/*************************************************************************************** * This file includes functions to generate Verilog modules of decoders ***************************************************************************************/ #include /* Headers from vtrutil library */ #include "vtr_assert.h" #include "vtr_log.h" /* Headers from openfpgautil library */ #include "openfpga_digest.h" #include "openfpga_decode.h" #include "decoder_library_utils.h" #include "module_manager.h" #include "openfpga_reserved_words.h" #include "openfpga_naming.h" #include "verilog_constants.h" #include "verilog_writer_utils.h" #include "verilog_decoders.h" /* begin namespace openfpga */ namespace openfpga { /*************************************************************************************** * Create a Verilog module for a decoder with a given output size * * Inputs * | | ... | * v v v * +-----------+ * / \ * / Decoder \ * +-----------------+ * | | | ... | | | * v v v v v v * Outputs * * The outputs are assumes to be one-hot codes (at most only one '1' exist) * Considering this fact, there are only num_of_outputs conditions to be encoded. * Therefore, the number of inputs is ceil(log(num_of_outputs)/log(2)) ***************************************************************************************/ static void print_verilog_mux_local_decoder_module(std::fstream& fp, const ModuleManager& module_manager, const DecoderLibrary& decoder_lib, const DecoderId& decoder) { /* Get the number of inputs */ size_t addr_size = decoder_lib.addr_size(decoder); size_t data_size = decoder_lib.data_size(decoder); /* Validate the FILE handler */ VTR_ASSERT(true == valid_file_stream(fp)); /* TODO: create a name for the local encoder */ std::string module_name = generate_mux_local_decoder_subckt_name(addr_size, data_size); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(module_id)); /* Add module ports */ /* Add each input port */ BasicPort addr_port(generate_mux_local_decoder_addr_port_name(), addr_size); /* Add each output port */ BasicPort data_port(generate_mux_local_decoder_data_port_name(), data_size); /* Data port is registered. It should be outputted as * output reg [lsb:msb] data */ /* Add data_in port */ BasicPort data_inv_port(generate_mux_local_decoder_data_inv_port_name(), data_size); VTR_ASSERT(true == decoder_lib.use_data_inv_port(decoder)); /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Finish dumping ports */ print_verilog_comment(fp, std::string("----- BEGIN Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Print the truth table of this decoder */ /* Internal logics */ /* Early exit: Corner case for data size = 1 the logic is very simple: * data = addr; * data_inv = ~data_inv */ if (1 == data_size) { print_verilog_wire_connection(fp, data_port, addr_port, false); print_verilog_wire_connection(fp, data_inv_port, addr_port, true); print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); return; } /* We use a magic number -1 as the addr=1 should be mapped to ...1 * Otherwise addr will map addr=1 to ..10 * Note that there should be a range for the shift operators * We should narrow the encoding to be applied to a given set of data * This will lead to that any addr which falls out of the op code of data * will give a all-zero code * For example: * data is 5-bit while addr is 3-bit * data=8'b0_0000 will be encoded to addr=3'b001; * data=8'b0_0001 will be encoded to addr=3'b010; * data=8'b0_0010 will be encoded to addr=3'b011; * data=8'b0_0100 will be encoded to addr=3'b100; * data=8'b0_1000 will be encoded to addr=3'b101; * data=8'b1_0000 will be encoded to addr=3'b110; * The rest of addr codes 3'b110, 3'b111 will be decoded to data=8'b0_0000; */ fp << "\t" << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl; fp << "\t" << "case (" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl; /* Create a string for addr and data */ for (size_t i = 0; i < data_size; ++i) { fp << "\t\t" << generate_verilog_constant_values(itobin_vec(i, addr_size)); fp << " : "; fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(i, data_size)); fp << ";" << std::endl; } fp << "\t\t" << "default : "; fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size - 1, data_size)); fp << ";" << std::endl; fp << "\t" << "endcase" << std::endl; print_verilog_wire_connection(fp, data_inv_port, data_port, true); print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*************************************************************************************** * This function will generate all the unique Verilog modules of local decoders for * the multiplexers used in a FPGA fabric * It will reach the goal in two steps: * 1. Find the unique local decoders w.r.t. the number of inputs/outputs * We will generate the subgraphs from the multiplexing graph of each multiplexers * The number of memory bits is the number of outputs. * From that we can infer the number of inputs of each local decoders. * Here is an illustrative example of how local decoders are interfaced with multi-level MUXes * * +---------+ +---------+ * | Local | | Local | * | Decoder | | Decoder | * | A | | B | * +---------+ +---------+ * | ... | | ... | * v v v v * +--------------+ +--------------+ * | MUX Level 0 |--->| MUX Level 1 | * +--------------+ +--------------+ * 2. Generate local decoder Verilog modules using behavioral description. * Note that the implementation of local decoders can be dependent on the technology * and standard cell libraries. * Therefore, behavioral Verilog is used and the local decoders should be synthesized * before running the back-end flow for FPGA fabric * See more details in the function print_verilog_mux_local_decoder() for more details ***************************************************************************************/ void print_verilog_submodule_mux_local_decoders(const ModuleManager& module_manager, NetlistManager& netlist_manager, const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib, const std::string& submodule_dir) { std::string verilog_fname(submodule_dir + std::string(LOCAL_ENCODER_VERILOG_FILE_NAME)); /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_stream(verilog_fname.c_str(), fp); /* Print out debugging information for if the file is not opened/created properly */ VTR_LOG("Writing Verilog netlist for local decoders for multiplexers '%s'...", verilog_fname.c_str()); print_verilog_file_header(fp, "Local Decoders for Multiplexers"); /* Create a library for local encoders with different sizes */ DecoderLibrary decoder_lib; /* Find unique local decoders for unique branches shared by the multiplexers */ for (auto mux : mux_lib.muxes()) { /* Local decoders are need only when users specify them */ CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux); /* If this MUX does not need local decoder, we skip it */ if (false == circuit_lib.mux_use_local_encoder(mux_circuit_model)) { continue; } const MuxGraph& mux_graph = mux_lib.mux_graph(mux); /* Create a mux graph for the branch circuit */ std::vector branch_mux_graphs = mux_graph.build_mux_branch_graphs(); /* Add the decoder to the decoder library */ for (auto branch_mux_graph : branch_mux_graphs) { /* The decoder size depends on the number of memories of a branch MUX. * Note that only when there are >=2 memories, a decoder is needed */ size_t decoder_data_size = branch_mux_graph.num_memory_bits(); if (0 == decoder_data_size) { continue; } /* Try to find if the decoder already exists in the library, * If there is no such decoder, add it to the library */ add_mux_local_decoder_to_library(decoder_lib, decoder_data_size); } } /* Generate Verilog modules for the found unique local encoders */ for (const auto& decoder : decoder_lib.decoders()) { print_verilog_mux_local_decoder_module(fp, module_manager, decoder_lib, decoder); } /* Close the file stream */ fp.close(); /* Add fname to the netlist name list */ NetlistId nlist_id = netlist_manager.add_netlist(verilog_fname); VTR_ASSERT(NetlistId::INVALID() != nlist_id); netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST); VTR_LOG("Done\n"); } /*************************************************************************************** * Create a Verilog module for a decoder used as a configuration protocol * in FPGA architecture * * Address * | | ... | * v v v * +-----------+ * Enable->/ \ * / Decoder \ * +-----------------+ * | | | ... | | | * v v v v v v * Data output * * The outputs are assumes to be one-hot codes (at most only one '1' exist) * Considering this fact, there are only num_of_outputs conditions to be encoded. * Therefore, the number of inputs is ceil(log(num_of_outputs)/log(2)) * * The decoder has an enable signal which is active at logic '1'. * When activated, the decoder will output decoding results to the data output port * Otherwise, the data output port will be always all-zero ***************************************************************************************/ static void print_verilog_arch_decoder_module(std::fstream& fp, const ModuleManager& module_manager, const DecoderLibrary& decoder_lib, const DecoderId& decoder) { /* Get the number of inputs */ size_t addr_size = decoder_lib.addr_size(decoder); size_t data_size = decoder_lib.data_size(decoder); /* Validate the FILE handler */ VTR_ASSERT(true == valid_file_stream(fp)); /* Create a name for the decoder */ std::string module_name = generate_memory_decoder_subckt_name(addr_size, data_size); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(module_id)); /* Find module ports */ /* Enable port */ ModulePortId enable_port_id = module_manager.find_module_port(module_id, std::string(DECODER_ENABLE_PORT_NAME)); BasicPort enable_port = module_manager.module_port(module_id, enable_port_id); /* Address port */ ModulePortId addr_port_id = module_manager.find_module_port(module_id, std::string(DECODER_ADDRESS_PORT_NAME)); BasicPort addr_port = module_manager.module_port(module_id, addr_port_id); /* Find each output port */ ModulePortId data_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_OUT_PORT_NAME)); BasicPort data_port = module_manager.module_port(module_id, data_port_id); /* Data port is registered. It should be outputted as * output reg [lsb:msb] data */ BasicPort data_inv_port(std::string(DECODER_DATA_OUT_INV_PORT_NAME), data_size); if (true == decoder_lib.use_data_inv_port(decoder)) { ModulePortId