#include "catch.hpp" #include "read_xml_arch_file.h" #include "rr_metadata.h" #include "rr_graph_writer.h" #include "arch_util.h" #include "vpr_api.h" #include #include namespace { using Catch::Matchers::Equals; static constexpr const char kArchFile[] = "test_read_arch_metadata.xml"; static constexpr const char kRrGraphFile[] = "test_read_rrgraph_metadata.xml"; TEST_CASE("read_arch_metadata", "[vpr]") { t_arch arch; std::vector physical_tile_types; std::vector logical_block_types; XmlReadArch(kArchFile, /*timing_enabled=*/false, &arch, physical_tile_types, logical_block_types); bool found_perimeter_meta = false; bool found_single_meta = false; for (const auto& grid_def : arch.grid_layouts) { for (const auto& loc_def : grid_def.loc_defs) { if (loc_def.block_type == "io") { REQUIRE(loc_def.meta != nullptr); REQUIRE(loc_def.meta->has("type")); auto* value = loc_def.meta->one("type"); REQUIRE(value != nullptr); CHECK_THAT(value->as_string(), Equals("io")); found_perimeter_meta = true; } if (loc_def.block_type == "clb" && loc_def.x.start_expr == "5" && loc_def.y.start_expr == "5") { REQUIRE(loc_def.meta != nullptr); REQUIRE(loc_def.meta->has("single")); auto* value = loc_def.meta->one("single"); REQUIRE(value != nullptr); CHECK_THAT(value->as_string(), Equals("clb")); found_single_meta = true; } } } CHECK(found_perimeter_meta); CHECK(found_single_meta); bool found_pb_type = false; bool found_mode = false; bool found_direct = false; for (const auto& type : logical_block_types) { if (strcmp("io", type.name) == 0) { found_pb_type = true; REQUIRE(type.pb_type != nullptr); REQUIRE(type.pb_type->meta.has("pb_type_type")); auto* pb_type_value = type.pb_type->meta.one("pb_type_type"); REQUIRE(pb_type_value != nullptr); CHECK_THAT(pb_type_value->as_string(), Equals("pb_type = io")); REQUIRE(type.pb_type->num_modes > 0); REQUIRE(type.pb_type->modes != nullptr); for (int imode = 0; imode < type.pb_type->num_modes; ++imode) { if (strcmp("inpad", type.pb_type->modes[imode].name) == 0) { found_mode = true; const auto* mode = &type.pb_type->modes[imode]; REQUIRE(mode->meta.has("mode")); auto* mode_value = mode->meta.one("mode"); REQUIRE(mode_value != nullptr); CHECK_THAT(mode_value->as_string(), Equals("inpad")); CHECK(mode->num_interconnect > 0); REQUIRE(mode->interconnect != nullptr); for (int iint = 0; iint < mode->num_interconnect; ++iint) { if (strcmp("inpad", mode->interconnect[iint].name) == 0) { found_direct = true; REQUIRE(mode->interconnect[iint].meta.has("interconnect")); auto* interconnect_value = mode->interconnect[iint].meta.one("interconnect"); REQUIRE(interconnect_value != nullptr); CHECK_THAT(interconnect_value->as_string(), Equals("inpad_iconnect")); break; } } break; } } break; } } CHECK(found_pb_type); CHECK(found_mode); CHECK(found_direct); free_type_descriptors(logical_block_types); free_type_descriptors(physical_tile_types); free_arch(&arch); } TEST_CASE("read_rr_graph_metadata", "[vpr]") { int src_inode = -1; int sink_inode = -1; short switch_id = -1; { t_vpr_setup vpr_setup; t_arch arch; t_options options; const char* argv[] = { "test_vpr", kArchFile, "wire.eblif", "--route_chan_width", "100", }; vpr_init(sizeof(argv) / sizeof(argv[0]), argv, &options, &vpr_setup, &arch); vpr_create_device(vpr_setup, arch); const auto& device_ctx = g_vpr_ctx.device(); for (int inode = 0; inode < (int)device_ctx.rr_nodes.size(); ++inode) { if ((device_ctx.rr_nodes[inode].type() == CHANX || device_ctx.rr_nodes[inode].type() == CHANY) && device_ctx.rr_nodes[inode].num_edges() > 0) { src_inode = inode; break; } } REQUIRE(src_inode != -1); sink_inode = device_ctx.rr_nodes[src_inode].edge_sink_node(0); switch_id = device_ctx.rr_nodes[src_inode].edge_switch(0); vpr::add_rr_node_metadata(src_inode, "node", "test node"); vpr::add_rr_edge_metadata(src_inode, sink_inode, switch_id, "edge", "test edge"); write_rr_graph(kRrGraphFile, vpr_setup.Segments); vpr_free_all(arch, vpr_setup); } REQUIRE(src_inode != -1); REQUIRE(sink_inode != -1); REQUIRE(switch_id != -1); t_vpr_setup vpr_setup; t_arch arch; t_options options; const char* argv[] = { "test_vpr", kArchFile, "wire.eblif", "--route_chan_width", "100", "--read_rr_graph", kRrGraphFile, }; vpr_init(sizeof(argv) / sizeof(argv[0]), argv, &options, &vpr_setup, &arch); vpr_create_device(vpr_setup, arch); const auto& device_ctx = g_vpr_ctx.device(); CHECK(device_ctx.rr_node_metadata.size() == 1); CHECK(device_ctx.rr_edge_metadata.size() == 1); for (const auto& node_meta : device_ctx.rr_node_metadata) { CHECK(node_meta.first == src_inode); REQUIRE(node_meta.second.has("node")); auto* value = node_meta.second.one("node"); REQUIRE(value != nullptr); CHECK_THAT(value->as_string(), Equals("test node")); } for (const auto& edge_meta : device_ctx.rr_edge_metadata) { CHECK(std::get<0>(edge_meta.first) == src_inode); CHECK(std::get<1>(edge_meta.first) == sink_inode); CHECK(std::get<2>(edge_meta.first) == switch_id); REQUIRE(edge_meta.second.has("edge")); auto* value = edge_meta.second.one("edge"); REQUIRE(value != nullptr); CHECK_THAT(value->as_string(), Equals("test edge")); } vpr_free_all(arch, vpr_setup); } } // namespace