/********************************************************************* * The following code is part of the power modelling feature of VTR. * * For support: * http://code.google.com/p/vtr-verilog-to-routing/wiki/Power * * or email: * vtr.power.estimation@gmail.com * * If you are using power estimation for your researach please cite: * * Jeffrey Goeders and Steven Wilton. VersaPower: Power Estimation * for Diverse FPGA Architectures. In International Conference on * Field Programmable Technology, 2012. * ********************************************************************/ /** * This file provides functions that calculate the power of low-level * components (inverters, simple multiplexers, etc) */ /************************* INCLUDES *********************************/ #include #include "power_lowlevel.h" #include "power_util.h" #include "power_cmos_tech.h" #include "globals.h" /************************* FUNCTION DELCARATIONS ********************/ static float power_calc_node_switching_v(float capacitance, float density, float period, float voltage); static void power_calc_transistor_capacitance(float *C_d, float *C_s, float *C_g, e_tx_type transistor_type, float size); static float power_calc_leakage_st(e_tx_type transistor_type, float size); static float power_calc_leakage_st_pass_transistor(float size, float v_ds); static float power_calc_leakage_gate(e_tx_type transistor_type, float size); /*static float power_calc_buffer_sc_levr( t_power_buffer_strength_inf * buffer_strength, int input_mux_size);*/ /************************* FUNCTION DEFINITIONS *********************/ /** * Initializer function for this module, called by power_init */ void power_lowlevel_init() { float C_d, C_s, C_g; power_calc_transistor_capacitance(&C_d, &C_s, &C_g, NMOS, 1.0); g_power_commonly_used->NMOS_1X_C_d = C_d; g_power_commonly_used->NMOS_1X_C_g = C_g; g_power_commonly_used->NMOS_1X_C_s = C_s; power_calc_transistor_capacitance(&C_d, &C_s, &C_g, PMOS, g_power_tech->PN_ratio); g_power_commonly_used->PMOS_1X_C_d = C_d; g_power_commonly_used->PMOS_1X_C_g = C_g; g_power_commonly_used->PMOS_1X_C_s = C_s; g_power_commonly_used->NMOS_1X_st_leakage = power_calc_leakage_st(NMOS, 1.0); g_power_commonly_used->PMOS_1X_st_leakage = power_calc_leakage_st(PMOS, 1.0 * g_power_tech->PN_ratio); g_power_commonly_used->INV_1X_C_in = g_power_commonly_used->NMOS_1X_C_g + g_power_commonly_used->PMOS_1X_C_g; g_power_commonly_used->INV_1X_C = g_power_commonly_used->NMOS_1X_C_g + g_power_commonly_used->PMOS_1X_C_g + g_power_commonly_used->NMOS_1X_C_d + g_power_commonly_used->PMOS_1X_C_d; power_calc_transistor_capacitance(&C_d, &C_s, &C_g, NMOS, 2.0); g_power_commonly_used->INV_2X_C = C_g + C_d; power_calc_transistor_capacitance(&C_d, &C_s, &C_g, PMOS, 2.0 * g_power_tech->PN_ratio); g_power_commonly_used->INV_2X_C += C_g + C_d; } /** * Calculates the switching power of a node * - capacitance: The capacitance of the nodoe * - density: The transition density of the node */ float power_calc_node_switching(float capacitance, float density, float period) { return 0.5 * g_power_tech->Vdd * g_power_tech->Vdd * capacitance * density / period; } /** * Calculates the switching power of a node, with non-Vdd voltage * - capacitance: The capacitance of the nodoe * - density: The transition density of the node * - voltage: The voltage when the node is charged */ static float power_calc_node_switching_v(float capacitance, float density, float period, float voltage) { return 0.5 * voltage * g_power_tech->Vdd * capacitance * density / period; } /** * Calculates the power of an inverter * - power_usage: (Return value) The power usage of the inverter * - in_dens: The transition density of the input * - in_prob: The signal probability of the input * - size: The inverter size, relative to a min-size inverter */ void power_usage_inverter(t_power_usage * power_usage, float in_dens, float in_prob, float size, float period) { float C_drain, C_gate, C_source; float C_inv; float PMOS_size = g_power_tech->PN_ratio * size; float NMOS_size = size; power_usage->dynamic = 0.; power_usage->leakage = 0.; C_inv = 0.; power_calc_transistor_capacitance(&C_drain, &C_source, &C_gate, NMOS, NMOS_size); C_inv += C_gate + C_drain; power_calc_transistor_capacitance(&C_drain, &C_source, &C_gate, PMOS, PMOS_size); C_inv += C_gate + C_drain; power_usage->dynamic = power_calc_node_switching(C_inv, in_dens, period); power_usage->leakage = in_prob * power_calc_leakage_st(PMOS, PMOS_size) + (1 - in_prob) * power_calc_leakage_st(NMOS, NMOS_size); power_usage->leakage += in_prob * power_calc_leakage_gate(NMOS, NMOS_size) + (1 - in_prob) * power_calc_leakage_gate(PMOS, PMOS_size); } /** * Calculates the power of an inverter, with irregular P/N ratio * - power_usage: (Return value) The power usage of the inverter * - dy_power_input: (Return value) The dynamic power of the input node * - in_dens: The transition density of the input * - in_prob: The signal probability of the input * - PMOS_size: (W/L) of the PMOS * - NMOS_size: (W/L) of the NMOS */ void power_usage_inverter_irregular(t_power_usage * power_usage, float * dyn_power_input, float in_density, float in_probability, float PMOS_size, float NMOS_size, float period) { float C_drain, C_gate, C_source; float C_inv; float C_in; power_usage->dynamic = 0.; power_usage->leakage = 0.; C_inv = 0.; C_in = 0.; power_calc_transistor_capacitance(&C_drain, &C_source, &C_gate, NMOS, NMOS_size); C_inv += C_gate + C_drain; C_in += C_gate; power_calc_transistor_capacitance(&C_drain, &C_source, &C_gate, PMOS, PMOS_size); C_inv += C_gate + C_drain; C_in += C_gate; power_usage->dynamic = power_calc_node_switching(C_inv, in_density, period); *dyn_power_input = power_calc_node_switching(C_in, in_density, period); power_usage->leakage = in_probability * power_calc_leakage_st(PMOS, PMOS_size) + (1 - in_probability) * power_calc_leakage_st(NMOS, NMOS_size); } /** * Calculates the power of an inverter, also returning dynamic power of the input * - power_usage: (Return value) The power usage of the inverter * - input_dynamic_power: (Return value) The dynamic power of the input node * - in_dens: The transition density of the input * - in_prob: The signal probability of the input * - size: The inverter size, relative to a min-size inverter */ #if 0 void power_calc_inverter_with_input(t_power_usage * power_usage, float * input_dynamic_power, float in_density, float in_prob, float size) { float C_drain, C_gate, C_source; float C_inv; float C_in; float PMOS_size = g_power_tech->PN_ratio * size; float NMOS_size = size; power_usage->dynamic = 0.; power_usage->leakage = 0.; C_inv = 0.; C_in = 0.; power_calc_transistor_capacitance(&C_drain, &C_source, &C_gate, NMOS, NMOS_size); C_inv += C_gate + C_drain; C_in += C_gate; power_calc_transistor_capacitance(&C_drain, &C_source, &C_gate, PMOS, PMOS_size); C_inv += C_gate + C_drain; C_in += C_gate; power_usage->dynamic = power_calc_node_switching(C_inv, in_density); *input_dynamic_power = power_calc_node_switching(C_in, in_density); power_usage->leakage = in_prob * power_calc_leakage_st(PMOS, PMOS_size) + (1 - in_prob) * power_calc_leakage_st(NMOS, NMOS_size); power_usage->leakage += in_prob * power_calc_leakage_gate(NMOS, NMOS_size) + (1 - in_prob) * power_calc_leakage_gate(PMOS, PMOS_size); } #endif /** * Calculate the capacitance for a transistor * - C_d: (Return value) Drain capacitance * - C_s: (Return value) Source capacitance * - C_g: (Return value) Gate capacitance * - transistor_type: NMOS or PMOS * - size: (W/L) size of the transistor */ static void power_calc_transistor_capacitance(float *C_d, float *C_s, float *C_g, e_tx_type transistor_type, float size) { t_transistor_size_inf * tx_info_lower; t_transistor_size_inf * tx_info_upper; boolean error; /* Initialize to 0 */ *C_d = 0.; *C_s = 0.; *C_g = 0.; error = power_find_transistor_info(&tx_info_lower, &tx_info_upper, transistor_type, size); if (error) { return; } if (tx_info_lower == NULL) { /* No lower bound */ *C_d = tx_info_upper->C_d; *C_s = tx_info_upper->C_s; *C_g = tx_info_upper->C_g; } else if (tx_info_upper == NULL) { /* No upper bound */ *C_d = tx_info_lower->C_d; *C_s = tx_info_lower->C_s; *C_g = tx_info_lower->C_g; } else { /* Linear approximation between sizes */ float percent_upper = (size - tx_info_lower->size) / (tx_info_upper->size - tx_info_lower->size); *C_d = (1 - percent_upper) * tx_info_lower->C_d + percent_upper * tx_info_upper->C_d; *C_s = (1 - percent_upper) * tx_info_lower->C_s + percent_upper * tx_info_upper->C_s; *C_g = (1 - percent_upper) * tx_info_lower->C_g + percent_upper * tx_info_upper->C_g; } return; } /** * Returns the subthreshold leakage power of a transistor, * for V_ds = V_dd * - transistor_type: NMOS or PMOS * - size: (W/L) of transistor */ static float power_calc_leakage_st(e_tx_type transistor_type, float size) { t_transistor_size_inf * tx_info_lower; t_transistor_size_inf * tx_info_upper; boolean error; float current; error = power_find_transistor_info(&tx_info_lower, &tx_info_upper, transistor_type, size); if (error) { return 0; } if (tx_info_lower == NULL) { /* No lower bound */ current = tx_info_upper->leakage_subthreshold; } else if (tx_info_upper == NULL) { /* No upper bound */ current = tx_info_lower->leakage_subthreshold; } else { /* Linear approximation between sizes */ float percent_upper = (size - tx_info_lower->size) / (tx_info_upper->size - tx_info_lower->size); current = (1 - percent_upper) * tx_info_lower->leakage_subthreshold + percent_upper * tx_info_upper->leakage_subthreshold; } return current * g_power_tech->Vdd; } /** * Returns the gate gate leakage power of a transistor * - transistor_type: NMOS or PMOS * - size: (W/L) of transistor */ static float power_calc_leakage_gate(e_tx_type transistor_type, float size) { t_transistor_size_inf * tx_info_lower; t_transistor_size_inf * tx_info_upper; boolean error; float current; error = power_find_transistor_info(&tx_info_lower, &tx_info_upper, transistor_type, size); if (error) { return 0; } if (tx_info_lower == NULL) { /* No lower bound */ current = tx_info_upper->leakage_gate; } else if (tx_info_upper == NULL) { /* No upper bound */ current = tx_info_lower->leakage_gate; } else { /* Linear approximation between sizes */ float percent_upper = (size - tx_info_lower->size) / (tx_info_upper->size - tx_info_lower->size); current = (1 - percent_upper) * tx_info_lower->leakage_gate + percent_upper * tx_info_upper->leakage_gate; } return current * g_power_tech->Vdd; } /** * Returns the subthreshold leakage power of a