/******************************************************************** * This file includes functions to build fabric dependent bitstream *******************************************************************/ #include #include #include /* Headers from vtrutil library */ #include "vtr_assert.h" #include "vtr_log.h" #include "vtr_time.h" /* Headers from openfpgautil library */ #include "openfpga_decode.h" #include "openfpga_reserved_words.h" #include "openfpga_naming.h" #include "decoder_library_utils.h" #include "bitstream_manager_utils.h" #include "build_fabric_bitstream.h" /* begin namespace openfpga */ namespace openfpga { /******************************************************************** * This function aims to build a bitstream for configuration chain-like protocol * It will walk through all the configurable children under a module * in a recursive way, following a Depth-First Search (DFS) strategy * For each configuration child, we use its instance name as a key to spot the * configuration bits in bitstream manager. * Note that it is guarentee that the instance name in module manager is * consistent with the block names in bitstream manager * We use this link to reorganize the bitstream in the sequence of memories as we stored * in the configurable_children() and configurable_child_instances() of each module of module manager *******************************************************************/ static void rec_build_module_fabric_dependent_chain_bitstream(const BitstreamManager& bitstream_manager, const ConfigBlockId& parent_block, const ModuleManager& module_manager, const ModuleId& parent_module, FabricBitstream& fabric_bitstream) { /* Depth-first search: if we have any children in the parent_block, * we dive to the next level first! */ if (0 < bitstream_manager.block_children(parent_block).size()) { for (size_t child_id = 0; child_id < module_manager.configurable_children(parent_module).size(); ++child_id) { ModuleId child_module = module_manager.configurable_children(parent_module)[child_id]; size_t child_instance = module_manager.configurable_child_instances(parent_module)[child_id]; /* Get the instance name and ensure it is not empty */ std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance); /* Find the child block that matches the instance name! */ ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name); /* We must have one valid block id! */ if (true != bitstream_manager.valid_block_id(child_block)) VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block)); /* Go recursively */ rec_build_module_fabric_dependent_chain_bitstream(bitstream_manager, child_block, module_manager, child_module, fabric_bitstream); } /* Ensure that there should be no configuration bits in the parent block */ VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size()); } /* Note that, reach here, it means that this is a leaf node. * We add the configuration bits to the fabric_bitstream, * And then, we can return */ for (const ConfigBitId& config_bit : bitstream_manager.block_bits(parent_block)) { fabric_bitstream.add_bit(config_bit); } } /******************************************************************** * This function aims to build a bitstream for memory-bank protocol * It will walk through all the configurable children under a module * in a recursive way, following a Depth-First Search (DFS) strategy * For each configuration child, we use its instance name as a key to spot the * configuration bits in bitstream manager. * Note that it is guarentee that the instance name in module manager is * consistent with the block names in bitstream manager * We use this link to reorganize the bitstream in the sequence of memories as we stored * in the configurable_children() and configurable_child_instances() of each module of module manager * * In such configuration organization, each memory cell has an unique index. * Using this index, we can infer the address codes for both BL and WL decoders. * Note that, we must get the number of BLs and WLs before using this function! *******************************************************************/ static void rec_build_module_fabric_dependent_memory_bank_bitstream(const BitstreamManager& bitstream_manager, const ConfigBlockId& parent_block, const