_name); VTR_ASSERT(ModuleId::INVALID() != module_id); /* Add module ports */ /* Add each global port */ for (const auto& port : tgate_global_ports) { /* Configure each global port */ BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port)); module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Add each input port */ BasicPort input_port("in", num_inputs); module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT); /* Add each output port */ BasicPort output_port("out", num_outputs); module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT); /* Add each memory port */ BasicPort mem_port("mem", num_mems); module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT); BasicPort mem_inv_port("mem_inv", num_mems); module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT); /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Print the internal logic in either structural or behavioral Verilog codes */ if (true == use_structural_verilog) { generate_verilog_cmos_mux_branch_body_structural(module_manager, circuit_lib, fp, tgate_model, module_id, input_port, output_port, mem_port, mem_inv_port, mux_graph); } else { VTR_ASSERT_SAFE(false == use_structural_verilog); /* Get the default value of SRAM ports */ std::vector sram_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true); std::vector non_mode_select_sram_ports; /* We should have only have 1 sram port except those are mode_bits */ for (const auto& port : sram_ports) { if (true == circuit_lib.port_is_mode_select(port)) { continue; } non_mode_select_sram_ports.push_back(port); } VTR_ASSERT(1 == non_mode_select_sram_ports.size()); std::string mem_default_val = std::to_string(circuit_lib.port_default_value(non_mode_select_sram_ports[0])); /* Mem string must be only 1-bit! */ VTR_ASSERT(1 == mem_default_val.length()); generate_verilog_cmos_mux_branch_body_behavioral(fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]); } /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /********************************************************************* * Dump a structural verilog for RRAM MUX basis module * This is only called when structural verilog dumping option is enabled for this spice model * IMPORTANT: the structural verilog can NOT be used for functionality verification!!! * TODO: This part is quite restricted to the way we implemented our RRAM FPGA * Should be reworked to be more generic !!! * * By structural the schematic is splitted into two parts: left part and right part * The left part includes BLB[0..N-1] and WL[0..N-1] signals as well as RRAMs * The right part includes BLB[N] and WL[N] * Corresponding Schematic is as follows: * * LEFT PART | RIGHT PART * * BLB[0] BLB[N] * | | * \|/ \|/ * in[0] ---->RRAM[0]-----+ * | * BLB[1] | * | | * \|/ | * in[1] ---->RRAM[1]-----+ * |-----> out[0] * ... * | * in[N-1] ---->RRAM[N-1]---+ * /|\ /|\ * | | * BLB[N-1] WL[N] * * Working principle: * 1. Set a RRAM[i]: enable BLB[i] and WL[N] * 2. Reset a RRAM[i]: enable BLB[N] and WL[i] * 3. Operation: disable all BLBs and WLs * * The structure is done in the way we implement the physical layout of RRAM MUX * It is NOT the only road to the goal!!! *********************************************************************/ static void generate_verilog_rram_mux_branch_body_structural(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& blb_port, const BasicPort& wl_port, const MuxGraph& mux_graph) { std::string progTE_module_name("PROG_TE"); std::string progBE_module_name("PROG_BE"); /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Structure-level description of RRAM MUX -----")); /* Print internal structure of 4T1R programming structures * Written in structural Verilog * The whole structure-level description is divided into two parts: * 1. Left part consists of N PROG_TE modules, each of which * includes a PMOS, a NMOS and a RRAM, which is actually the left * part of a 4T1R programming structure * 2. Right part includes only a PROG_BE module, which consists * of a PMOS and a NMOS, which is actually the right part of a * 4T1R programming sturcture */ /* Create a module for the progTE and register it in the module manager * Structure of progTE * * +----------+ * in--->| | * BLB-->| progTE |--> out * WL--->| | * +----------+ */ ModuleId progTE_module_id = module_manager.add_module(progTE_module_name); /* If there is already such as module inside, we just ned to find the module id */ if (ModuleId::INVALID() == progTE_module_id) { progTE_module_id = module_manager.find_module(progTE_module_name); /* We should have a valid id! */ VTR_ASSERT(ModuleId::INVALID() != progTE_module_id); } /* Add ports to the module */ /* input port */ BasicPort progTE_in_port("A", 1); module_manager.add_port(progTE_module_id, progTE_in_port, ModuleManager::MODULE_INPUT_PORT); /* WL port */ BasicPort progTE_wl_port("WL", 1); module_manager.add_port(progTE_module_id, progTE_wl_port, ModuleManager::MODULE_INPUT_PORT); /* BLB port */ BasicPort progTE_blb_port("BLB", 1); module_manager.add_port(progTE_module_id, progTE_blb_port, ModuleManager::MODULE_INPUT_PORT); /* output port */ BasicPort progTE_out_port("Z", 1); module_manager.add_port(progTE_module_id, progTE_out_port, ModuleManager::MODULE_INPUT_PORT); /* LEFT part: Verilog code generation */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* Create a port-to-port name map */ std::map port2port_name_map; /* input port */ port2port_name_map[progTE_in_port.get_name()] = cur_input_port; /* output port */ port2port_name_map[progTE_out_port.get_name()] = cur_output_port; /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_mem), size_t(mux_mem)); BasicPort cur_wl_port(wl_port.get_name(), size_t(mux_mem), size_t(mux_mem)); /* RRAM configuration port: there should not be any inverted edge in RRAM MUX! */ VTR_ASSERT( false == mux_graph.is_edge_use_inv_mem(edges[0]) ); /* wire mem to mem of module, and