pass-transistor, * assumed to be a minimum-sized NMOS * - size: (W/L) size of transistor (Must be 1.0) * - v_ds: Drain-source voltage */ static float power_calc_leakage_st_pass_transistor(float size, float v_ds) { t_power_nmos_leakage_inf * nmos_low = NULL; t_power_nmos_leakage_inf * nmos_high = NULL; t_power_nmos_leakage_pair * lower; t_power_nmos_leakage_pair * upper; float i_ds; float power_low; float power_high; bool over_range = false; assert(size >= 1.0); // Check if nmos size is beyond range if (size >= g_power_tech->nmos_leakage_info[g_power_tech->num_nmos_leakage_info - 1].nmos_size) { nmos_low = &g_power_tech->nmos_leakage_info[g_power_tech->num_nmos_leakage_info - 1]; over_range = true; } else { for (int i = 1; i < g_power_tech->num_nmos_leakage_info; i++) { if (size < g_power_tech->nmos_leakage_info[i].nmos_size) { nmos_low = &g_power_tech->nmos_leakage_info[i - 1]; nmos_high = &g_power_tech->nmos_leakage_info[i]; break; } } } if (size > g_power_tech->nmos_leakage_info[g_power_tech->num_nmos_leakage_info - 1].nmos_size) { power_log_msg(POWER_LOG_ERROR, "The architectures uses multiplexers with \ transistors sizes larger than what is defined in the \ section of the technology file."); } power_find_nmos_leakage(nmos_low, &lower, &upper, v_ds); if (lower->v_ds == v_ds || !upper) { i_ds = lower->i_ds; } else { float perc_upper = (v_ds - lower->v_ds) / (upper->v_ds - lower->v_ds); i_ds = (1 - perc_upper) * lower->i_ds + perc_upper * upper->i_ds; } power_low = i_ds * g_power_tech->Vdd; if (!over_range) { power_find_nmos_leakage(nmos_high, &lower, &upper, v_ds); if (lower->v_ds == v_ds || !upper) { i_ds = lower->i_ds; } else { float perc_upper = (v_ds - lower->v_ds) / (upper->v_ds - lower->v_ds); i_ds = (1 - perc_upper) * lower->i_ds + perc_upper * upper->i_ds; } power_high = i_ds * g_power_tech->Vdd; } if (over_range) { return power_low; } else { float perc_upper = (size - nmos_low->nmos_size) / (nmos_high->nmos_size - nmos_low->nmos_size); return power_high * perc_upper + power_low * (1 - perc_upper); } } /** * Calculates the power of a wire * - power_usage: (Return value) Power usage of the wire * - capacitance: Capacitance of the wire (F) * - density: Transition density of the wire */ void power_usage_wire(t_power_usage * power_usage, float capacitance, float density, float period) { power_usage->leakage = 0.; power_usage->dynamic = power_calc_node_switching(capacitance, density, period); } /** * Calculates the power of a 2-input multiplexer, comprised of transmission gates * - power_usage: (Return value) Power usage of the mux * - in_dens: Array of input transition densities * - in_prob: Array of input signal probabilities * - sel_desn: Transition density of select line * - sel_prob: Signal probability of select line * - out_dens: Transition density of the output */ void power_usage_MUX2_transmission(t_power_usage * power_usage, float size, float * in_dens, float * in_prob, float sel_dens, float out_dens, float period) { power_zero_usage(power_usage); float leakage_n, leakage_p; leakage_n = power_calc_leakage_st(NMOS, size); leakage_p = power_calc_leakage_st(PMOS, size * g_power_tech->PN_ratio); float C_g_n, C_d_n, C_s_n; power_calc_transistor_capacitance(&C_d_n, &C_s_n, &C_g_n, NMOS, size); float C_g_p, C_d_p, C_s_p; power_calc_transistor_capacitance(&C_d_p, &C_s_p, &C_g_p, PMOS, size * g_power_tech->PN_ratio); /* A transmission gate leaks if the selected input != other input */ power_usage->leakage += (in_prob[0] * (1 - in_prob[1]) + (1 - in_prob[0]) * in_prob[1]) * (leakage_n + leakage_p); /* Gate switching */ power_usage->dynamic += 2 * power_calc_node_switching(C_g_n + C_g_p, sel_dens, period); /* Input switching */ power_usage->dynamic += power_calc_node_switching(C_d_n + C_s_p, in_dens[0], period); power_usage->dynamic += power_calc_node_switching(C_d_n + C_s_p, in_dens[1], period); /* Output switching */ power_usage->dynamic += power_calc_node_switching(2 * (C_s_n + C_d_p), out_dens, period); } /** * Calucates the power of a static, single-level multiplexer * - power_usage: (Return value) power usage of the mux * - out_prob: (Return value) Signal probability of the output * - out_dens: (Return value) Transition density of the output * - num_inputs: Number of inputs of the mux * - selected_idx: The input index that is selected by the select lines * - in_prob: Array of input signal probabilities * - in_dens: Array of input tranistion densities * - v_in: Array of input max voltages * - transistor_size: Size of the NMOS transistors (must be 1.0) * - v_out_restored: Whether the output will be level restored to Vdd */ void power_usage_mux_singlelevel_static(t_power_usage * power_usage, float * out_prob, float * out_dens, float * v_out, int num_inputs, int selected_idx, float * in_prob, float * in_dens, float * v_in, float transistor_size, boolean v_out_restored, float period) { int input_idx; float v_in_selected; float in_prob_avg; power_zero_usage(power_usage); assert(transistor_size >= 1.0); if (selected_idx < num_inputs) { *out_prob = in_prob[selected_idx]; *out_dens = in_dens[selected_idx]; v_in_selected = v_in[selected_idx]; } else { /* In this case, the multiplexer is not symetrical. The * other branch of the mux has more inputs than this one, * and the selected input index is not a valid index for * this portion of the mux. If the mux was actually built * this way, there would likely be a weak pull-up to ensure * that the node does not float. */ *out_prob = 1.0; *out_dens = 0.0; v_in_selected = 0.; for (input_idx = 0; input_idx < num_inputs; input_idx++) { v_in_selected += v_in[input_idx]; } v_in_selected /= num_inputs; } in_prob_avg = 0.; float C_d, C_g, C_s; power_calc_transistor_capacitance(&C_d, &C_s, &C_g, NMOS, transistor_size); for (input_idx = 0; input_idx < num_inputs; input_idx++) { /* Dynamic Power at Inputs */ power_usage->dynamic += power_calc_node_switching_v(C_d, in_dens[input_idx], period, v_in[input_idx]); if (input_idx != selected_idx) { in_prob_avg += in_prob[input_idx]; } } in_prob_avg /= (num_inputs - 1); if (v_out_restored) { *v_out = g_power_tech->Vdd; } else { *v_out = power_calc_mux_v_out(num_inputs, transistor_size, v_in_selected, in_prob_avg); } for (input_idx = 0; input_idx < num_inputs; input_idx++) { /* Leakage */ /* The selected input will never leak */ if (input_idx == selected_idx) { continue; } /* Output is high and this input is low */ power_usage->leakage += (*out_prob) * (1 - in_prob[input_idx]) * power_calc_leakage_st_pass_transistor(transistor_size, *v_out); /* Output is low and this input is high */ power_usage->leakage += (1 - *out_prob) * in_prob[input_idx] * power_calc_leakage_st_pass_transistor(transistor_size, v_in[input_idx]); } /* Dynamic Power at Output */ power_usage->dynamic += power_calc_node_switching_v(C_s * num_inputs, *out_dens, period, *v_out); } /** * This function calcualtes the output voltage of a single-level multiplexer * - num_inputs: Number of inputs of the multiplexer * - transistor_size: The size of the NMOS transistors (must be 1.0) * - v_in: The input voltage of the selcted input * - in_prob_avg: The average signal probabilities of the non-selected inputs */ float power_calc_mux_v_out(int num_inputs, float transistor_size, float v_in, float in_prob_avg) { t_power_mux_volt_inf * mux_volt_inf_low; t_power_mux_volt_inf * mux_volt_inf_high; t_power_mux_volt_pair * lower; t_power_mux_volt_pair * upper; float v_out_min, v_out_max; float v_out_low; float v_out_high; bool over_range = false; assert(transistor_size >= 1.0); t_power_nmos_mux_inf * mux_nmos_inf_lower = NULL; t_power_nmos_mux_inf * mux_nmos_inf_upper = NULL; // Check if nmos size is beyond range if (transistor_size >= g_power_tech->nmos_mux_info[g_power_tech->num_nmos_mux_info - 1].nmos_size) { mux_nmos_inf_lower = &g_power_tech->nmos_mux_info[g_power_tech->num_nmos_mux_info - 1]; over_range = true; } else { for (int i = 1; i < g_power_tech->num_nmos_mux_info; i++) { if (transistor_size < g_power_tech->nmos_mux_info[i].nmos_size) { mux_nmos_inf_lower = &g_power_tech->nmos_mux_info[i - 1]; mux_nmos_inf_upper = &g_power_tech->nmos_mux_info[i]; break; } } } if (transistor_size > g_power_tech->nmos_mux_info[g_power_tech->num_nmos_mux_info - 1].nmos_size) { power_log_msg(POWER_LOG_ERROR, "The architectures uses multiplexers with \ transistors sizes larger than what is defined in the \ section of the technology file."); } if (num_inputs > mux_nmos_inf_lower->max_mux_sl_size || (!over_range && num_inputs > mux_nmos_inf_upper->max_mux_sl_size)) { power_log_msg(POWER_LOG_ERROR, "The circuit contains a single-level mux larger than \ what is defined in the section of the \ technology file."); } mux_volt_inf_low = &mux_nmos_inf_lower->mux_voltage_inf[num_inputs]; power_find_mux_volt_inf(&lower, &upper, mux_volt_inf_low, v_in); if (lower->v_in == v_in || !upper) { v_out_min = lower->v_out_min; v_out_max = lower->v_out_max; } else { float perc_upper = (v_in - lower->v_in) / (upper->v_in - lower->v_in); v_out_min = (1 - perc_upper) * lower->v_out_min + perc_upper * upper->v_out_min; v_out_max = (1 - perc_upper) * lower->v_out_max + perc_upper * upper->v_out_max; } v_out_low = in_prob_avg * v_out_max + (1 - in_prob_avg) * v_out_min; if (!over_range) { mux_volt_inf_high = &mux_nmos_inf_upper->mux_voltage_inf[num_inputs]; power_find_mux_volt_inf(&lower, &upper, mux_volt_inf_high, v_in); if (lower->v_in == v_in || !upper) { v_out_min = lower->v_out_min; v_out_max = lower->v_out_max; } else { float perc_upper = (v_in - lower->v_in) / (upper->v_in - lower->v_in); v_out_min = (1 - perc_upper) * lower->v_out_min + perc_upper * upper->v_out_min; v_out_max = (1 - perc_upper) * lower->v_out_max + perc_upper * upper->v_out_max; } v_out_high = in_prob_avg * v_out_max + (1 - in_prob_avg) * v_out_min; } if (over_range) { return v_out_low; } else { float perc_upper = (transistor_size - mux_nmos_inf_lower->nmos_size) / (mux_nmos_inf_upper->nmos_size - mux_nmos_inf_lower->nmos_size); return v_out_high * perc_upper + (1 - perc_upper) * v_out_low; } } /** This function calculates the power of a single-level multiplexer, where the * select lines are dynamic * - power_usage: (Return value) The power usage of the mux * - num_inputs: Number of multiplexer inputs (must be 2) * - out_density: The transition density of the output * - out_prob: The signal probability of the output * - v_out: The output max voltage * - in_prob: Array of input signal probabilities * - in_dens: Array of input tranistion densities * - v_in: Array of input voltages * - sel_dens: Transition density of the select line * - sel_prob: Signal probability of the select line * - tranisistor_size: NMOS transistor sizes (must be 1.0) */ void power_usage_mux_singlelevel_dynamic(t_power_usage * power_usage, int num_inputs, float out_density, float v_out, float * in_prob, float * in_dens, float * v_in, float sel_dens, float sel_prob, float transistor_size, float period) { assert(num_inputs == 2); power_zero_usage(power_usage); /* Leakage occurs when input1 != input2. * If the selected input is low, the other transistor leaks input->output * If the selected input is high, the other transistor leaks output->input*/ /* 1st selected, 1st Low, 2nd High - Leakage from 2nd in->out */ power_usage->leakage += (1 - sel_prob) * (1 - in_prob[0]) * in_prob[1] * power_calc_leakage_st_pass_transistor(transistor_size, v_in[1]); /* 1st selected, 1st High, 2nd Low - Leakage from 2nd out->in */ /* 2nd selected, 1st Low, 2nd High - Leakage from 1st out->in */ power_usage->leakage += ((1 - sel_prob) * in_prob[0] * (1 - in_prob[1]) + sel_prob * (1 - in_prob[0]) * in_prob[1]) * power_calc_leakage_st_pass_transistor(transistor_size, v_out); /* 2nd selected, 1st High, 2nd Low - Leakage from 1st in->out */ power_usage->leakage += sel_prob * in_prob[0] * (1 - in_prob[1]) * power_calc_leakage_st_pass_transistor(transistor_size, v_in[0]); /* Gate switching */ float C_d, C_s, C_g; power_calc_transistor_capacitance(&C_d, &C_s, &C_g, NMOS, transistor_size); power_usage->dynamic += 2 * power_calc_node_switching(C_g, sel_dens, period); /* Input switching */ power_usage->dynamic += power_calc_node_switching_v(C_d, in_dens[0], period, v_in[0]); power_usage->dynamic += power_calc_node_switching_v(C_d, in_dens[1], period, v_in[1]); /* Output switching */ power_usage->dynamic += power_calc_node_switching_v(2 * C_s, out_density, period, v_out); } /** * This function calculates the power of a level restorer, which is a biased * inverter with a pull-up PMOS transistor in feedback. * - power_usage: (Return value) Power usage of the level restorer * - dyn_power_in: (Return value) Dynamic power at the input * - in_density: Transition density of the input * - in_prob: Signal probability of the input */ void power_usage_level_restorer(t_power_usage * power_usage, float * dyn_power_in, float in_dens, float in_prob, float period) { t_power_usage sub_power_usage; float C; float C_in; float input_dyn_power = 0.; power_zero_usage(power_usage); /* Inverter */ power_usage_inverter_irregular(&sub_power_usage, &input_dyn_power, in_dens, in_prob, 1.0, 2.0, period); power_add_usage(power_usage, &sub_power_usage); /* Pull-up PMOS */ if (g_power_tech->PMOS_inf.long_trans_inf == NULL) { power_log_msg(POWER_LOG_ERROR, "No long transistor information exists. Cannot determine transistor properties."); return; } C = g_power_tech->PMOS_inf.long_trans_inf->C_d + g_power_tech->PMOS_inf.long_trans_inf->C_g; C_in = g_power_tech->PMOS_inf.long_trans_inf->C_d; input_dyn_power += power_calc_node_switching(C_in, in_dens, period); power_usage->dynamic += power_calc_node_switching(C, in_dens, period); power_usage->leakage += (1 - in_prob) * g_power_tech->PMOS_inf.long_trans_inf->leakage_subthreshold; *dyn_power_in = input_dyn_power; } /** * This function calculates the short-circuit factor for a buffer. This factor * represents the short-circuit power of a buffer, as a factor of switching power. * - stages: Number of stages of the buffer * - gain: The gain at each stage * - level_restorer: Whether this buffer