/******************************************************************** * This file includes functions to print Verilog modules for a Grid * (CLBs, I/Os, heterogeneous blocks etc.) *******************************************************************/ #include #include /* Headers from vtrutil library */ #include "vtr_geometry.h" #include "vtr_log.h" #include "vtr_assert.h" #include "vtr_time.h" /* Headers from vpr library */ #include "vpr_utils.h" #include "circuit_library_utils.h" #include "openfpga_reserved_words.h" #include "openfpga_naming.h" #include "openfpga_interconnect_types.h" #include "openfpga_physical_tile_utils.h" #include "pb_type_utils.h" #include "pb_graph_utils.h" #include "module_manager_utils.h" #include "build_grid_module_utils.h" #include "build_grid_module_duplicated_pins.h" #include "build_grid_modules.h" /* begin namespace openfpga */ namespace openfpga { /******************************************************************** * Add ports/pins to a grid module * This function will iterate over all the pins that are defined * in type_descripter and give a name by its height, side and index * * In particular, for I/O grid, only part of the ports on required * on a specific side. *******************************************************************/ static void add_grid_module_pb_type_ports(ModuleManager& module_manager, const ModuleId& grid_module, const VprDeviceAnnotation& vpr_device_annotation, t_physical_tile_type_ptr grid_type_descriptor, const e_side& border_side) { /* Ensure that we have a valid grid_type_descriptor */ VTR_ASSERT(nullptr != grid_type_descriptor); /* Find the pin side for I/O grids*/ std::vector grid_pin_sides; /* For I/O grids, we care only one side * Otherwise, we will iterate all the 4 sides */ if (true == is_io_type(grid_type_descriptor)) { grid_pin_sides = find_grid_module_pin_sides(grid_type_descriptor, border_side); } else { grid_pin_sides = {TOP, RIGHT, BOTTOM, LEFT}; } /* Create a map between pin class type and grid pin direction */ std::map pin_type2type_map; pin_type2type_map[RECEIVER] = ModuleManager::MODULE_INPUT_PORT; pin_type2type_map[DRIVER] = ModuleManager::MODULE_OUTPUT_PORT; /* Iterate over sides, height and pins */ for (const e_side& side : grid_pin_sides) { for (int iwidth = 0; iwidth < grid_type_descriptor->width; ++iwidth) { for (int iheight = 0; iheight < grid_type_descriptor->height; ++iheight) { for (int ipin = 0; ipin < grid_type_descriptor->num_pins; ++ipin) { if (true != grid_type_descriptor->pinloc[iwidth][iheight][side][ipin]) { continue; } /* Reach here, it means this pin is on this side */ int class_id = grid_type_descriptor->pin_class[ipin]; e_pin_type pin_class_type = grid_type_descriptor->class_inf[class_id].type; /* Generate the pin name, * we give a empty coordinate but it will not be used (see details in the function */ BasicPort pin_info = vpr_device_annotation.physical_tile_pin_port_info(grid_type_descriptor, ipin); VTR_ASSERT(true == pin_info.is_valid()); int subtile_index = vpr_device_annotation.physical_tile_pin_subtile_index(grid_type_descriptor, ipin); VTR_ASSERT(OPEN != subtile_index && subtile_index < grid_type_descriptor->capacity); std::string port_name = generate_grid_port_name(iwidth, iheight, subtile_index, side, pin_info); BasicPort grid_port(port_name, 0, 0); /* Add the port to the module */ module_manager.add_port(grid_module, grid_port, pin_type2type_map[pin_class_type]); } } } } } /******************************************************************** * Add module nets to connect ports/pins of a grid module * to its child modules * This function will iterate over all the pins that are defined * in type_descripter and find the corresponding pin in the top * pb_graph_node of the grid *******************************************************************/ static void add_grid_module_nets_connect_pb_type_ports(ModuleManager& module_manager, const ModuleId& grid_module, const ModuleId& child_module, const size_t& child_instance, const VprDeviceAnnotation& vpr_device_annotation, t_physical_tile_type_ptr grid_type_descriptor, const e_side& border_side) { /* Ensure that we have a valid grid_type_descriptor */ VTR_ASSERT(nullptr != grid_type_descriptor); for (t_logical_block_type_ptr lb_type : grid_type_descriptor->equivalent_sites) { t_pb_graph_node* top_pb_graph_node = lb_type->pb_graph_head; VTR_ASSERT(nullptr != top_pb_graph_node); for (int iport = 0; iport < top_pb_graph_node->num_input_ports; ++iport) { for (int ipin = 0; ipin < top_pb_graph_node->num_input_pins[iport]; ++ipin) { add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module, child_module, child_instance, vpr_device_annotation, grid_type_descriptor, &(top_pb_graph_node->input_pins[iport][ipin]), border_side, INPUT2INPUT_INTERC); } } for (int iport = 0; iport < top_pb_graph_node->num_output_ports; ++iport) { for (int ipin = 0; ipin < top_pb_graph_node->num_output_pins[iport]; ++ipin) { add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module, child_module, child_instance, vpr_device_annotation, grid_type_descriptor, &(top_pb_graph_node->output_pins[iport][ipin]), border_side, OUTPUT2OUTPUT_INTERC); } } for (int iport = 0; iport < top_pb_graph_node->num_clock_ports; ++iport) { for (int ipin = 0; ipin < top_pb_graph_node->num_clock_pins[iport]; ++ipin) { add_grid_module_net_connect_pb_graph_pin(module_manager, grid_module, child_module, child_instance, vpr_device_annotation, grid_type_descriptor, &(top_pb_graph_node->clock_pins[iport][ipin]), border_side, INPUT2INPUT_INTERC); } } } } /******************************************************************** * Add