/************************************************************************ * Function to perform fundamental operation for the physical pb using * data structures ***********************************************************************/ /* Headers from vtrutil library */ #include "vtr_assert.h" #include "vtr_log.h" #include "openfpga_naming.h" #include "pb_type_utils.h" #include "physical_pb_utils.h" /* begin namespace openfpga */ namespace openfpga { /************************************************************************ * Allocate an empty physical pb graph based on pb_graph * This function should start with an empty physical pb object!!! * Suggest to check this before executing this function * VTR_ASSERT(true == phy_pb.empty()); ***********************************************************************/ static void rec_alloc_physical_pb_from_pb_graph(PhysicalPb& phy_pb, const t_pb_graph_node* pb_graph_node, const VprDeviceAnnotation& device_annotation) { t_pb_type* pb_type = pb_graph_node->pb_type; t_mode* physical_mode = device_annotation.physical_mode(pb_type); PhysicalPbId cur_phy_pb_id = phy_pb.create_pb(pb_graph_node); VTR_ASSERT(true == phy_pb.valid_pb_id(cur_phy_pb_id)); /* Finish for primitive node */ if (true == is_primitive_pb_type(pb_type)) { return; } /* Find the physical mode */ VTR_ASSERT(nullptr != physical_mode); /* Go to the leaf nodes first. This aims to build all the primitive nodes first * and then we build the parents and create links */ for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) { for (int jpb = 0; jpb < physical_mode->pb_type_children[ipb].num_pb; ++jpb) { rec_alloc_physical_pb_from_pb_graph(phy_pb, &(pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][jpb]), device_annotation); } } } /************************************************************************ * Build all the relationships between parent and children * inside a physical pb graph * This function must be executed after rec_alloc_physical_pb_from_pb_graph()!!! ***********************************************************************/ static void rec_build_physical_pb_children_from_pb_graph(PhysicalPb& phy_pb, const t_pb_graph_node* pb_graph_node, const VprDeviceAnnotation& device_annotation) { t_pb_type* pb_type = pb_graph_node->pb_type; /* Finish for primitive node */ if (true == is_primitive_pb_type(pb_type)) { return; } t_mode* physical_mode = device_annotation.physical_mode(pb_type); VTR_ASSERT(nullptr != physical_mode); /* Please use the openfpga naming function so that you can build the link to module manager */ PhysicalPbId parent_pb_id = phy_pb.find_pb(pb_graph_node); VTR_ASSERT(true == phy_pb.valid_pb_id(parent_pb_id)); /* Add all the children */ for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) { for (int jpb = 0; jpb < physical_mode->pb_type_children[ipb].num_pb; ++jpb) { PhysicalPbId child_pb_id = phy_pb.find_pb(&(pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][jpb])); VTR_ASSERT(true == phy_pb.valid_pb_id(child_pb_id)); phy_pb.add_child(parent_pb_id, child_pb_id, &(physical_mode->pb_type_children[ipb])); } } /* Go to the leaf nodes first. This aims to build all the primitive nodes first * and then we build the parents and create links */ for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) { for (int jpb = 0; jpb < physical_mode->pb_type_children[ipb].num_pb; ++jpb) { rec_build_physical_pb_children_from_pb_graph(phy_pb, &(pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][jpb]), device_annotation); } } } /************************************************************************ * Allocate an empty physical pb graph based on pb_graph * This function should start with an empty physical pb object!!! * Suggest to check this before executing this function * VTR_ASSERT(true == phy_pb.empty()); ***********************************************************************/ void alloc_physical_pb_from_pb_graph(PhysicalPb& phy_pb, const t_pb_graph_node* pb_graph_head, const VprDeviceAnnotation& device_annotation) { VTR_ASSERT(true == phy_pb.empty()); rec_alloc_physical_pb_from_pb_graph(phy_pb, pb_graph_head, device_annotation); rec_build_physical_pb_children_from_pb_graph(phy_pb, pb_graph_head, device_annotation); } /************************************************************************ * Update a mapping net from a pin of an operating primitive pb to a * physical pb data base ***********************************************************************/ static void update_primitive_physical_pb_pin_atom_net(PhysicalPb& phy_pb, const PhysicalPbId& primitive_pb, const t_pb_graph_pin* pb_graph_pin, const t_pb_routes& pb_route, const VprDeviceAnnotation& device_annotation) { int node_index = pb_graph_pin->pin_count_in_cluster; if (pb_route.count(node_index)) { /* The pin is mapped to a net, find the original pin in the atom netlist */ AtomNetId atom_net = pb_route[node_index].atom_net_id; VTR_ASSERT(atom_net); /* Find the physical pb_graph_pin */ t_pb_graph_pin* physical_pb_graph_pin = device_annotation.physical_pb_graph_pin((t_pb_graph_pin*)pb_graph_pin); VTR_ASSERT(nullptr != physical_pb_graph_pin); /* Check if the pin has been mapped to a net. * If yes, the atom net must be the same */ if (AtomNetId::INVALID() == phy_pb.pb_graph_pin_atom_net(primitive_pb, physical_pb_graph_pin)) { phy_pb.set_pb_graph_pin_atom_net(primitive_pb, physical_pb_graph_pin, atom_net); } else { VTR_ASSERT(atom_net == phy_pb.pb_graph_pin_atom_net(primitive_pb, physical_pb_graph_pin)); } } } /************************************************************************ * Synchronize mapping nets from an operating primitive pb to a physical pb ***********************************************************************/ static void synchronize_primitive_physical_pb_atom_nets(PhysicalPb& phy_pb, const PhysicalPbId& primitive_pb, const t_pb_graph_node* pb_graph_node, const t_pb_routes& pb_route, const AtomContext& atom_ctx, const AtomBlockId& atom_blk, const VprDeviceAnnotation& device_annotation) { /* Iterate over all the ports: input, output and clock */ for (int iport = 0; iport < pb_graph_node->num_input_ports; ++iport) { for (int ipin = 0; ipin < pb_graph_node->num_input_pins[iport]; ++ipin) { /* Port exists (some LUTs may have no input and hence no port in the atom netlist) */ t_model_ports* model_port = pb_graph_node->input_pins[iport][ipin].port->model_port; if (nullptr == model_port) { continue; } AtomPortId atom_port = atom_ctx.nlist.find_atom_port(atom_blk, model_port); if (!atom_port) { continue; } /* Find the atom nets mapped to the pin * Note that some inputs may not be used, we set them to be open by default */ update_primitive_physical_pb_pin_atom_net(phy_pb, primitive_pb, &(pb_graph_node->input_pins[iport][ipin]), pb_route, device_annotation); } } for (int iport = 0; iport < pb_graph_node->num_output_ports; ++iport) { for (int ipin = 0; ipin < pb_graph_node->num_output_pins[iport]; ++ipin) { /* Port exists (some LUTs may have no input and hence no port in the atom netlist) */ t_model_ports* model_port = pb_graph_node->output_pins[iport][ipin].port->model_port; if (nullptr == model_port) { continue; } AtomPortId atom_port = atom_ctx.nlist.find_atom_port(atom_blk, model_port); if (!atom_port) { continue; } /* Find the atom nets mapped to the pin * Note that some inputs may not be used, we set them to be open by default */ update_primitive_physical_pb_pin_atom_net(phy_pb, primitive_pb, &(pb_graph_node->output_pins[iport][ipin]), pb_route, device_annotation); } } for (int iport = 0; iport < pb_graph_node->num_clock_ports; ++iport) { for (int ipin = 0; ipin < pb_graph_node->num_clock_pins[iport]; ++ipin) { /* Port exists (some LUTs may have no input and hence no port in the atom netlist) */ t_model_ports* model_port = pb_graph_node->clock_pins[iport][ipin].port->model_port; if (nullptr == model_port) { continue; } AtomPortId atom_port = atom_ctx.nlist.find_atom_port(atom_blk, model_port); if (!atom_port) { continue; } /* Find the atom nets mapped to the pin * Note that some inputs may not be used, we set them to be open by default */ update_primitive_physical_pb_pin_atom_net(phy_pb, primitive_pb, &(pb_graph_node->clock_pins[iport][ipin]), pb_route, device_annotation); } } } /************************************************************************ * Synchronize mapping results from an operating pb to a physical pb ***********************************************************************/ void rec_update_physical_pb_from_operating_pb(PhysicalPb& phy_pb, const t_pb* op_pb, const t_pb_routes& pb_route, const AtomContext& atom_ctx, const VprDeviceAnnotation& device_annotation) { t_pb_graph_node* pb_graph_node = op_pb->pb_graph_node; t_pb_type* pb_type = pb_graph_node->pb_type; if (true == is_primitive_pb_type(pb_type)) { t_pb_graph_node* physical_pb_graph_node = device_annotation.physical_pb_graph_node(pb_graph_node); VTR_ASSERT(nullptr != physical_pb_graph_node); /* Find the physical pb */ const PhysicalPbId& physical_pb = phy_pb.find_pb(physical_pb_graph_node); VTR_ASSERT(true == phy_pb.valid_pb_id(physical_pb)); /* Set the mode bits */ phy_pb.set_mode_bits(physical_pb, device_annotation.pb_type_mode_bits(physical_pb_graph_node->pb_type)); /* Find mapped atom block and add to this physical pb */ AtomBlockId atom_blk = atom_ctx.nlist.find_block(op_pb->name); VTR_ASSERT(atom_blk); phy_pb.add_atom_block(physical_pb, atom_blk); /* TODO: Iterate over ports and annotate the atom pins */ synchronize_primitive_physical_pb_atom_nets(phy_pb, physical_pb, pb_graph_node, pb_route, atom_ctx, atom_blk, device_annotation); return; } /* Walk through the pb recursively but only visit the mapped modes and child pbs */ t_mode* mapped_mode = &(pb_graph_node->pb_type->modes[op_pb->mode]); for (int ipb = 0; ipb < mapped_mode->num_pb_type_children; ++ipb) { /* Each child may exist multiple times in the hierarchy*/ for (int jpb = 0; jpb < mapped_mode->pb_type_children[ipb].num_pb; ++jpb) { if ((nullptr != op_pb->child_pbs[ipb]) && (nullptr != op_pb->child_pbs[ipb][jpb].name)) { rec_update_physical_pb_from_operating_pb(phy_pb, &(op_pb->child_pbs[ipb][jpb]), pb_route, atom_ctx, device_annotation); } } } } } /* end namespace openfpga */