wire mem_inv to mem_inv of module */ port2port_name_map[progTE_blb_port.get_name()] = cur_blb_port; port2port_name_map[progTE_wl_port.get_name()] = cur_wl_port; /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, progTE_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, progTE_module_id); } } /* Create a module for the progBE and register it in the module manager * Structure of progBE * * +----------+ * | | * BLB-->| progBE |<-> out * WL--->| | * +----------+ */ ModuleId progBE_module_id = module_manager.add_module(progBE_module_name); /* If there is already such as module inside, we just ned to find the module id */ if (ModuleId::INVALID() == progBE_module_id) { progBE_module_id = module_manager.find_module(progBE_module_name); /* We should have a valid id! */ VTR_ASSERT(ModuleId::INVALID() != progBE_module_id); } /* Add ports to the module */ /* inout port */ BasicPort progBE_inout_port("INOUT", 1); module_manager.add_port(progBE_module_id, progBE_inout_port, ModuleManager::MODULE_INOUT_PORT); /* WL port */ BasicPort progBE_wl_port("WL", 1); module_manager.add_port(progBE_module_id, progBE_wl_port, ModuleManager::MODULE_INPUT_PORT); /* BLB port */ BasicPort progBE_blb_port("BLB", 1); module_manager.add_port(progBE_module_id, progBE_blb_port, ModuleManager::MODULE_INPUT_PORT); /* RIGHT part: Verilog code generation */ /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* Create a port-to-port name map */ std::map port2port_name_map; /* Wire the output port to the INOUT port */ port2port_name_map[progBE_inout_port.get_name()] = cur_output_port; /* Find the mem_id controlling the edge */ BasicPort cur_blb_port(blb_port.get_name(), mux_graph.num_memory_bits(), mux_graph.num_memory_bits()); BasicPort cur_wl_port(wl_port.get_name(), mux_graph.num_memory_bits(), mux_graph.num_memory_bits()); port2port_name_map[progBE_blb_port.get_name()] = cur_blb_port; port2port_name_map[progBE_wl_port.get_name()] = cur_wl_port; /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, progBE_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, progBE_module_id); } } /********************************************************************* * Generate behavior-level Verilog codes modeling an branch circuit * for a RRAM-based multiplexer with the given size * Corresponding Schematic is as follows: * * BLB[0] BLB[N] * | | * \|/ \|/ * in[0] ---->RRAM[0]-----+ * | * BLB[1] | * | | * \|/ | * in[1] ---->RRAM[1]-----+ * |-----> out[0] * ... * | * in[N-1] ---->RRAM[N-1]---+ * /|\ /|\ * | | * BLB[N-1] WL[N] * * Working principle: * 1. Set a RRAM[i]: enable BLB[i] and WL[N] * 2. Reset a RRAM[i]: enable BLB[N] and WL[i] * 3. Operation: disable all BLBs and WLs * * TODO: Elaborate the codes to output the circuit logic * following the mux_graph! *********************************************************************/ static void generate_verilog_rram_mux_branch_body_behavioral(std::fstream& fp, const CircuitLibrary& circuit_lib, const CircuitModelId& circuit_model, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& blb_port, const BasicPort& wl_port, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Behavioral-level description of RRAM MUX -----")); /* Add an internal register for the output */ BasicPort outreg_port("out_reg", mux_graph.num_inputs()); /* Print the port */ fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl; /* Print the internal logics */ fp << "\t" << "always @("; fp << generate_verilog_port(VERILOG_PORT_CONKT, blb_port); fp << ", "; fp << generate_verilog_port(VERILOG_PORT_CONKT, wl_port); fp << ")"; fp << " begin" << std::endl; /* Only when the last bit of wl is enabled, * the propagating path can be changed * (RRAM value can be changed) */ fp << "\t\t" << "if ("; BasicPort set_enable_port(wl_port.get_name(), wl_port.get_width() - 1, wl_port.get_width() - 1); fp << generate_verilog_port(VERILOG_PORT_CONKT, set_enable_port); /* We need two config-enable ports: prog_EN and prog_ENb */ bool find_prog_EN = false; bool find_prog_ENb = false; for (const auto& port : circuit_lib.model_global_ports(circuit_model, true)) { /* Bypass non-config-enable ports */ if (false == circuit_lib.port_is_config_enable(port)) { continue; } /* Reach here, the port should be is_config_enable */ /* Create a port object */ fp << " && "; BasicPort prog_en_port(circuit_lib.port_prefix(port), circuit_lib.port_size(port)); if ( 0 == circuit_lib.port_default_value(port)) { /* Default value = 0 means that this is a prog_EN port */ fp << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port); find_prog_EN = true; } else { VTR_ASSERT ( 1 == circuit_lib.port_default_value(port)); /* Default value = 1 means that this is a prog_ENb port, add inversion in the if condition */ fp << "(~" << generate_verilog_port(VERILOG_PORT_CONKT, prog_en_port) << ")"; find_prog_ENb = true; } } /* Check if we find any config_enable signals */ if (false == find_prog_EN) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d])Unable to find a config_enable signal with default value 0 for a RRAM MUX (%s)!\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } if (false == find_prog_ENb) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d])Unable to find a config_enable signal with default value 1 for a RRAM MUX (%s)!