data_inv_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_OUT_INV_PORT_NAME)); data_inv_port = module_manager.module_port(module_id, data_inv_port_id); } /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Finish dumping ports */ print_verilog_comment(fp, std::string("----- BEGIN Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Print the truth table of this decoder */ /* Internal logics */ /* Early exit: Corner case for data size = 1 the logic is very simple: * data = addr; * data_inv = ~data_inv */ if (1 == data_size) { fp << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port); fp << " or " << generate_verilog_port(VERILOG_PORT_CONKT, enable_port); fp << ") begin" << std::endl; fp << "\tif (" << generate_verilog_port(VERILOG_PORT_CONKT, enable_port) << " == 1'b1) begin" << std::endl; fp << "\t\t" << generate_verilog_port_constant_values(data_port, std::vector(1, 1)) << ";" << std::endl; fp << "\t" << "end else begin" << std::endl; fp << "\t\t" << generate_verilog_port_constant_values(data_port, std::vector(1, 0)) << ";" << std::endl; fp << "\t" << "end" << std::endl; fp << "end" << std::endl; /* Depend on if the inverted data output port is needed or not */ if (true == decoder_lib.use_data_inv_port(decoder)) { print_verilog_wire_connection(fp, data_inv_port, addr_port, true); } print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); return; } /* We use a magic number -1 as the addr=1 should be mapped to ...1 * Otherwise addr will map addr=1 to ..10 * Note that there should be a range for the shift operators * We should narrow the encoding to be applied to a given set of data * This will lead to that any addr which falls out of the op code of data * will give a all-zero code * For example: * data is 5-bit while addr is 3-bit * data=8'b0_0000 will be encoded to addr=3'b001; * data=8'b0_0001 will be encoded to addr=3'b010; * data=8'b0_0010 will be encoded to addr=3'b011; * data=8'b0_0100 will be encoded to addr=3'b100; * data=8'b0_1000 will be encoded to addr=3'b101; * data=8'b1_0000 will be encoded to addr=3'b110; * The rest of addr codes 3'b110, 3'b111 will be decoded to data=8'b0_0000; */ fp << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port); fp << " or " << generate_verilog_port(VERILOG_PORT_CONKT, enable_port); fp << ") begin" << std::endl; fp << "\tif (" << generate_verilog_port(VERILOG_PORT_CONKT, enable_port) << " == 1'b1) begin" << std::endl; fp << "\t\t" << "case (" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl; /* Create a string for addr and data */ for (size_t i = 0; i < data_size; ++i) { fp << "\t\t\t" << generate_verilog_constant_values(itobin_vec(i, addr_size)); fp << " : "; fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(i, data_size)); fp << ";" << std::endl; } /* Different from MUX decoder, we assign default values which is all zero */ fp << "\t\t\t" << "default"; fp << " : "; fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size, data_size)); fp << ";" << std::endl; fp << "\t\t" << "endcase" << std::endl; fp << "\t" << "end" << std::endl; /* If enable is not active, we should give all zero */ fp << "\t" << "else begin" << std::endl; fp << "\t\t" << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size, data_size)); fp << ";" << std::endl; fp << "\t" << "end" << std::endl; fp << "end" << std::endl; if (true == decoder_lib.use_data_inv_port(decoder)) { print_verilog_wire_connection(fp, data_inv_port, data_port, true); } print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*************************************************************************************** * Create a Verilog module for a decoder with data_in used as a configuration protocol * in FPGA architecture * * Address * | | ... | * v v v * +-----------+ * Enable->/ \<-data_in * / Decoder \ * +-----------------+ * | | | ... | | | * v v v v v v * Data output * * The outputs are assumes to be one-hot codes (at most only one '1' exist) * Only the data output at the address bit will show data_in * * The decoder has an enable signal which is active at logic '1'. * When activated, the decoder will output decoding results to the data output port * Otherwise, the data output port will be always all-zero ***************************************************************************************/ static void print_verilog_arch_decoder_with_data_in_module(std::fstream& fp, const ModuleManager& module_manager, const DecoderLibrary& decoder_lib, const DecoderId& decoder) { /* Get the number of inputs */ size_t addr_size = decoder_lib.addr_size(decoder); size_t data_size = decoder_lib.data_size(decoder); VTR_ASSERT(true == decoder_lib.use_data_in(decoder)); /* Validate the FILE handler */ VTR_ASSERT(true == valid_file_stream(fp)); /* Create a name for the decoder */ std::string module_name = generate_memory_decoder_with_data_in_subckt_name(addr_size, data_size); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.find_module(module_name); VTR_ASSERT(true == module_manager.valid_module_id(module_id)); /* Find module ports */ /* Enable port */ ModulePortId enable_port_id = module_manager.find_module_port(module_id, std::string(DECODER_ENABLE_PORT_NAME)); BasicPort enable_port = module_manager.module_port(module_id, enable_port_id); /* Address