module nets between primitive module and its internal circuit module * This is only applicable to the primitive module of a grid *******************************************************************/ static void add_primitive_module_fpga_global_io_port(ModuleManager& module_manager, const ModuleId& primitive_module, const ModuleId& logic_module, const size_t& logic_instance_id, const ModuleManager::e_module_port_type& module_io_port_type, const CircuitLibrary& circuit_lib, const CircuitModelId& primitive_model, const CircuitPortId& circuit_port) { BasicPort module_port(generate_fpga_global_io_port_name(std::string(GIO_INOUT_PREFIX), circuit_lib, primitive_model, circuit_port), circuit_lib.port_size(circuit_port)); ModulePortId primitive_io_port_id = module_manager.add_port(primitive_module, module_port, module_io_port_type); /* Set if the port is mappable or not */ if (true == circuit_lib.port_is_data_io(circuit_port)) { module_manager.set_port_is_mappable_io(primitive_module, primitive_io_port_id, true); } ModulePortId logic_io_port_id = module_manager.find_module_port(logic_module, circuit_lib.port_prefix(circuit_port)); BasicPort logic_io_port = module_manager.module_port(logic_module, logic_io_port_id); VTR_ASSERT(logic_io_port.get_width() == module_port.get_width()); /* Wire the GPIO port from primitive_module to the logic module!*/ for (size_t pin_id = 0; pin_id < module_port.pins().size(); ++pin_id) { if ( (ModuleManager::MODULE_GPIO_PORT == module_io_port_type) || (ModuleManager::MODULE_GPIN_PORT == module_io_port_type) ) { bool net_exist = true; /* If the source port has already a net to drive, we just update the net sinks */ ModuleNetId net = module_manager.module_instance_port_net(primitive_module, primitive_module, 0, primitive_io_port_id, module_port.pins()[pin_id]); if (net == ModuleNetId::INVALID()) { net_exist = false; net = module_manager.create_module_net(primitive_module); } if (false == net_exist) { module_manager.add_module_net_source(primitive_module, net, primitive_module, 0, primitive_io_port_id, module_port.pins()[pin_id]); } module_manager.add_module_net_sink(primitive_module, net, logic_module, logic_instance_id, logic_io_port_id, logic_io_port.pins()[pin_id]); } else { bool net_exist = true; /* If the source port has already a net to drive, we just update the net sinks */ ModuleNetId net = module_manager.module_instance_port_net(primitive_module, logic_module, logic_instance_id, logic_io_port_id, logic_io_port.pins()[pin_id]); if (net == ModuleNetId::INVALID()) { net_exist = false; net = module_manager.create_module_net(primitive_module); } VTR_ASSERT(ModuleManager::MODULE_GPOUT_PORT == module_io_port_type); if (false == net_exist) { module_manager.add_module_net_source(primitive_module, net, logic_module, logic_instance_id, logic_io_port_id, logic_io_port.pins()[pin_id]); } module_manager.add_module_net_sink(primitive_module, net, primitive_module, 0, primitive_io_port_id, module_port.pins()[pin_id]); } } } /******************************************************************** * Print Verilog modules of a primitive node in the pb_graph_node graph * This generic function can support all the different types of primitive nodes * i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders. * * The Verilog module will consist of two parts: * 1. Logic module of the primitive node * This module performs the logic function of the block * 2. Memory module of the primitive node * This module stores the configuration bits for the logic module * if the logic module is a programmable resource, such as LUT * * Verilog module structure: * * Primitive block * +---------------------------------------+ * | | * | +---------+ +---------+ | * in |----->| |--->| |<------|configuration lines * | | Logic |... | Memory | | * out|<-----| |--->| | | * | +---------+ +---------+ | * | | * +---------------------------------------+ * *******************************************************************/ static void build_primitive_block_module(ModuleManager& module_manager, DecoderLibrary& decoder_lib, const VprDeviceAnnotation& device_annotation, const CircuitLibrary& circuit_lib, const e_config_protocol_type& sram_orgz_type, const CircuitModelId& sram_model, t_pb_graph_node* primitive_pb_graph_node, const bool& verbose) { /* Ensure a valid pb_graph_node */ VTR_ASSERT(nullptr != primitive_pb_graph_node); /* Find the circuit model id linked to the pb_graph_node */ const CircuitModelId& primitive_model = device_annotation.pb_type_circuit_model(primitive_pb_graph_node->pb_type); /* Generate the module name for this primitive pb_graph_node*/ std::string primitive_module_name = generate_physical_block_module_name(primitive_pb_graph_node->pb_type); VTR_LOGV(verbose, "Building module '%s'...", primitive_module_name.c_str()); /* Create a module of the primitive LUT and register it to module manager */ ModuleId primitive_module = module_manager.add_module(primitive_module_name); /* Ensure that the module has been created and thus unique! */ VTR_ASSERT(ModuleId::INVALID() != primitive_module); /* Label module usage */ module_manager.set_module_usage(primitive_module, ModuleManager::MODULE_GRID); /* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here. * Since we have linked pb_type ports to circuit models when setting up FPGA-X2P, * no ports of the circuit model will be missing here */ add_primitive_pb_type_ports_to_module_manager(module_manager, primitive_module, primitive_pb_graph_node->pb_type, device_annotation); /* Add configuration ports */ /* Shared SRAM ports*/ size_t num_shared_config_bits = find_circuit_num_shared_config_bits(circuit_lib, primitive_model, sram_orgz_type); if (0 < num_shared_config_bits) { /* Check: this SRAM organization type must be memory-bank ! */ VTR_ASSERT( CONFIG_MEM_MEMORY_BANK == sram_orgz_type ); /* Generate a list of ports */ add_reserved_sram_ports_to_module_manager(module_manager, primitive_module, num_shared_config_bits); } /* Regular (independent) SRAM ports */ size_t num_config_bits = find_circuit_num_config_bits(sram_orgz_type, circuit_lib, primitive_model); if (0 < num_config_bits) { add_sram_ports_to_module_manager(module_manager, primitive_module, circuit_lib, sram_model, sram_orgz_type, num_config_bits); } /* Find the module id in the module manager */ ModuleId logic_module = module_manager.find_module(circuit_lib.model_name(primitive_model)); VTR_ASSERT(ModuleId::INVALID() != logic_module); size_t logic_instance_id = module_manager.num_instance(primitive_module, logic_module); /* Add the logic module as a child of primitive module */ module_manager.add_child_module(primitive_module, logic_module); /* Add nets to connect the logic model ports to pb_type ports */ add_primitive_pb_type_module_nets(module_manager, primitive_module, logic_module, logic_instance_id, circuit_lib, primitive_pb_graph_node->pb_type, device_annotation); /* Add the associated memory module as a child of primitive module */ std::string memory_module_name = generate_memory_module_name(circuit_lib, primitive_model, sram_model, std::string(MEMORY_MODULE_POSTFIX)); ModuleId memory_module = module_manager.find_module(memory_module_name); /* If there is no memory module required, we can skip the assocated net addition */ if (ModuleId::INVALID() != memory_module) { size_t memory_instance_id = module_manager.num_instance(primitive_module, memory_module); /* Add the memory module as a child of primitive module */ module_manager.add_child_module(primitive_module, memory_module); /* Set an instance name to bind to a block in bitstream generation */ module_manager.set_child_instance_name(primitive_module, memory_module, memory_instance_id, memory_module_name); /* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */ add_module_nets_between_logic_and_memory_sram_bus(module_manager, primitive_module, logic_module, logic_instance_id, memory_module, memory_instance_id, circuit_lib, primitive_model); /* Record memory-related information */ module_manager.add_configurable_child(primitive_module, memory_module, memory_instance_id); } /* Add all the nets to connect configuration ports from memory module to primitive modules * This is a one-shot addition that covers all the memory modules in this primitive module! */ if (0 < module_manager.configurable_children(primitive_module).size()) { add_module_nets_memory_config_bus(module_manager, decoder_lib, primitive_module, sram_orgz_type, circuit_lib.design_tech_type(sram_model)); } /* Add global ports to the pb_module: * This is a much easier job after adding sub modules (instances), * we just need to find all the global ports from the child modules and build a list of it */ add_module_global_ports_from_child_modules(module_manager, primitive_module); /* Find the inout ports required by the primitive node, and add them to the module * This is mainly due to the I/O blocks, which have inout ports for the top-level fabric */ for (const auto& port : circuit_lib.model_global_ports(primitive_model, false)) { if ( (CIRCUIT_MODEL_PORT_INOUT == circuit_lib.port_type(port)) && (true == circuit_lib.port_is_io(port)) ) { add_primitive_module_fpga_global_io_port(module_manager, primitive_module, logic_module, logic_instance_id, ModuleManager::MODULE_GPIO_PORT, circuit_lib, primitive_model, port); } else if ( (CIRCUIT_MODEL_PORT_INPUT == circuit_lib.port_type(port)) && (true == circuit_lib.port_is_io(port)) ) { add_primitive_module_fpga_global_io_port(module_manager, primitive_module, logic_module, logic_instance_id, ModuleManager::MODULE_GPIN_PORT, circuit_lib, primitive_model, port); } else if (CIRCUIT_MODEL_PORT_OUTPUT == circuit_lib.port_type(port)) { add_primitive_module_fpga_global_io_port(module_manager, primitive_module, logic_module, logic_instance_id, ModuleManager::MODULE_GPOUT_PORT, circuit_lib, primitive_model, port); } } VTR_LOGV(verbose, "Done\n"); } /******************************************************************** * This function add a net for a pin-to-pin connection defined in pb_graph * It supports two cases for the pin-to-pin connection * 1. The net source is a pb_graph_pin while the net sink is a pin of an interconnection * 2. The net source is a pin of an interconnection while the net sink a pb_graph_pin * The type is enabled by an argument pin2pin_interc_type *******************************************************************/ static void add_module_pb_graph_pin2pin_net(ModuleManager& module_manager, const ModuleId& pb_module, const ModuleId& interc_module, const size_t& interc_instance, const std::string& interc_port_name, const size_t& interc_pin_id, t_pb_graph_pin* pb_graph_pin, const enum e_pin2pin_interc_type& pin2pin_interc_type) { ModuleNetId pin2pin_net = module_manager.create_module_net(pb_module); /* Find port and pin ids for the module, which is the parent of pb_graph_pin */ t_pb_type* pin_pb_type = pb_graph_pin->parent_node->pb_type; /* Find the