ModuleManager& module_manager, const ModuleId& top_module, const ModuleId& parent_module, const size_t& bl_addr_size, const size_t& wl_addr_size, const size_t& num_bls, const size_t& num_wls, size_t& cur_mem_index, FabricBitstream& fabric_bitstream) { /* Depth-first search: if we have any children in the parent_block, * we dive to the next level first! */ if (0 < bitstream_manager.block_children(parent_block).size()) { /* For top module, we will skip the two decoders at the end of the configurable children list */ std::vector configurable_children = module_manager.configurable_children(parent_module); size_t num_configurable_children = configurable_children.size(); if (parent_module == top_module) { VTR_ASSERT(2 <= configurable_children.size()); num_configurable_children -= 2; } /* Early exit if there is no configurable children */ if (0 == num_configurable_children) { /* Ensure that there should be no configuration bits in the parent block */ VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size()); return; } for (size_t child_id = 0; child_id < num_configurable_children; ++child_id) { ModuleId child_module = configurable_children[child_id]; size_t child_instance = module_manager.configurable_child_instances(parent_module)[child_id]; /* Get the instance name and ensure it is not empty */ std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance); /* Find the child block that matches the instance name! */ ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name); /* We must have one valid block id! */ if (true != bitstream_manager.valid_block_id(child_block)) VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block)); /* Go recursively */ rec_build_module_fabric_dependent_memory_bank_bitstream(bitstream_manager, child_block, module_manager, top_module, child_module, bl_addr_size, wl_addr_size, num_bls, num_wls, cur_mem_index, fabric_bitstream); } /* Ensure that there should be no configuration bits in the parent block */ VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size()); return; } /* Note that, reach here, it means that this is a leaf node. * We add the configuration bits to the fabric_bitstream, * And then, we can return */ for (const ConfigBitId& config_bit : bitstream_manager.block_bits(parent_block)) { FabricBitId fabric_bit = fabric_bitstream.add_bit(config_bit); /* Find BL address */ size_t cur_bl_index = std::floor(cur_mem_index / num_bls); std::vector bl_addr_bits_vec = itobin_vec(cur_bl_index, bl_addr_size); /* Find WL address */ size_t cur_wl_index = cur_mem_index % num_wls; std::vector wl_addr_bits_vec = itobin_vec(cur_wl_index, wl_addr_size); /* Set BL address */ fabric_bitstream.set_bit_bl_address(fabric_bit, bl_addr_bits_vec); /* Set WL address */ fabric_bitstream.set_bit_wl_address(fabric_bit, wl_addr_bits_vec); /* Set data input */ fabric_bitstream.set_bit_din(fabric_bit, bitstream_manager.bit_value(config_bit)); /* Increase the memory index */ cur_mem_index++; } } /******************************************************************** * This function aims to build a bitstream for frame-based configuration protocol * It will walk through all the configurable children under a module * in a recursive way, following a Depth-First Search (DFS) strategy * For each configuration child, we use its instance name as a key to spot the * configuration bits in bitstream manager. * Note that it is guarenteed that the instance name in module manager is * consistent with the block names in bitstream manager * We use this link to reorganize the bitstream in the sequence of memories as we stored * in the configurable_children() and configurable_child_instances() of each module of module manager * * For each configuration bits, we will infer its address based on * - the child index in the configurable children list of current module * - the child index of all the parent modules in their configurable children list * until the top in the hierarchy * * The address will be organized as follows: * ... * The address will be decoded to a binary format * * For each configuration bit, the data_in for the frame-based decoders will be * the same as the configuration bit in bitstream manager. *******************************************************************/ static