/******************************************************************** * This file includes functions to compress the hierachy of routing architecture *******************************************************************/ /* Headers from vtrutil library */ #include "vtr_time.h" #include "vtr_log.h" /* Headers from openfpgashell library */ #include "command_exit_codes.h" /* Headers from fabrickey library */ #include "read_xml_fabric_key.h" #include "device_rr_gsb.h" #include "device_rr_gsb_utils.h" #include "build_device_module.h" #include "fabric_hierarchy_writer.h" #include "fabric_key_writer.h" #include "build_fabric_io_location_map.h" #include "build_fabric_global_port_info.h" #include "openfpga_build_fabric.h" /* Include global variables of VPR */ #include "globals.h" /* begin namespace openfpga */ namespace openfpga { /******************************************************************** * Identify the unique GSBs from the Device RR GSB arrays * This function should only be called after the GSB builder is done *******************************************************************/ static void compress_routing_hierarchy(OpenfpgaContext& openfpga_ctx, const bool& verbose_output) { vtr::ScopedStartFinishTimer timer("Identify unique General Switch Blocks (GSBs)"); /* Build unique module lists */ openfpga_ctx.mutable_device_rr_gsb().build_unique_module(g_vpr_ctx.device().rr_graph); /* Report the stats */ VTR_LOGV(verbose_output, "Detected %lu unique X-direction connection blocks from a total of %d (compression rate=%.2f%)\n", openfpga_ctx.device_rr_gsb().get_num_cb_unique_module(CHANX), find_device_rr_gsb_num_cb_modules(openfpga_ctx.device_rr_gsb(), CHANX), 100. * ((float)find_device_rr_gsb_num_cb_modules(openfpga_ctx.device_rr_gsb(), CHANX) / (float)openfpga_ctx.device_rr_gsb().get_num_cb_unique_module(CHANX) - 1.)); VTR_LOGV(verbose_output, "Detected %lu unique Y-direction connection blocks from a total of %d (compression rate=%.2f%)\n", openfpga_ctx.device_rr_gsb().get_num_cb_unique_module(CHANY), find_device_rr_gsb_num_cb_modules(openfpga_ctx.device_rr_gsb(), CHANY), 100. * ((float)find_device_rr_gsb_num_cb_modules(openfpga_ctx.device_rr_gsb(), CHANY) / (float)openfpga_ctx.device_rr_gsb().get_num_cb_unique_module(CHANY) - 1.)); VTR_LOGV(verbose_output, "Detected %lu unique switch blocks from a total of %d (compression rate=%.2f%)\n", openfpga_ctx.device_rr_gsb().get_num_sb_unique_module(), find_device_rr_gsb_num_sb_modules(openfpga_ctx.device_rr_gsb()), 100. * ((float)find_device_rr_gsb_num_sb_modules(openfpga_ctx.device_rr_gsb()) / (float)openfpga_ctx.device_rr_gsb().get_num_sb_unique_module() - 1.)); VTR_LOG("Detected %lu unique general switch blocks from a total of %d (compression rate=%.2f%)\n", openfpga_ctx.device_rr_gsb().get_num_gsb_unique_module(), find_device_rr_gsb_num_gsb_modules(openfpga_ctx.device_rr_gsb()), 100. * ((float)find_device_rr_gsb_num_gsb_modules(openfpga_ctx.device_rr_gsb()) / (float)openfpga_ctx.device_rr_gsb().get_num_gsb_unique_module() - 1.)); } /******************************************************************** * Build the module graph for FPGA device *******************************************************************/ int build_fabric(OpenfpgaContext& openfpga_ctx, const Command& cmd, const CommandContext& cmd_context) { CommandOptionId opt_frame_view = cmd.option("frame_view"); CommandOptionId opt_compress_routing = cmd.option("compress_routing"); CommandOptionId opt_duplicate_grid_pin = cmd.option("duplicate_grid_pin"); CommandOptionId opt_gen_random_fabric_key = cmd.option("generate_random_fabric_key"); CommandOptionId opt_write_fabric_key = cmd.option("write_fabric_key"); CommandOptionId opt_load_fabric_key = cmd.option("load_fabric_key"); CommandOptionId opt_verbose = cmd.option("verbose"); if (true == cmd_context.option_enable(cmd, opt_compress_routing)) { compress_routing_hierarchy(openfpga_ctx, cmd_context.option_enable(cmd, opt_verbose)); /* Update flow manager to enable compress routing */ openfpga_ctx.mutable_flow_manager().set_compress_routing(true); } VTR_LOG("\n"); /* Record the execution status in curr_status for each command * and summarize them in the final status */ int curr_status = CMD_EXEC_SUCCESS; int final_status = CMD_EXEC_SUCCESS; /* Load fabric key from file */ FabricKey predefined_fabric_key; if (true == cmd_context.option_enable(cmd, opt_load_fabric_key)) { std::string fkey_fname = cmd_context.option_value(cmd, opt_load_fabric_key); VTR_ASSERT(false == fkey_fname.empty()); predefined_fabric_key = read_xml_fabric_key(fkey_fname.c_str()); } VTR_LOG("\n"); curr_status = build_device_module_graph(openfpga_ctx.mutable_module_graph(), openfpga_ctx.mutable_decoder_lib(), openfpga_ctx.mutable_blwl_shift_register_banks(), const_cast(openfpga_ctx), g_vpr_ctx.device(), cmd_context.option_enable(cmd, opt_frame_view), cmd_context.option_enable(cmd, opt_compress_routing), cmd_context.option_enable(cmd, opt_duplicate_grid_pin), predefined_fabric_key, cmd_context.option_enable(cmd, opt_gen_random_fabric_key), cmd_context.option_enable(cmd, opt_verbose)); /* If there is any error, final status cannot be overwritten by a success flag */ if (CMD_EXEC_SUCCESS != curr_status) { final_status = curr_status; } /* Build I/O location map */ openfpga_ctx.mutable_io_location_map() = build_fabric_io_location_map(openfpga_ctx.module_graph(), g_vpr_ctx.device().grid); /* Build fabric global port information */ openfpga_ctx.mutable_fabric_global_port_info() = build_fabric_global_port_info(openfpga_ctx.module_graph(), openfpga_ctx.arch().config_protocol, openfpga_ctx.arch().tile_annotations, openfpga_ctx.arch().circuit_lib); /* Output fabric key if user requested */ if (true == cmd_context.option_enable(cmd, opt_write_fabric_key)) { std::string fkey_fname = cmd_context.option_value(cmd, opt_write_fabric_key); VTR_ASSERT(false == fkey_fname.empty()); curr_status = write_fabric_key_to_xml_file(openfpga_ctx.module_graph(), fkey_fname, openfpga_ctx.arch().config_protocol, openfpga_ctx.mutable_blwl_shift_register_banks(), cmd_context.option_enable(cmd, opt_verbose)); /* If there is any error, final status cannot be overwritten by a success flag */ if (CMD_EXEC_SUCCESS != curr_status) { final_status = curr_status; } } return final_status; } /******************************************************************** * Build the module graph for FPGA device *******************************************************************/ int write_fabric_hierarchy(const OpenfpgaContext& openfpga_ctx, const Command& cmd, const CommandContext& cmd_context) { CommandOptionId opt_verbose = cmd.option("verbose"); /* Check the option '--file' is enabled or not * Actually, it must be enabled as the shell interface will check * before reaching this fuction */ CommandOptionId opt_file = cmd.option("file"); VTR_ASSERT(true == cmd_context.option_enable(cmd, opt_file)); VTR_ASSERT(false == cmd_context.option_value(cmd, opt_file).empty()); /* Default depth requirement, will not stop until the leaf */ int depth = -1; CommandOptionId opt_depth = cmd.option("depth"); if (true == cmd_context.option_enable(cmd, opt_depth)) { depth = std::atoi(cmd_context.option_value(cmd, opt_depth).c_str()); /* Error out if we have negative depth */ if (0 > depth) { VTR_LOG_ERROR("Invalid depth '%d' which should be 0 or a positive number!\n", depth); return CMD_EXEC_FATAL_ERROR; } } std::string hie_file_name = cmd_context.option_value(cmd, opt_file); /* Write hierarchy to a file */ return write_fabric_hierarchy_to_text_file(openfpga_ctx.module_graph(), hie_file_name, size_t(depth), cmd_context.option_enable(cmd, opt_verbose)); } } /* end namespace openfpga */