must level-restore the input to Vdd * - input_mux_size: For level-restoring buffers, what is the size of the mux driving it */ // Not used anymore #if 0 float power_calc_buffer_sc(int stages, float gain, boolean level_restorer, int input_mux_size) { t_power_buffer_size_inf * size_inf; t_power_buffer_strength_inf * strength_lower; t_power_buffer_strength_inf * strength_upper; float sc; /* Find information for given buffer size */ size_inf = &g_power_tech->buffer_size_inf[stages]; /* Find information for a given size/strength */ power_find_buffer_strength_inf(&strength_lower, &strength_upper, size_inf, gain); if (!level_restorer) { if (strength_upper == NULL) { sc = strength_lower->sc_no_levr; } else { float percent_upper = (gain - strength_lower->stage_gain) / (strength_upper->stage_gain - strength_lower->stage_gain); sc = (1 - percent_upper) * strength_lower->sc_no_levr + percent_upper * strength_upper->sc_no_levr; } } else { /* Level Restored - Short Circuit depends on input mux size */ if (strength_upper == NULL) { sc = power_calc_buffer_sc_levr(strength_lower, input_mux_size); } else { float sc_buf_low; float sc_buf_high; sc_buf_low = power_calc_buffer_sc_levr(strength_lower, input_mux_size); sc_buf_high = power_calc_buffer_sc_levr(strength_upper, input_mux_size); float percent_upper = (gain - strength_lower->stage_gain) / (strength_upper->stage_gain - strength_lower->stage_gain); sc = (1 - percent_upper) * sc_buf_low + percent_upper * sc_buf_high; } } return sc; } /** * This function calculates the short-circuit factor for a level-restoring buffer, * used by power_calc_buffer_sc * - buffer_strength: The buffer information, for a given size/strength * - input_mux_size: The size of the mux driving this buffer */ static float power_calc_buffer_sc_levr( t_power_buffer_strength_inf * buffer_strength, int input_mux_size) { t_power_buffer_sc_levr_inf * mux_lower; t_power_buffer_sc_levr_inf * mux_upper; power_find_buffer_sc_levr(&mux_lower, &mux_upper, buffer_strength, input_mux_size); if (mux_upper == NULL) { return mux_lower->sc_levr; } else { float percent_upper = (input_mux_size - mux_lower->mux_size) / (mux_upper->mux_size - mux_lower->mux_size); return (1 - percent_upper) * mux_lower->sc_levr + percent_upper * mux_upper->sc_levr; } } #endif float power_calc_buffer_size_from_Cout(float C_out) { int i; float C_found; t_transistor_inf * nmos_info = &g_power_tech->NMOS_inf; t_transistor_inf * pmos_info = &g_power_tech->PMOS_inf; assert(nmos_info->num_size_entries == pmos_info->num_size_entries); for (i = 0; i < nmos_info->num_size_entries; i++) { C_found = nmos_info->size_inf[i].C_d + pmos_info->size_inf[i].C_d; /* Not likely, since floating point */ if (C_out == C_found) { return nmos_info->size_inf[i].size; } /* Gone past */ if (C_found > C_out) { if (i == 0) { power_log_msg(POWER_LOG_WARNING, "Attempted to search for a transistor with a capacitance smaller than the smallest in the technology file.\n"); return nmos_info->size_inf[i].size; } else { float C_prev = nmos_info->size_inf[i - 1].C_d + pmos_info->size_inf[i - 1].C_d; float percent_upper = (C_out - C_prev) / (C_found - C_prev); return percent_upper * nmos_info->size_inf[i].size + (1 - percent_upper) * nmos_info->size_inf[i - 1].size; } } /* Reached the End */ if (i == nmos_info->num_size_entries - 1) { power_log_msg(POWER_LOG_WARNING, "Attempted to search for a transistor with a capacitance greater than the largest in the technology file.\n"); return nmos_info->size_inf[i].size; } } return 0; }