module contains the source pin */ ModuleId pin_pb_type_module = module_manager.find_module(generate_physical_block_module_name(pin_pb_type)); VTR_ASSERT(true == module_manager.valid_module_id(pin_pb_type_module)); size_t pin_pb_type_instance = 0; /* Deposite the instance with a zero, which is the default value is the source module is actually pb_module itself */ if (pin_pb_type_module != pb_module) { pin_pb_type_instance = pb_graph_pin->parent_node->placement_index; /* Ensure this is an valid instance */ VTR_ASSERT(pin_pb_type_instance < module_manager.num_instance(pb_module, pin_pb_type_module)); } ModulePortId pin_module_port_id = module_manager.find_module_port(pin_pb_type_module, generate_pb_type_port_name(pb_graph_pin->port)); VTR_ASSERT(true == module_manager.valid_module_port_id(pin_pb_type_module, pin_module_port_id)); size_t pin_module_pin_id = pb_graph_pin->pin_number; /* Ensure this is an valid pin index */ VTR_ASSERT(pin_module_pin_id < module_manager.module_port(pin_pb_type_module, pin_module_port_id).get_width()); /* Find port and pin ids for the interconnection module */ ModulePortId interc_port_id = module_manager.find_module_port(interc_module, interc_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(interc_module, interc_port_id)); /* Ensure this is an valid pin index */ VTR_ASSERT(interc_pin_id < module_manager.module_port(interc_module, interc_port_id).get_width()); /* Add net sources and sinks: * For input-to-input connection, net_source is pin_graph_pin, while net_sink is interc pin * For output-to-output connection, net_source is interc pin, while net_sink is pin_graph pin */ switch (pin2pin_interc_type) { case INPUT2INPUT_INTERC: module_manager.add_module_net_source(pb_module, pin2pin_net, pin_pb_type_module, pin_pb_type_instance, pin_module_port_id, pin_module_pin_id); module_manager.add_module_net_sink(pb_module, pin2pin_net, interc_module, interc_instance, interc_port_id, interc_pin_id); break; case OUTPUT2OUTPUT_INTERC: module_manager.add_module_net_source(pb_module, pin2pin_net, interc_module, interc_instance, interc_port_id, interc_pin_id); module_manager.add_module_net_sink(pb_module, pin2pin_net, pin_pb_type_module, pin_pb_type_instance, pin_module_port_id, pin_module_pin_id); break; default: VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid pin-to-pin interconnection type!\n"); exit(1); } } /******************************************************************** * We check output_pins of cur_pb_graph_node and its the input_edges * Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node * src_pb_graph_node.[in|out]_pins -----------------> des_pb_graph_node.[in|out]pins * /|\ * | * input_pins, edges, output_pins * * This function does the following task: * 1. identify pin interconnection type, * 2. Identify the number of fan-in (Consider interconnection edges of only selected mode) * 3. Add mux/direct connection as a child module to pb_module * 4. Add nets related to the mux/direction *******************************************************************/ static void add_module_pb_graph_pin_interc(ModuleManager& module_manager, const ModuleId& pb_module, std::vector& memory_modules, std::vector& memory_instances, const VprDeviceAnnotation& device_annotation, const CircuitLibrary& circuit_lib, t_pb_graph_pin* des_pb_graph_pin, t_mode* physical_mode) { /* Find the number of fan-in and detailed interconnection information * related to the destination pb_graph_pin */ t_interconnect* cur_interc = pb_graph_pin_interc(des_pb_graph_pin, physical_mode); size_t fan_in = pb_graph_pin_inputs(des_pb_graph_pin, cur_interc).size(); /* If no interconnection is needed, we can return early */ if ((nullptr == cur_interc) || (0 == fan_in)) { return; } /* Initialize the interconnection type that will be physically implemented in module */ enum e_interconnect interc_type = device_annotation.interconnect_physical_type(cur_interc); const CircuitModelId& interc_circuit_model = device_annotation.interconnect_circuit_model(cur_interc); /* Find input ports of the wire module */ std::vector interc_model_inputs = circuit_lib.model_ports_by_type(interc_circuit_model, CIRCUIT_MODEL_PORT_INPUT, true); /* the last argument to guarantee that we ignore any global inputs */ /* Find output ports of the wire module */ std::vector interc_model_outputs = circuit_lib.model_ports_by_type(interc_circuit_model, CIRCUIT_MODEL_PORT_OUTPUT, true); /* the last argument to guarantee that we ignore any global ports */ /* Ensure that we have only 1 input port and 1 output port, this is valid for both wire and MUX */ VTR_ASSERT(1 == interc_model_inputs.size()); VTR_ASSERT(1 == interc_model_outputs.size()); /* Branch on the type of physical implementation, * We add instances of programmable interconnection */ switch (interc_type) { case DIRECT_INTERC: { /* Ensure direct interc has only one fan-in */ VTR_ASSERT(1 == fan_in); /* For more than one mode defined, the direct interc has more than one input_edge , * We need to find which edge is connected the pin we want */ t_pb_graph_pin* src_pb_graph_pin = pb_graph_pin_inputs(des_pb_graph_pin, cur_interc)[0]; /* Ensure that circuit model is a wire */ VTR_ASSERT(CIRCUIT_MODEL_WIRE == circuit_lib.model_type(interc_circuit_model)); /* Find the wire module in the module manager */ ModuleId wire_module = module_manager.find_module(circuit_lib.model_name(interc_circuit_model)); VTR_ASSERT(true == module_manager.valid_module_id(wire_module)); /* Get the instance id and add an instance