void rec_build_module_fabric_dependent_frame_bitstream(const BitstreamManager& bitstream_manager, const std::vector& parent_blocks, const ModuleManager& module_manager, const std::vector& parent_modules, const std::vector& addr_code, FabricBitstream& fabric_bitstream) { /* Depth-first search: if we have any children in the parent_block, * we dive to the next level first! */ if (0 < bitstream_manager.block_children(parent_blocks.back()).size()) { const ConfigBlockId& parent_block = parent_blocks.back(); const ModuleId& parent_module = parent_modules.back(); size_t num_configurable_children = module_manager.configurable_children(parent_modules.back()).size(); size_t max_child_addr_code_size = 0; bool add_addr_code = true; ModuleId decoder_module = ModuleId::INVALID(); /* Early exit if there is no configurable children */ if (0 == num_configurable_children) { /* Ensure that there should be no configuration bits in the parent block */ VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size()); return; } /* For only 1 configurable child, * there is no frame decoder here, we can pass on addr code directly */ if (1 == num_configurable_children) { add_addr_code = false; } else { /* For more than 2 children, there is a decoder in the tail of the list * We will not decode that, but will access the address size from that module * So, we reduce the number of children by 1 */ VTR_ASSERT(2 < num_configurable_children); num_configurable_children--; decoder_module = module_manager.configurable_children(parent_module).back(); /* The address code size is the max. of address port of all the configurable children */ for (size_t child_id = 0; child_id < num_configurable_children; ++child_id) { ModuleId child_module = module_manager.configurable_children(parent_module)[child_id]; const ModulePortId& child_addr_port_id = module_manager.find_module_port(child_module, std::string(DECODER_ADDRESS_PORT_NAME)); const BasicPort& child_addr_port = module_manager.module_port(child_module, child_addr_port_id); max_child_addr_code_size = std::max((int)child_addr_port.get_width(), (int)max_child_addr_code_size); } } for (size_t child_id = 0; child_id < num_configurable_children; ++child_id) { ModuleId child_module = module_manager.configurable_children(parent_module)[child_id]; size_t child_instance = module_manager.configurable_child_instances(parent_module)[child_id]; /* Get the instance name and ensure it is not empty */ std::string instance_name = module_manager.instance_name(parent_module, child_module, child_instance); /* Find the child block that matches the instance name! */ ConfigBlockId child_block = bitstream_manager.find_child_block(parent_block, instance_name); /* We must have one valid block id! */ if (true != bitstream_manager.valid_block_id(child_block)) VTR_ASSERT(true == bitstream_manager.valid_block_id(child_block)); /* Pass on the list of blocks, modules and address lists */ std::vector child_blocks = parent_blocks; child_blocks.push_back(child_block); std::vector child_modules = parent_modules; child_modules.push_back(child_module); /* Set address, apply binary conversion from the first to the last element in the address list */ std::vector child_addr_code = addr_code; if (true == add_addr_code) { /* Find the address port from the decoder module */ const ModulePortId& decoder_addr_port_id = module_manager.find_module_port(decoder_module, std::string(DECODER_ADDRESS_PORT_NAME)); const BasicPort& decoder_addr_port = module_manager.module_port(decoder_module, decoder_addr_port_id); std::vector addr_bits_vec = itobin_vec(child_id, decoder_addr_port.get_width()); child_addr_code.insert(child_addr_code.begin(), addr_bits_vec.begin(), addr_bits_vec.end()); /* Note that the address port size of the child module may be smaller than the maximum * of other child modules at this level. * We will add dummy '0's to the head of addr_bit_vec. * * For example: * Decoder is the decoder to access all the child modules * whose address is decoded by the addr_bits_vec * The child modules may use part of the address lines, * we should add dummy '0' to fill the gap * * Addr_code for child[0]: '000' + addr_bits_vec * Addr_code for child[1]: '0' + addr_bits_vec * Addr_code for child[2]: addr_bits_vec * * Addr[6:8] * | * v * +-------------------------------------------+ * | Decoder Module | * +-------------------------------------------+ * * Addr[0:2] Addr[0:4] Addr[0:5] * | | | * v v v * +-----------+ +-------------+ +------------+ * | Child[0] | | Child[1] | | Child[2] | * +-----------+ +-------------+ +------------+ * * Child[2] has the maximum address lines among the children * */ const ModulePortId& child_addr_port_id = module_manager.find_module_port(child_module, std::string(DECODER_ADDRESS_PORT_NAME)); const BasicPort& child_addr_port = module_manager.module_port(child_module, child_addr_port_id); if (0 < max_child_addr_code_size - child_addr_port.get_width()) { std::vector dummy_codes(max_child_addr_code_size - child_addr_port.get_width(), 0); child_addr_code.insert(child_addr_code.begin(), dummy_codes.begin(), dummy_codes.end()); } } /* Go recursively */ rec_build_module_fabric_dependent_frame_bitstream(bitstream_manager, child_blocks, module_manager, child_modules, child_addr_code, fabric_bitstream); } /* Ensure that there should be no configuration bits in the parent block */ VTR_ASSERT(0 == bitstream_manager.block_bits(parent_block).size()); return; } /* Note that, reach here, it means that this is a leaf node. * A leaf node (a memory module) always has a decoder inside * which is the last of configurable children. * We will find the address bit and add it to addr_code * Then we can add the configuration bits to the fabric_bitstream. */ if (!(1 < module_manager.configurable_children(parent_modules.back()).size())) VTR_ASSERT(1 < module_manager.configurable_children(parent_modules.back()).size()); ModuleId decoder_module = module_manager.configurable_children(parent_modules.back()).back(); /* Find the address port from the decoder module */ const ModulePortId& decoder_addr_port_id = module_manager.find_module_port(decoder_module, std::string(DECODER_ADDRESS_PORT_NAME)); const BasicPort& decoder_addr_port = module_manager.module_port(decoder_module, decoder_addr_port_id); for (size_t ibit = 0; ibit < bitstream_manager.block_bits(parent_blocks.back()).size(); ++ibit) { ConfigBitId config_bit = bitstream_manager.block_bits(parent_blocks.back())[ibit]; std::vector addr_bits_vec = itobin_vec(ibit, decoder_addr_port.get_width()); std::vector child_addr_code = addr_code; child_addr_code.insert(child_addr_code.begin(), addr_bits_vec.begin(), addr_bits_vec.end()); const FabricBitId& fabric_bit = fabric_bitstream.add_bit(config_bit); /* Set address */ fabric_bitstream.set_bit_address(fabric_bit, child_addr_code); /* Set data input */ fabric_bitstream.set_bit_din(fabric_bit, bitstream_manager.bit_value(config_bit)); } } /******************************************************************** * Main function to build a fabric-dependent bitstream * by considering the configuration protocol types *******************************************************************/ static void build_module_fabric_dependent_bitstream(const ConfigProtocol& config_protocol, const BitstreamManager& bitstream_manager, const ConfigBlockId& top_block, const ModuleManager& module_manager, const ModuleId& top_module, FabricBitstream& fabric_bitstream) { switch (config_protocol.type()) { case CONFIG_MEM_STANDALONE: { rec_build_module_fabric_dependent_chain_bitstream(bitstream_manager, top_block, module_manager, top_module, fabric_bitstream); break; } case CONFIG_MEM_SCAN_CHAIN: { rec_build_module_fabric_dependent_chain_bitstream(bitstream_manager, top_block, module_manager, top_module, fabric_bitstream); fabric_bitstream.reverse(); break; } case CONFIG_MEM_MEMORY_BANK: { size_t cur_mem_index = 0; /* Find BL address port size */ ModulePortId bl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_BL_ADDRESS_PORT_NAME)); BasicPort bl_addr_port_info = module_manager.module_port(top_module, bl_addr_port); /* Find WL address port size */ ModulePortId wl_addr_port = module_manager.find_module_port(top_module, std::string(DECODER_WL_ADDRESS_PORT_NAME)); BasicPort wl_addr_port_info = module_manager.module_port(top_module, wl_addr_port); /* Find BL and WL decoders which are the last two configurable children*/ std::vector configurable_children = module_manager.configurable_children(top_module); VTR_ASSERT(2 <= configurable_children.size()); ModuleId