\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } /* Finish the if clause */ fp << ") begin" << std::endl; for (const auto& mux_input : mux_graph.inputs()) { /* First if clause need tabs */ if ( 0 == size_t(mux_graph.input_id(mux_input)) ) { fp << "\t\t\t"; } fp << "if (1 == "; /* Create a temp port of a BLB bit */ BasicPort cur_blb_port(blb_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_blb_port); fp << ") begin" << std::endl; fp << "\t\t\t\t" << "assign "; fp << outreg_port.get_name(); fp << " = " << size_t(mux_graph.input_id(mux_input)) << ";" << std::endl; fp << "\t\t\t" << "end else "; } fp << "begin" << std::endl; fp << "\t\t\t\t" << "assign "; fp << outreg_port.get_name(); fp << " = 0;" << std::endl; fp << "\t\t\t" << "end" << std::endl; fp << "\t\t" << "end" << std::endl; fp << "\t" << "end" << std::endl; fp << "\t" << "assign "; fp << generate_verilog_port(VERILOG_PORT_CONKT, output_port); fp << " = "; fp << input_port.get_name() << "["; fp << outreg_port.get_name(); fp << "];" << std::endl; } /********************************************************************* * Generate Verilog codes modeling an branch circuit * for a RRAM-based multiplexer with the given size * Support structural and behavioral Verilog codes *********************************************************************/ static void generate_verilog_rram_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const std::string& module_name, const MuxGraph& mux_graph, const bool& use_structural_verilog) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of inputs */ size_t num_inputs = mux_graph.num_inputs(); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 output */ VTR_ASSERT(1 == num_outputs); /* MUX graph must have only 1 level*/ VTR_ASSERT(1 == mux_graph.num_levels()); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.add_module(module_name); VTR_ASSERT(ModuleId::INVALID() != module_id); /* Add module ports */ /* Add each global programming enable/disable ports */ std::vector prog_enable_ports = circuit_lib.model_global_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true); for (const auto& port : prog_enable_ports) { /* Configure each global port */ BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port)); module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Add each input port */ BasicPort input_port("in", num_inputs); module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT); /* Add each output port */ BasicPort output_port("out", num_outputs); module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT); /* Add RRAM programming ports, * RRAM MUXes require one more pair of BLB and WL * to configure the memories. See schematic for details */ BasicPort blb_port("blb", num_mems + 1); module_manager.add_port(module_id, blb_port, ModuleManager::MODULE_INPUT_PORT); BasicPort wl_port("wl", num_mems + 1); module_manager.add_port(module_id, wl_port, ModuleManager::MODULE_INPUT_PORT); /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Print the internal logic in either structural or behavioral Verilog codes */ if (true == use_structural_verilog) { generate_verilog_rram_mux_branch_body_structural(module_manager, circuit_lib, fp, module_id, circuit_model, input_port, output_port, blb_port, wl_port, mux_graph); } else { generate_verilog_rram_mux_branch_body_behavioral(fp, circuit_lib, circuit_model, input_port, output_port, blb_port, wl_port, mux_graph); } /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*********************************************** * Generate Verilog codes modeling an branch circuit * for a multiplexer with the given size **********************************************/ static void generate_verilog_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const size_t& mux_size, const MuxGraph& mux_graph) { std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix); /* Multiplexers built with different technology is in different organization */ switch (circuit_lib.design_tech_type(circuit_model)) { case SPICE_MODEL_DESIGN_CMOS: generate_verilog_cmos_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph, circuit_lib.dump_structural_verilog(circuit_model)); break; case SPICE_MODEL_DESIGN_RRAM: generate_verilog_rram_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph, circuit_lib.dump_structural_verilog(circuit_model)); break; default: vpr_printf(TIO_MESSAGE_ERROR, "(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } } /******************************************************************** * Generate the standard-cell-based internal logic (multiplexing structure) * for a multiplexer or LUT in Verilog codes * This function will : * 1. build a multiplexing structure by instanciating standard cells MUX2 * 2. add intermediate buffers between multiplexing stages if specified. *******************************************************************/ static void generate_verilog_cmos_mux_module_mux2_multiplexing_structure(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const CircuitModelId& std_cell_model, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* TODO: these are duplicated codes, find a way to simplify it!!! * Get the regular (non-mode-select) sram ports from the mux */ std::vector mux_regular_sram_ports; for (const auto& port : circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true)) { /* Multiplexing structure does not mode_sram_ports, they are handled in LUT modules * Here we just bypass it. */ if (true == circuit_lib.port_is_mode_select(port)) { continue; } mux_regular_sram_ports.push_back(port); } VTR_ASSERT(1 == mux_regular_sram_ports.size()); /* Find the input ports and output ports of the standard cell */ std::vector std_cell_input_ports = circuit_lib.model_ports_by_type(std_cell_model, SPICE_MODEL_PORT_INPUT, true); std::vector std_cell_output_ports = circuit_lib.model_ports_by_type(std_cell_model, SPICE_MODEL_PORT_OUTPUT, true); /* Quick check the requirements on port map */ VTR_ASSERT(3 == std_cell_input_ports.size()); VTR_ASSERT(1 == std_cell_output_ports.size()); /* Build the location map of intermediate buffers */ std::vector inter_buffer_location_map = build_mux_intermediate_buffer_location_map(circuit_lib, circuit_model, mux_graph.num_node_levels()); print_verilog_comment(fp, std::string("---- BEGIN Internal Logic of a CMOS MUX module based on Standard Cells -----")); print_verilog_comment(fp, std::string("---- BEGIN Internal wires of a CMOS MUX module -----")); /* Print local wires which are the nodes in the mux graph */ for (size_t level = 0; level < mux_graph.num_levels(); ++level) { /* Print the internal wires located at this level */ BasicPort internal_wire_port(generate_verilog_mux_node_name(level, false), mux_graph.num_nodes_at_level(level)); fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_port) << ";" << std::endl; /* Identify if an intermediate buffer is needed */ if (false == inter_buffer_location_map[level]) { continue; } BasicPort internal_wire_buffered_port(generate_verilog_mux_node_name(level, true), mux_graph.num_nodes_at_level(level)); fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_buffered_port) << std::endl; } print_verilog_comment(fp, std::string("---- END Internal wires of a CMOS MUX module -----")); /* Iterate over all the internal nodes and output nodes in the mux graph */ for (const auto& node : mux_graph.non_input_nodes()) { print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch CMOS MUX modules -----")); /* Get the size of branch circuit * Instanciate an branch circuit by the size (fan-in) of the node */ size_t branch_size = mux_graph.node_in_edges(node).size(); /* Get the nodes which drive the root_node */ std::vector input_nodes; for (const auto& edge : mux_graph.node_in_edges(node)) { /* Get the nodes drive the edge */ for (const auto& src_node : mux_graph.edge_src_nodes(edge)) { input_nodes.push_back(src_node); } } /* Number of inputs should match the branch_input_size!!! */ VTR_ASSERT(input_nodes.size() == branch_size); /* Get the node level and index in the current level */ size_t output_node_level = mux_graph.node_level(node); size_t output_node_index_at_level = mux_graph.node_index_at_level(node); /* Get the mems in the branch circuits */ std::vector mems; for (const auto& edge : mux_graph.node_in_edges(node)) { /* Get the mem control the edge */ MuxMemId mem = mux_graph.find_edge_mem(edge); /* Add the mem if it is not in the list */ if (mems.end() == std::find(mems.begin(), mems.end(), mem)) { mems.push_back(mem); } } /* Instanciate the branch module, which is a standard cell MUX2 * We follow a fixed port map: * TODO: the port map could be more flexible? * input_port[0] of MUX2 standard cell is wired to input_node[0] * input_port[1] of MUX2 standard cell is wired to input_node[1] * output_port[0] of MUX2 standard cell is wired to output_node[0] * input_port[2] of MUX2 standard cell is wired to mem_node[0] */ std::string branch_module_name= circuit_lib.model_name(std_cell_model); /* Get the moduleId for the submodule */ ModuleId branch_module_id = module_manager.find_module(branch_module_name); /* We must have one */ VTR_ASSERT(ModuleId::INVALID() != branch_module_id); /* Create a port-to-port map */ std::map port2port_name_map; /* To match the standard cell MUX2: We should have only 2 input_nodes */ VTR_ASSERT(2 == input_nodes.size()); /* Build the link between input_node[0] and std_cell_input_port[0] * Build the link between input_node[1] and std_cell_input_port[1] */ for (const auto& input_node : input_nodes) { /* Generate the port info of each input node */ size_t input_node_level = mux_graph.node_level(input_node); size_t input_node_index_at_level = mux_graph.node_index_at_level(input_node); BasicPort instance_input_port(generate_verilog_mux_node_name(input_node_level, inter_buffer_location_map[input_node_level]), input_node_index_at_level, input_node_index_at_level); /* Link nodes to input ports for the branch module */ std::string module_input_port_name = circuit_lib.port_lib_name(std_cell_input_ports[&input_node - &input_nodes[0]]); port2port_name_map[module_input_port_name] = instance_input_port; } /* Build the link between output_node[0] and std_cell_output_port[0] */ { /* Create a code block to accommodate the local variables */ BasicPort instance_output_port(generate_verilog_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); std::string module_output_port_name = circuit_lib.port_lib_name(std_cell_output_ports[0]); port2port_name_map[module_output_port_name] = instance_output_port; } /* To match the standard cell MUX2: We should have only 1 mem_node */ VTR_ASSERT(1 == mems.size()); /* Build the link between mem_node[0] and std_cell_intput_port[2] */ for (const auto& mem : mems) { /* Generate the port info of each mem node */ BasicPort instance_mem_port(circuit_lib.port_lib_name(mux_regular_sram_ports[0]), size_t(mem), size_t(mem)); std::string module_mem_port_name = circuit_lib.port_lib_name(std_cell_input_ports[2]); port2port_name_map[module_mem_port_name] = instance_mem_port; } /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, branch_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(std_cell_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, branch_module_id); print_verilog_comment(fp, std::string("---- END Instanciation of a branch CMOS MUX modules -----")); if (false == inter_buffer_location_map[output_node_level]) { continue; /* No need for intermediate buffers */ } print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a intermediate buffer modules -----")); /* Now we need to add intermediate buffers by instanciating the modules */ CircuitModelId buffer_model = circuit_lib.lut_intermediate_buffer_model(circuit_model); /* We must have a valid model id */ VTR_ASSERT(CircuitModelId::INVALID() != buffer_model); /* To match the context, Buffer should have only 2 non-global ports: 1 input port and 1 output port */ std::vector buffer_model_input_ports = circuit_lib.model_ports_by_type(buffer_model, SPICE_MODEL_PORT_INPUT, true); std::vector buffer_model_output_ports = circuit_lib.model_ports_by_type(buffer_model, SPICE_MODEL_PORT_OUTPUT, true); VTR_ASSERT(1 == buffer_model_input_ports.size()); VTR_ASSERT(1 == buffer_model_output_ports.size()); /* Get the moduleId for the buffer module */ ModuleId buffer_module_id = module_manager.find_module(circuit_lib.model_name(buffer_model)); /* We must have one */ VTR_ASSERT(ModuleId::INVALID() != buffer_module_id); /* Create a port-to-port map */ std::map buffer_port2port_name_map; /* Build the link between buffer_input_port[0] and output_node_pre_buffer * Build the link between buffer_output_port[0] and output_node_bufferred */ { /* Create a code block to accommodate the local variables */ BasicPort buffer_instance_input_port(generate_verilog_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); std::string module_input_port_name = circuit_lib.port_lib_name(buffer_model_input_ports[0]); buffer_port2port_name_map[module_input_port_name] = buffer_instance_input_port; BasicPort buffer_instance_output_port(generate_verilog_mux_node_name(output_node_level, true), output_node_index_at_level, output_node_index_at_level); std::string module_output_port_name = circuit_lib.port_lib_name(buffer_model_output_ports[0]); buffer_port2port_name_map[module_output_port_name] = buffer_instance_output_port; } /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, buffer_module_id, buffer_port2port_name_map, circuit_lib.dump_explicit_port_map(buffer_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, buffer_module_id); print_verilog_comment(fp, std::string("---- END Instanciation of a intermediate buffer modules -----")); } print_verilog_comment(fp, std::string("---- END Internal Logic of a CMOS MUX module based on Standard Cells -----")); } /******************************************************************** * Generate the pass-transistor/transmission-gate -based internal logic * (multiplexing structure) for a multiplexer or LUT in Verilog codes * This function will : * 1. build a multiplexing structure by instanciating the branch circuits * generated before * 2. add intermediate buffers between multiplexing stages if specified. *******************************************************************/ static void generate_verilog_cmos_mux_module_tgate_multiplexing_structure(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const ModuleId& module_id, const CircuitModelId& circuit_model, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Find the actual mux size */ size_t mux_size = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs()); /* TODO: these are duplicated codes, find a way to simplify it!!! * Get the regular (non-mode-select) sram ports from the mux */ std::vector mux_regular_sram_ports; for (const auto& port : circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true)) { /* Multiplexing structure does not mode_sram_ports, they are handled in LUT modules * Here we just bypass it. */ if (true == circuit_lib.port_is_mode_select(port)) { continue; } mux_regular_sram_ports.push_back(port); } VTR_ASSERT(1 == mux_regular_sram_ports.size()); /* Build the location map of intermediate buffers */ std::vector inter_buffer_location_map = build_mux_intermediate_buffer_location_map(circuit_lib, circuit_model, mux_graph.num_node_levels()); print_verilog_comment(fp, std::string("---- BEGIN Internal Logic of a CMOS MUX module based on Pass-transistor/Transmission-gates -----")); print_verilog_comment(fp, std::string("---- BEGIN Internal wires of a CMOS MUX module -----")); /* Print local wires which are the nodes in the mux graph */ for (size_t level = 0; level < mux_graph.num_levels(); ++level) { /* Print the internal wires located at this level */ BasicPort internal_wire_port(generate_verilog_mux_node_name(level, false), mux_graph.num_nodes_at_level(level)); fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_port) << ";" << std::endl; /* Identify if an intermediate buffer is needed */ if (false == inter_buffer_location_map[level]) { continue; } BasicPort internal_wire_buffered_port(generate_verilog_mux_node_name(level, true), mux_graph.num_nodes_at_level(level)); fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, internal_wire_buffered_port) << std::endl; } print_verilog_comment(fp, std::string("---- END Internal wires of a CMOS MUX module -----")); print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch CMOS MUX module -----")); /* Iterate over all the internal nodes and output nodes in the mux graph */ for (const auto& node : mux_graph.non_input_nodes()) { print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a branch CMOS MUX module -----")); /* Get the size of branch circuit * Instanciate an branch circuit by the size (fan-in) of the node */ size_t branch_size = mux_graph.node_in_edges(node).size(); /* Get the node level and index in the current level */ size_t output_node_level = mux_graph.node_level(node); size_t output_node_index_at_level = mux_graph.node_index_at_level(node); /* Get the nodes which drive the root_node */ std::vector input_nodes; for (const auto& edge : mux_graph.node_in_edges(node)) { /* Get the nodes drive the edge */ for (const auto& src_node : mux_graph.edge_src_nodes(edge)) { input_nodes.push_back(src_node); } } /* Number of inputs should match the branch_input_size!!! */ VTR_ASSERT(input_nodes.size() == branch_size); /* Get the mems in the branch circuits */ std::vector mems; for (const auto& edge : mux_graph.node_in_edges(node)) { /* Get the mem control the edge */ MuxMemId mem = mux_graph.find_edge_mem(edge); /* Add the mem if it is not in the list */ if (mems.end() == std::find(mems.begin(), mems.end(), mem)) { mems.push_back(mem); } } /* Instanciate the branch module which is a tgate-based module */ std::string branch_module_name= generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, branch_size, verilog_mux_basis_posfix); /* Get the moduleId for the submodule */ ModuleId branch_module_id = module_manager.find_module(branch_module_name); /* We must have one */ VTR_ASSERT(ModuleId::INVALID() != branch_module_id); /* Create a port-to-port map */ std::map port2port_name_map; /* TODO: the branch module name should NOT be hard-coded. Use the port lib_name given by users! */ /* All the input node names