of wire */ size_t wire_instance = module_manager.num_instance(pb_module, wire_module); module_manager.add_child_module(pb_module, wire_module); /* Give an instance name: this name should be consistent with the block name given in SDC generator, * If you want to bind the SDC generation to modules */ std::string wire_instance_name = generate_instance_name(module_manager.module_name(wire_module), wire_instance); module_manager.set_child_instance_name(pb_module, wire_module, wire_instance, wire_instance_name); /* Ensure input and output ports of the wire model has only 1 pin respectively */ VTR_ASSERT(1 == circuit_lib.port_size(interc_model_inputs[0])); VTR_ASSERT(1 == circuit_lib.port_size(interc_model_outputs[0])); /* Add nets to connect the wires to ports of pb_module */ /* First net is to connect input of src_pb_graph_node to input of the wire module */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, wire_module, wire_instance, circuit_lib.port_prefix(interc_model_inputs[0]), 0, /* wire input port has only 1 pin */ src_pb_graph_pin, INPUT2INPUT_INTERC); /* Second net is to connect output of the wire module to output of des_pb_graph_pin */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, wire_module, wire_instance, circuit_lib.port_prefix(interc_model_outputs[0]), 0, /* wire output port has only 1 pin */ des_pb_graph_pin, OUTPUT2OUTPUT_INTERC); break; } case COMPLETE_INTERC: case MUX_INTERC: { /* Check: MUX should have at least 2 fan_in */ VTR_ASSERT((2 == fan_in)||(2 < fan_in)); /* Ensure that circuit model is a MUX */ VTR_ASSERT(CIRCUIT_MODEL_MUX == circuit_lib.model_type(interc_circuit_model)); /* Find the wire module in the module manager */ ModuleId mux_module = module_manager.find_module(generate_mux_subckt_name(circuit_lib, interc_circuit_model, fan_in, std::string())); VTR_ASSERT(true == module_manager.valid_module_id(mux_module)); /* Instanciate the MUX */ size_t mux_instance = module_manager.num_instance(pb_module, mux_module); module_manager.add_child_module(pb_module, mux_module); /* Give an instance name: this name should be consistent with the block name given in SDC generator, * If you want to bind the SDC generation to modules */ std::string mux_instance_name = generate_pb_mux_instance_name(GRID_MUX_INSTANCE_PREFIX, des_pb_graph_pin, std::string("")); module_manager.set_child_instance_name(pb_module, mux_module, mux_instance, mux_instance_name); /* Instanciate a memory module for the MUX */ std::string mux_mem_module_name = generate_mux_subckt_name(circuit_lib, interc_circuit_model, fan_in, std::string(MEMORY_MODULE_POSTFIX)); ModuleId mux_mem_module = module_manager.find_module(mux_mem_module_name); VTR_ASSERT(true == module_manager.valid_module_id(mux_mem_module)); size_t mux_mem_instance = module_manager.num_instance(pb_module, mux_mem_module); module_manager.add_child_module(pb_module, mux_mem_module); /* Give an instance name: this name should be consistent with the block name given in bitstream manager, * If you want to bind the bitstream generation to modules */ std::string mux_mem_instance_name = generate_pb_memory_instance_name(GRID_MEM_INSTANCE_PREFIX, des_pb_graph_pin, std::string("")); module_manager.set_child_instance_name(pb_module, mux_mem_module, mux_mem_instance, mux_mem_instance_name); /* Add this MUX as a configurable child to the pb_module */ module_manager.add_configurable_child(pb_module, mux_mem_module, mux_mem_instance); /* Add nets to connect SRAM ports of the MUX to the SRAM port of memory module */ add_module_nets_between_logic_and_memory_sram_bus(module_manager, pb_module, mux_module, mux_instance, mux_mem_module, mux_mem_instance, circuit_lib, interc_circuit_model); /* Update memory modules and memory instance list */ memory_modules.push_back(mux_mem_module); memory_instances.push_back(mux_mem_instance); /* Ensure output port of the MUX model has only 1 pin, * while the input port size is dependent on the architecture conext, * no constaints on the circuit model definition */ VTR_ASSERT(1 == circuit_lib.port_size(interc_model_outputs[0])); /* Create nets to wire between the MUX and PB module */ /* Add a net to wire the inputs of the multiplexer to its source pb_graph_pin inside pb_module * Here is a tricky part. * Not every input edges from the destination pb_graph_pin is used in the physical_model of pb_type * So, we will skip these input edges when building nets */ size_t mux_input_pin_id = 0; for (t_pb_graph_pin* src_pb_graph_pin : pb_graph_pin_inputs(des_pb_graph_pin, cur_interc)) { /* Add a net, set its source and sink */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, mux_module, mux_instance, circuit_lib.port_prefix(interc_model_inputs[0]), mux_input_pin_id, src_pb_graph_pin, INPUT2INPUT_INTERC); mux_input_pin_id++; } /* Ensure all the fan_in has been covered */ VTR_ASSERT(mux_input_pin_id == fan_in); /* Add a net to wire the output of the multiplexer to des_pb_graph_pin */ add_module_pb_graph_pin2pin_net(module_manager, pb_module, mux_module, mux_instance, circuit_lib.port_prefix(interc_model_outputs[0]), 0, /* MUX should have only 1 pin in its output port */ des_pb_graph_pin, OUTPUT2OUTPUT_INTERC); break; } default: VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid interconnection type for %s [at Architecture XML LINE%d]!