port */ ModulePortId addr_port_id = module_manager.find_module_port(module_id, std::string(DECODER_ADDRESS_PORT_NAME)); BasicPort addr_port = module_manager.module_port(module_id, addr_port_id); /* Find data-in port*/ ModulePortId din_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_IN_PORT_NAME)); BasicPort din_port = module_manager.module_port(module_id, din_port_id); /* Find each output port */ ModulePortId data_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_OUT_PORT_NAME)); BasicPort data_port = module_manager.module_port(module_id, data_port_id); /* Data port is registered. It should be outputted as * output reg [lsb:msb] data */ BasicPort data_inv_port(std::string(DECODER_DATA_OUT_INV_PORT_NAME), data_size); if (true == decoder_lib.use_data_inv_port(decoder)) { ModulePortId data_inv_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_OUT_INV_PORT_NAME)); data_inv_port = module_manager.module_port(module_id, data_inv_port_id); } /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Finish dumping ports */ print_verilog_comment(fp, std::string("----- BEGIN Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Print the truth table of this decoder */ /* Internal logics */ /* Early exit: Corner case for data size = 1 the logic is very simple: * data = addr; * data_inv = ~data_inv */ if (1 == data_size) { fp << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port); fp << " or " << generate_verilog_port(VERILOG_PORT_CONKT, enable_port); fp << ") begin" << std::endl; fp << "\tif (" << generate_verilog_port(VERILOG_PORT_CONKT, enable_port) << " == 1'b1) begin" << std::endl; fp << "\t\t" << generate_verilog_port(VERILOG_PORT_CONKT, din_port) << ";" << std::endl; fp << "\t" << "end else begin" << std::endl; fp << "\t\t" << generate_verilog_port_constant_values(data_port, std::vector(1, 0)) << ";" << std::endl; fp << "\t" << "end" << std::endl; fp << "end" << std::endl; /* Depend on if the inverted data output port is needed or not */ if (true == decoder_lib.use_data_inv_port(decoder)) { print_verilog_wire_connection(fp, data_inv_port, addr_port, true); } print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); return; } /* Only the selected data output bit will be set to the value of data_in, * other data output bits will be '0' */ fp << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port); fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, enable_port); fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, din_port); fp << ") begin" << std::endl; fp << "\t" << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size, data_size)) << ";" << std::endl; fp << "\tif (" << generate_verilog_port(VERILOG_PORT_CONKT, enable_port) << " == 1'b1) begin" << std::endl; fp << "\t\t" << data_port.get_name().c_str() << "[" << addr_port.get_name().c_str() << "]"; fp << " = " << generate_verilog_port(VERILOG_PORT_CONKT, din_port) << ";" << std::endl; fp << "\t" << "end" << std::endl; fp << "end" << std::endl; if (true == decoder_lib.use_data_inv_port(decoder)) { print_verilog_wire_connection(fp, data_inv_port, data_port, true); } print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----")); /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*************************************************************************************** * This function will generate all the unique Verilog modules of decoders for * configuration protocols in a FPGA fabric * It will generate these decoder Verilog modules using behavioral description. * Note that the implementation of local decoders can be dependent on the technology * and standard cell libraries. * Therefore, behavioral Verilog is used and the local decoders should be synthesized * before running the back-end flow for FPGA fabric * See more details in the function print_verilog_arch_decoder() for more details ***************************************************************************************/ void print_verilog_submodule_arch_decoders(const ModuleManager& module_manager, NetlistManager& netlist_manager, const DecoderLibrary& decoder_lib, const std::string& submodule_dir) { std::string verilog_fname(submodule_dir + std::string(ARCH_ENCODER_VERILOG_FILE_NAME)); /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_stream(verilog_fname.c_str(), fp); /* Print out debugging information for if the file is not opened/created properly */ VTR_LOG("Writing Verilog netlist for configuration decoders '%s'...", verilog_fname.c_str()); print_verilog_file_header(fp, "Decoders for fabric configuration protocol "); /* Generate Verilog modules for the found unique local encoders */ for (const auto& decoder : decoder_lib.decoders()) { if (true == decoder_lib.use_data_in(decoder)) { print_verilog_arch_decoder_with_data_in_module(fp, module_manager, decoder_lib, decoder); } else { print_verilog_arch_decoder_module(fp, module_manager, decoder_lib, decoder); } } /* Close the file stream */ fp.close(); /* Add fname to the netlist name list */ NetlistId nlist_id = netlist_manager.add_netlist(verilog_fname); VTR_ASSERT(NetlistId::INVALID() != nlist_id); netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST); VTR_LOG("Done\n"); } } /* end namespace openfpga */