organized in bus */ std::vector branch_node_input_ports; for (const auto& input_node : input_nodes) { /* Generate the port info of each input node */ size_t input_node_level = mux_graph.node_level(input_node); size_t input_node_index_at_level = mux_graph.node_index_at_level(input_node); BasicPort branch_node_input_port(generate_verilog_mux_node_name(input_node_level, inter_buffer_location_map[input_node_level]), input_node_index_at_level, input_node_index_at_level); branch_node_input_ports.push_back(branch_node_input_port); } /* Try to combine the ports */ std::vector combined_branch_node_input_ports = combine_verilog_ports(branch_node_input_ports); /* If we have more than 1 port in the combined ports , * * output a local wire */ VTR_ASSERT(0 < combined_branch_node_input_ports.size()); /* Create the port info for the input */ BasicPort instance_input_port; if (1 == combined_branch_node_input_ports.size()) { instance_input_port = combined_branch_node_input_ports[0]; } else { /* TODO: the naming could be more flexible? */ instance_input_port.set_name(generate_verilog_mux_node_name(output_node_level, false) + "_in"); /* Deposite a [0:0] port */ instance_input_port.set_width(1); for (const auto& port : combined_branch_node_input_ports) { instance_input_port.combine(port); } /* Print a local wire for the merged ports */ fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, instance_input_port); fp << " = " << generate_verilog_ports(combined_branch_node_input_ports); fp << ";" << std::endl; } /* Link nodes to input ports for the branch module */ ModulePortId module_input_port_id = module_manager.find_module_port(branch_module_id, "in"); VTR_ASSERT(ModulePortId::INVALID() != module_input_port_id); /* Get the port from module */ BasicPort module_input_port = module_manager.module_port(branch_module_id, module_input_port_id); port2port_name_map[module_input_port.get_name()] = instance_input_port; /* Link nodes to output ports for the branch module */ BasicPort instance_output_port(generate_verilog_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); ModulePortId module_output_port_id = module_manager.find_module_port(branch_module_id, "out"); VTR_ASSERT(ModulePortId::INVALID() != module_output_port_id); /* Get the port from module */ BasicPort module_output_port = module_manager.module_port(branch_module_id, module_output_port_id); port2port_name_map[module_output_port.get_name()] = instance_output_port; /* All the mem node names organized in bus */ std::vector branch_node_mem_ports; for (const auto& mem : mems) { /* Generate the port info of each mem node */ BasicPort branch_node_mem_port(circuit_lib.port_lib_name(mux_regular_sram_ports[0]), size_t(mem), size_t(mem)); branch_node_mem_ports.push_back(branch_node_mem_port); } /* Try to combine the ports */ std::vector combined_branch_node_mem_ports = combine_verilog_ports(branch_node_mem_ports); /* If we have more than 1 port in the combined ports , * output a local wire */ VTR_ASSERT(0 < combined_branch_node_mem_ports.size()); /* Create the port info for the mem */ BasicPort instance_mem_port; if (1 == combined_branch_node_mem_ports.size()) { instance_mem_port = combined_branch_node_mem_ports[0]; } else { /* TODO: the naming could be more flexible? */ instance_mem_port.set_name(generate_verilog_mux_node_name(output_node_level, false) + "_mem"); /* Deposite a [0:0] port */ instance_mem_port.set_width(1); /* TODO: combine the ports could be a function? */ for (const auto& port : combined_branch_node_mem_ports) { instance_mem_port.combine(port); } /* Print a local wire for the merged ports */ fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, instance_mem_port); fp << " = " << generate_verilog_ports(combined_branch_node_mem_ports); fp << ";" << std::endl; } /* Link nodes to input ports for the branch module */ /* TODO: the naming could be more flexible? */ ModulePortId module_mem_port_id = module_manager.find_module_port(branch_module_id, "mem"); VTR_ASSERT(ModulePortId::INVALID() != module_mem_port_id); /* Get the port from module */ BasicPort module_mem_port = module_manager.module_port(branch_module_id, module_mem_port_id); port2port_name_map[module_mem_port.get_name()] = instance_mem_port; /* TODO: the postfix _inv can be soft coded in the circuit library as a port_inv_postfix */ /* Create the port info for the mem_inv */ std::vector branch_node_mem_inv_ports; for (const auto& mem : mems) { /* Generate the port info of each mem node */ BasicPort branch_node_mem_inv_port(circuit_lib.port_lib_name(mux_regular_sram_ports[0]) + "_inv", size_t(mem), size_t(mem)); branch_node_mem_inv_ports.push_back(branch_node_mem_inv_port); } /* Try to combine the ports */ std::vector combined_branch_node_mem_inv_ports = combine_verilog_ports(branch_node_mem_inv_ports); /* If we have more than 1 port in the combined ports , * output a local wire */ VTR_ASSERT(0 < combined_branch_node_mem_inv_ports.size()); BasicPort instance_mem_inv_port; if (1 == combined_branch_node_mem_inv_ports.size()) { instance_mem_inv_port = combined_branch_node_mem_inv_ports[0]; } else { /* TODO: the naming could be more flexible? */ instance_mem_inv_port.set_name(generate_verilog_mux_node_name(output_node_level, false) + "_mem"); /* Deposite a [0:0] port */ instance_mem_inv_port.set_width(1); /* TODO: combine the ports could be a function? */ for (const auto& port : combined_branch_node_mem_inv_ports) { instance_mem_inv_port.combine(port); } /* Print a local wire for the merged ports */ fp << "\t" << generate_verilog_port(VERILOG_PORT_WIRE, instance_mem_inv_port); fp << " = " << generate_verilog_ports(combined_branch_node_mem_inv_ports); fp << ";" << std::endl; } /* Link nodes to input ports for the branch module */ /* TODO: the naming could be more flexible? */ ModulePortId module_mem_inv_port_id = module_manager.find_module_port(branch_module_id, "mem_inv"); VTR_ASSERT(ModulePortId::INVALID() != module_mem_inv_port_id); /* Get