\n", cur_interc->name, cur_interc->line_num); exit(1); } } /******************************************************************** * Add modules and nets for programmable/non-programmable interconnections * which end to a port of pb_module * This function will add the following elements to a module * 1. Instances of direct connections * 2. Instances of programmable routing multiplexers * 3. nets to connect direct connections/multiplexer * * +-----------------------------------------+ * | * | +--------------+ +------------+ * |--->| |--->| | * |... | Multiplexers |... | | * |--->| |--->| | * | +--------------+ | des_pb_ | * | | graph_node | * | +--------------+ | | * |--->| |--->| | * | ...| Direct |... | | * |--->| Connections |--->| | * | +--------------+ +------------+ * | * +----------------------------------------+ * * Note: this function should be run after ALL the child pb_modules * have been added to the pb_module and ALL the ports defined * in pb_type have been added to the pb_module!!! * ********************************************************************/ static void add_module_pb_graph_port_interc(ModuleManager& module_manager, const ModuleId& pb_module, std::vector& memory_modules, std::vector& memory_instances, const VprDeviceAnnotation& device_annotation, const CircuitLibrary& circuit_lib, t_pb_graph_node* des_pb_graph_node, const e_circuit_pb_port_type& pb_port_type, t_mode* physical_mode) { switch (pb_port_type) { case CIRCUIT_PB_PORT_INPUT: { for (int iport = 0; iport < des_pb_graph_node->num_input_ports; ++iport) { for (int ipin = 0; ipin < des_pb_graph_node->num_input_pins[iport]; ++ipin) { /* Get the selected edge of current pin*/ add_module_pb_graph_pin_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, &(des_pb_graph_node->input_pins[iport][ipin]), physical_mode); } } break; } case CIRCUIT_PB_PORT_OUTPUT: { for (int iport = 0; iport < des_pb_graph_node->num_output_ports; ++iport) { for (int ipin = 0; ipin < des_pb_graph_node->num_output_pins[iport]; ++ipin) { add_module_pb_graph_pin_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, &(des_pb_graph_node->output_pins[iport][ipin]), physical_mode); } } break; } case CIRCUIT_PB_PORT_CLOCK: { for (int iport = 0; iport < des_pb_graph_node->num_clock_ports; ++iport) { for (int ipin = 0; ipin < des_pb_graph_node->num_clock_pins[iport]; ++ipin) { add_module_pb_graph_pin_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, &(des_pb_graph_node->clock_pins[iport][ipin]), physical_mode); } } break; } default: VTR_LOGF_ERROR(__FILE__, __LINE__, "Invalid pb port type!\n"); exit(1); } } /******************************************************************** * TODO: * Add modules and nets for programmable/non-programmable interconnections * inside a module of pb_type * This function will add the following elements to a module * 1. Instances of direct connections * 2. Instances of programmable routing multiplexers * 3. nets to connect direct connections/multiplexer * * Pb_module * +--------------------------------------------------------------+ * | | * | +--------------+ +------------+ +--------------+ | * |--->| |--->| |--->| |--->| * |... | Multiplexers |... | |... | Multiplexers |... | * |--->| |--->| |--->| |--->| * | +--------------+ | Child | +--------------+ | * | | Pb_modules | | * | +--------------+ | | +--------------+ | * |--->| |--->| |--->| |--->| * | ...| Direct |... | |... | Direct |... | * |--->| Connections |--->| |--->| Connections |--->| * | +--------------+ +------------+ +--------------+ | * | | * +--------------------------------------------------------------+ * * Note: this function should be run after ALL the child pb_modules * have been added to the pb_module and ALL the ports defined * in pb_type have been added to the pb_module!!! * ********************************************************************/ static void add_module_pb_graph_interc(ModuleManager& module_manager, const ModuleId& pb_module, std::vector& memory_modules, std::vector& memory_instances, const VprDeviceAnnotation& device_annotation, const CircuitLibrary& circuit_lib, t_pb_graph_node* physical_pb_graph_node, const int& physical_mode_index) { /* Check cur_pb_graph_node*/ VTR_ASSERT(nullptr != physical_pb_graph_node); /* Assign physical mode */ t_mode* physical_mode = &(physical_pb_graph_node->pb_type->modes[physical_mode_index]); /* We check output_pins of cur_pb_graph_node and its the input_edges * Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node * child_pb_graph_node.output_pins -----------------> cur_pb_graph_node.outpins * /|\ * | * input_pins, edges, output_pins */ add_module_pb_graph_port_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, physical_pb_graph_node, CIRCUIT_PB_PORT_OUTPUT, physical_mode); /* We check input_pins of child_pb_graph_node and its the input_edges * Built the interconnections between inputs of cur_pb_graph_node and inputs of child_pb_graph_node * cur_pb_graph_node.input_pins -----------------> child_pb_graph_node.input_pins * /|\ * | * input_pins, edges, output_pins */ for (int child = 0; child < physical_pb_graph_node->pb_type->modes[physical_mode_index].num_pb_type_children; ++child) { for (int inst = 0; inst < physical_pb_graph_node->pb_type->modes[physical_mode_index].pb_type_children[child].num_pb; ++inst) { t_pb_graph_node* child_pb_graph_node = &(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][child][inst]); /* For each child_pb_graph_node input pins*/ add_module_pb_graph_port_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, child_pb_graph_node, CIRCUIT_PB_PORT_INPUT, physical_mode); /* For each child_pb_graph_node clock pins*/ add_module_pb_graph_port_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, child_pb_graph_node, CIRCUIT_PB_PORT_CLOCK, physical_mode); } } } /******************************************************************** * Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.) * This function will traverse the graph of complex logic block (t_pb_graph_node) * in a recursive way, using a Depth First Search (DFS) algorithm. * As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph * will be printed out first, while the top-level will be printed out in the last * * Note: this function will print a unique Verilog module for each type of * t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly * hierarchical Verilog organization as well as simplify the Verilog file sizes. * * Note: DFS is the right way. Do NOT use BFS. * DFS can guarantee that all the sub-modules can be registered properly * to its parent in module manager *******************************************************************/ static void rec_build_logical_tile_modules(ModuleManager& module_manager, DecoderLibrary& decoder_lib, const VprDeviceAnnotation& device_annotation, const CircuitLibrary& circuit_lib, const MuxLibrary& mux_lib, const e_config_protocol_type& sram_orgz_type, const CircuitModelId& sram_model, t_pb_graph_node* physical_pb_graph_node, const bool& verbose) { /* Check cur_pb_graph_node*/ VTR_ASSERT(nullptr != physical_pb_graph_node); /* Get the pb_type definition related to the node */ t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type; /* Find the mode that physical implementation of a pb_type */ t_mode* physical_mode = device_annotation.physical_mode(physical_pb_type); /* For non-leaf node in the pb_type graph: * Recursively Depth-First Generate all the child pb_type at the level */ if (false == is_primitive_pb_type(physical_pb_type)) { for (int ipb = 0; ipb < physical_mode->num_pb_type_children; ++ipb) { /* Go recursive to visit the children */ rec_build_logical_tile_modules(module_manager, decoder_lib, device_annotation, circuit_lib, mux_lib, sram_orgz_type, sram_model, &(physical_pb_graph_node->child_pb_graph_nodes[physical_mode->index][ipb][0]), verbose); } } /* For leaf node, a primitive Verilog module will be generated */ if (true == is_primitive_pb_type(physical_pb_type)) { build_primitive_block_module(module_manager, decoder_lib, device_annotation, circuit_lib, sram_orgz_type, sram_model, physical_pb_graph_node, verbose); /* Finish for primitive node, return */ return; } /* Generate the name of the Verilog module for this pb_type */ std::string pb_module_name = generate_physical_block_module_name(physical_pb_type); VTR_LOGV(verbose, "Building module '%s'...", pb_module_name.c_str()); /* Register the Verilog module in module manager */ ModuleId pb_module = module_manager.add_module(pb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(pb_module)); /* Label module usage */ module_manager.set_module_usage(pb_module, ModuleManager::MODULE_GRID); /* Add ports to the Verilog module */ add_pb_type_ports_to_module_manager(module_manager, pb_module, physical_pb_type); /* Vectors to record all the memory modules have been added * They are used to add module nets of configuration bus */ std::vector memory_modules; std::vector memory_instances; /* Add all the child Verilog modules as instances */ for (int ichild = 0; ichild < physical_mode->num_pb_type_children; ++ichild) { /* Get the name and module id for this child pb_type */ std::string child_pb_module_name = generate_physical_block_module_name(&(physical_mode->pb_type_children[ichild])); ModuleId child_pb_module = module_manager.find_module(child_pb_module_name); /* We must have one valid id! */ VTR_ASSERT(true == module_manager.valid_module_id(child_pb_module)); /* Each child may exist multiple times in the hierarchy*/ for (int inst = 0; inst < physical_mode->pb_type_children[ichild].num_pb; ++inst) { size_t child_instance_id = module_manager.num_instance(pb_module, child_pb_module); /* Ensure the instance of this child module is the same as placement index, * This check is necessary because placement_index is used to identify instance id for children * when adding local interconnection for this pb_type */ VTR_ASSERT(child_instance_id == (size_t)physical_pb_graph_node->child_pb_graph_nodes[physical_mode->index][ichild][inst].placement_index); /* Add the memory module as a child of primitive module */ module_manager.add_child_module(pb_module, child_pb_module); /* Set an instance name to bind to a block in bitstream generation and SDC generation! */ std::string child_pb_instance_name = generate_physical_block_instance_name(&(physical_pb_type->modes[physical_mode->index].pb_type_children[ichild]), inst); module_manager.set_child_instance_name(pb_module, child_pb_module, child_instance_id, child_pb_instance_name); /* Identify if this sub module includes configuration bits, * we will update the memory module and instance list */ if (0 < find_module_num_config_bits(module_manager, child_pb_module, circuit_lib, sram_model, sram_orgz_type)) { module_manager.add_configurable_child(pb_module, child_pb_module, child_instance_id); } } } /* Add modules and nets for programmable/non-programmable interconnections * inside the Verilog module */ add_module_pb_graph_interc(module_manager, pb_module, memory_modules, memory_instances, device_annotation, circuit_lib, physical_pb_graph_node, physical_mode->index); /* Add global ports to the pb_module: * This is a much easier job after adding sub modules (instances), * we just need to find all the global ports from