bl_decoder_module = configurable_children[configurable_children.size() - 2]; VTR_ASSERT(0 == module_manager.configurable_child_instances(top_module)[configurable_children.size() - 2]); ModuleId wl_decoder_module = configurable_children[configurable_children.size() - 1]; VTR_ASSERT(0 == module_manager.configurable_child_instances(top_module)[configurable_children.size() - 1]); ModulePortId bl_port = module_manager.find_module_port(bl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME)); BasicPort bl_port_info = module_manager.module_port(bl_decoder_module, bl_port); ModulePortId wl_port = module_manager.find_module_port(wl_decoder_module, std::string(DECODER_DATA_OUT_PORT_NAME)); BasicPort wl_port_info = module_manager.module_port(wl_decoder_module, wl_port); rec_build_module_fabric_dependent_memory_bank_bitstream(bitstream_manager, top_block, module_manager, top_module, top_module, bl_addr_port_info.get_width(), wl_addr_port_info.get_width(), bl_port_info.get_width(), wl_port_info.get_width(), cur_mem_index, fabric_bitstream); break; } case CONFIG_MEM_FRAME_BASED: { rec_build_module_fabric_dependent_frame_bitstream(bitstream_manager, std::vector(1, top_block), module_manager, std::vector(1, top_module), std::vector(), fabric_bitstream); break; } default: VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid SRAM organization.\n"); exit(1); } /* Time-consuming sanity check: Uncomment these codes only for debugging!!! * Check which configuration bits are not touched */ /* for (const ConfigBitId& config_bit : bitstream_manager.bits()) { std::vector::iterator it = std::find(fabric_bitstream.begin(), fabric_bitstream.end(), config_bit); if (it == fabric_bitstream.end()) { std::vector block_hierarchy = find_bitstream_manager_block_hierarchy(bitstream_manager, bitstream_manager.bit_parent_block(config_bit)); std::string block_hierarchy_name; for (const ConfigBlockId& temp_block : block_hierarchy) { block_hierarchy_name += std::string("/") + bitstream_manager.block_name(temp_block); } vpr_printf(TIO_MESSAGE_INFO, "bit (parent_block = %s) is not touched!\n", block_hierarchy_name.c_str()); } } */ /* Ensure our fabric bitstream is in the same size as device bistream */ VTR_ASSERT(bitstream_manager.bits().size() == fabric_bitstream.bits().size()); } /******************************************************************** * A top-level function re-organizes the bitstream for a specific * FPGA fabric, where configuration bits are organized in the sequence * that can be directly loaded to the FPGA configuration protocol. * Support: * 1. Configuration chain * 2. Memory decoders * This function does NOT modify the bitstream database * Instead, it builds a vector of ids for configuration bits in bitstream manager * * This function can be called ONLY after the function build_device_bitstream() * Note that this function does NOT decode bitstreams from circuit implementation * It was done in the function build_device_bitstream() *******************************************************************/ FabricBitstream build_fabric_dependent_bitstream(const BitstreamManager& bitstream_manager, const ModuleManager& module_manager, const ConfigProtocol& config_protocol, const bool& verbose) { FabricBitstream fabric_bitstream; vtr::ScopedStartFinishTimer timer("\nBuild fabric dependent bitstream\n"); /* Get the top module name in module manager, which is our starting point */ std::string top_module_name = generate_fpga_top_module_name(); ModuleId top_module = module_manager.find_module(top_module_name); VTR_ASSERT(true == module_manager.valid_module_id(top_module)); /* Find the top block in bitstream manager, which has not parents */ std::vector top_block = find_bitstream_manager_top_blocks(bitstream_manager); /* Make sure we have only 1 top block and its name matches the top module */ VTR_ASSERT(1 == top_block.size()); VTR_ASSERT(0 == top_module_name.compare(bitstream_manager.block_name(top_block[0]))); build_module_fabric_dependent_bitstream(config_protocol, bitstream_manager, top_block[0], module_manager, top_module, fabric_bitstream); VTR_LOGV(verbose, "Built %lu configuration bits for fabric\n", fabric_bitstream.bits().size()); return fabric_bitstream; } } /* end namespace openfpga */