the port from module */ BasicPort module_mem_inv_port = module_manager.module_port(branch_module_id, module_mem_inv_port_id); port2port_name_map[module_mem_inv_port.get_name()] = instance_mem_inv_port; /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, branch_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(circuit_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, branch_module_id); print_verilog_comment(fp, std::string("---- END Instanciation of a branch CMOS MUX module -----")); if (false == inter_buffer_location_map[output_node_level]) { continue; /* No need for intermediate buffers */ } print_verilog_comment(fp, std::string("---- BEGIN Instanciation of a intermediate buffer modules -----")); /* Now we need to add intermediate buffers by instanciating the modules */ CircuitModelId buffer_model = circuit_lib.lut_intermediate_buffer_model(circuit_model); /* We must have a valid model id */ VTR_ASSERT(CircuitModelId::INVALID() != buffer_model); /* To match the context, Buffer should have only 2 non-global ports: 1 input port and 1 output port */ std::vector buffer_model_input_ports = circuit_lib.model_ports_by_type(buffer_model, SPICE_MODEL_PORT_INPUT, true); std::vector buffer_model_output_ports = circuit_lib.model_ports_by_type(buffer_model, SPICE_MODEL_PORT_OUTPUT, true); VTR_ASSERT(1 == buffer_model_input_ports.size()); VTR_ASSERT(1 == buffer_model_output_ports.size()); /* Get the moduleId for the buffer module */ ModuleId buffer_module_id = module_manager.find_module(circuit_lib.model_name(buffer_model)); /* We must have one */ VTR_ASSERT(ModuleId::INVALID() != buffer_module_id); /* Create a port-to-port map */ std::map buffer_port2port_name_map; /* Build the link between buffer_input_port[0] and output_node_pre_buffer * Build the link between buffer_output_port[0] and output_node_bufferred */ { /* Create a code block to accommodate the local variables */ BasicPort buffer_instance_input_port(generate_verilog_mux_node_name(output_node_level, false), output_node_index_at_level, output_node_index_at_level); std::string module_input_port_name = circuit_lib.port_lib_name(buffer_model_input_ports[0]); buffer_port2port_name_map[module_input_port_name] = buffer_instance_input_port; BasicPort buffer_instance_output_port(generate_verilog_mux_node_name(output_node_level, true), output_node_index_at_level, output_node_index_at_level); std::string module_output_port_name = circuit_lib.port_lib_name(buffer_model_output_ports[0]); buffer_port2port_name_map[module_output_port_name] = buffer_instance_output_port; } /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, buffer_module_id, buffer_port2port_name_map, circuit_lib.dump_explicit_port_map(buffer_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, buffer_module_id); print_verilog_comment(fp, std::string("---- END Instanciation of a intermediate buffer modules -----")); } print_verilog_comment(fp, std::string("---- END Internal Logic of a CMOS MUX module based on Pass-transistor/Transmission-gates -----")); } /********************************************************************* * Generate Verilog codes modeling a CMOS multiplexer with the given size * The Verilog module will consist of three parts: * 1. instances of the branch circuits of multiplexers which are generated before * This builds up the multiplexing structure * 2. Input buffers/inverters * 3. Output buffers/inverters *********************************************************************/ static void generate_verilog_cmos_mux_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const std::string& module_name, const MuxGraph& mux_graph) { /* Get the global ports required by MUX (and any submodules) */ std::vector mux_global_ports = circuit_lib.model_global_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true); /* Get the input ports from the mux */ std::vector mux_input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true); /* Get the output ports from the mux */ std::vector mux_output_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_OUTPUT, true); /* Get the sram ports from the mux */ std::vector mux_sram_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true); /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of data-path inputs */ size_t num_inputs = find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs()); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 output */ VTR_ASSERT(1 == mux_input_ports.size()); /* A quick check on the model ports */ if ((SPICE_MODEL_MUX == circuit_lib.model_type(circuit_model)) || ((SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) && (false == circuit_lib.is_lut_fracturable(circuit_model))) ) { VTR_ASSERT(1 == mux_output_ports.size()); VTR_ASSERT(1 == circuit_lib.port_size(mux_output_ports[0])); } else { VTR_ASSERT_SAFE( (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) && (true == circuit_lib.is_lut_fracturable(circuit_model)) ); for (const auto& port : mux_output_ports) { VTR_ASSERT(0 < circuit_lib.port_size(port)); } } /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.add_module(module_name); VTR_ASSERT(ModuleId::INVALID() != module_id); /* Add module ports */ /* Add each global port */ for (const auto& port : mux_global_ports) { /* Configure each global port */ BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port)); module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Add each input port * Treat MUX and LUT differently * 1. MUXes: we do not have a specific input/output sizes, it is inferred by architecture * 2. LUTes: we do have specific input/output sizes, * but the inputs of MUXes are the SRAM ports of LUTs * and the SRAM ports of MUXes are the inputs of LUTs */ size_t input_port_cnt = 0; for (const auto& port : mux_input_ports) { BasicPort input_port(circuit_lib.port_lib_name(port), num_inputs); module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT); /* Update counter */ input_port_cnt++; } /* Double check: We should have only 1 input port generated here! */ VTR_ASSERT(1 == input_port_cnt); for (const auto& port : mux_output_ports) { BasicPort output_port(circuit_lib.port_lib_name(port), num_outputs); if (SPICE_MODEL_LUT == circuit_lib.model_type(circuit_model)) { output_port.set_width(circuit_lib.port_size(port)); } module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT); } size_t sram_port_cnt = 0; for (const auto& port : mux_sram_ports) { /* Multiplexing structure does not mode_sram_ports, they are handled in LUT modules * Here we just bypass it. */ if (true == circuit_lib.port_is_mode_select(port)) { continue; } BasicPort mem_port(circuit_lib.port_lib_name(port), num_mems); module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT); BasicPort mem_inv_port(std::string(circuit_lib.port_lib_name(port) + "_inv"), num_mems); module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT); /* Update counter */ sram_port_cnt++; } /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* TODO: Print the internal logic in Verilog codes */ /* TODO: Print the Multiplexing structure in Verilog codes * TODO: branch the module port name by using standard cell MUX2 or TGATE, * 1. MUX2 has a fixed port map: input_port[0] and input_port[1] is the data_path input * 2. Branch TGATE-based module has a fixed port name * TODO: the naming could be more flexible? */ /* Get the tgate model */ CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model); /* Instanciate the branch module: * Case 1: the branch module is a standard cell MUX2 * Case 2: the branch module is a tgate-based module */ std::string branch_module_name; if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) { VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model)); generate_verilog_cmos_mux_module_mux2_multiplexing_structure(module_manager, circuit_lib, fp, module_id, circuit_model, tgate_model, mux_graph); } else { VTR_ASSERT(SPICE_MODEL_PASSGATE == circuit_lib.model_type(tgate_model)); generate_verilog_cmos_mux_module_tgate_multiplexing_structure(module_manager, circuit_lib, fp, module_id, circuit_model, mux_graph); } /* TODO: Print the input buffers in Verilog codes */ /* TODO: Print the output buffers in Verilog codes */ /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*********************************************** * Generate Verilog codes modeling a multiplexer * with the given graph-level description **********************************************/ static void generate_verilog_mux_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const MuxGraph& mux_graph) { std::string module_name = generate_verilog_mux_subckt_name(circuit_lib, circuit_model, find_mux_num_datapath_inputs(circuit_lib, circuit_model, mux_graph.num_inputs()), std::string("")); /* Multiplexers built with different technology is in different organization */ switch (circuit_lib.design_tech_type(circuit_model)) { case SPICE_MODEL_DESIGN_CMOS: /* SRAM-based Multiplexer Verilog module generation */ generate_verilog_cmos_mux_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph); break; case SPICE_MODEL_DESIGN_RRAM: /* TODO: RRAM-based Multiplexer Verilog module generation */ /* generate_verilog_rram_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph, circuit_lib.dump_structural_verilog(circuit_model)); */ break; default: vpr_printf(TIO_MESSAGE_ERROR, "(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } } /*********************************************** * Generate Verilog modules for all the unique * multiplexers in the FPGA device **********************************************/ void print_verilog_submodule_muxes(ModuleManager& module_manager, const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, char* verilog_dir, char* submodule_dir) { /* TODO: Generate modules into a .bak file now. Rename after it is verified */ std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name)); verilog_fname += ".bak"; /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_handler(fp); /* Print out debugging information for if the file is not opened/created properly */ vpr_printf(TIO_MESSAGE_INFO, "Creating Verilog netlist for Multiplexers (%s) ...\n", verilog_fname.c_str()); print_verilog_file_header(fp, "Multiplexers"); print_verilog_include_defines_preproc_file(fp, verilog_dir); /* Generate basis sub-circuit for unique branches shared by the multiplexers */ for (auto mux : mux_lib.muxes()) { const MuxGraph& mux_graph = mux_lib.mux_graph(mux); CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux); /* Create a mux graph for the branch circuit */ std::vector branch_mux_graphs = mux_graph.build_mux_branch_graphs(); /* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */ for (auto branch_mux_graph : branch_mux_graphs) { generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model, find_mux_num_datapath_inputs(circuit_lib, mux_circuit_model, mux_graph.num_inputs()), branch_mux_graph); } } /* Generate unique Verilog modules for the multiplexers */ for (auto mux : mux_lib.muxes()) { const MuxGraph& mux_graph = mux_lib.mux_graph(mux); CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux); /* Create MUX circuits */ generate_verilog_mux_module(module_manager, circuit_lib, fp, mux_circuit_model, mux_graph); } /* Close the file steam */ fp.close(); /* TODO: * Scan-chain configuration circuit does not need any BLs/WLs! * SRAM MUX does not need any reserved BL/WLs! */ /* Determine reserved Bit/Word Lines if a memory bank is specified, * At least 1 BL/WL should be reserved! */ try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info, mux_lib.max_mux_size(), mux_lib.max_mux_size()); /* TODO: Add fname to the linked list when debugging is finished */ /* submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name); */ }