the child modules and build a list of it */ add_module_global_ports_from_child_modules(module_manager, pb_module); /* Count GPIO ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ add_module_gpio_ports_from_child_modules(module_manager, pb_module); /* Count shared SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules(module_manager, pb_module); if (0 < module_num_shared_config_bits) { add_reserved_sram_ports_to_module_manager(module_manager, pb_module, module_num_shared_config_bits); } /* Count SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, pb_module, circuit_lib, sram_model, sram_orgz_type); if (0 < module_num_config_bits) { add_sram_ports_to_module_manager(module_manager, pb_module, circuit_lib, sram_model, sram_orgz_type, module_num_config_bits); } /* Add module nets to connect memory cells inside * This is a one-shot addition that covers all the memory modules in this pb module! */ if (0 < module_manager.configurable_children(pb_module).size()) { add_module_nets_memory_config_bus(module_manager, decoder_lib, pb_module, sram_orgz_type, circuit_lib.design_tech_type(sram_model)); } VTR_LOGV(verbose, "Done\n"); } /***************************************************************************** * This function will create a Verilog file and print out a Verilog netlist * for a type of physical block * * For IO blocks: * The param 'border_side' is required, which is specify which side of fabric * the I/O block locates at. *****************************************************************************/ static void build_physical_tile_module(ModuleManager& module_manager, DecoderLibrary& decoder_lib, const VprDeviceAnnotation& vpr_device_annotation, const CircuitLibrary& circuit_lib, const e_config_protocol_type& sram_orgz_type, const CircuitModelId& sram_model, t_physical_tile_type_ptr phy_block_type, const e_side& border_side, const bool& duplicate_grid_pin, const bool& verbose) { /* Create a Module for the top-level physical block, and add to module manager */ std::string grid_module_name = generate_grid_block_module_name(std::string(GRID_MODULE_NAME_PREFIX), std::string(phy_block_type->name), is_io_type(phy_block_type), border_side); VTR_LOGV(verbose, "Building physical tile '%s'...", grid_module_name.c_str()); ModuleId grid_module = module_manager.add_module(grid_module_name); VTR_ASSERT(true == module_manager.valid_module_id(grid_module)); /* Now each physical tile may have a number of logical blocks * OpenFPGA only considers the physical implementation of the tiles. * So, we do not allow multiple equivalent sites to be defined * under a physical tile type. * If you need different equivalent sites, you can always define * it as a mode under a */ for (int iz = 0; iz < phy_block_type->capacity; ++iz) { VTR_ASSERT(1 == phy_block_type->equivalent_sites.size()); for (t_logical_block_type_ptr lb_type : phy_block_type->equivalent_sites) { /* Bypass empty pb_graph */ if (nullptr == lb_type->pb_graph_head) { continue; } std::string pb_module_name = generate_physical_block_module_name(lb_type->pb_graph_head->pb_type); ModuleId pb_module = module_manager.find_module(pb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(pb_module)); /* Add all the sub modules */ size_t pb_instance_id = module_manager.num_instance(grid_module, pb_module); module_manager.add_child_module(grid_module, pb_module); /* Give the child module with a unique instance name */ std::string instance_name = generate_physical_block_instance_name(lb_type->pb_graph_head->pb_type, iz); /* Set an instance name to bind to a block in bitstream generation */ module_manager.set_child_instance_name(grid_module, pb_module, pb_instance_id, instance_name); /* Identify if this sub module includes configuration bits, * we will update the memory module and instance list */ if (0 < find_module_num_config_bits(module_manager, pb_module, circuit_lib, sram_model, sram_orgz_type)) { module_manager.add_configurable_child(grid_module, pb_module, pb_instance_id); } } } /* Add grid ports(pins) to the module */ if (false == duplicate_grid_pin) { /* Default way to add these ports by following the definition in pb_types */ add_grid_module_pb_type_ports(module_manager, grid_module, vpr_device_annotation, phy_block_type, border_side); /* Add module nets to connect the pb_type ports to sub modules */ for (t_logical_block_type_ptr lb_type : phy_block_type->equivalent_sites) { /* Bypass empty pb_graph */ if (nullptr == lb_type->pb_graph_head) { continue; } std::string pb_module_name = generate_physical_block_module_name(lb_type->pb_graph_head->pb_type); ModuleId pb_module = module_manager.find_module(pb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(pb_module)); for (const size_t& child_instance : module_manager.child_module_instances(grid_module, pb_module)) { add_grid_module_nets_connect_pb_type_ports(module_manager, grid_module, pb_module, child_instance, vpr_device_annotation, phy_block_type, border_side); } } } else { VTR_ASSERT_SAFE(true == duplicate_grid_pin); /* Add these ports with duplication */ add_grid_module_duplicated_pb_type_ports(module_manager, grid_module, vpr_device_annotation, phy_block_type, border_side); /* Add module nets to connect the duplicated pb_type ports to sub modules */ for (t_logical_block_type_ptr lb_type : phy_block_type->equivalent_sites) { /* Bypass empty pb_graph */ if (nullptr == lb_type->pb_graph_head) { continue; } std::string pb_module_name = generate_physical_block_module_name(lb_type->pb_graph_head->pb_type); ModuleId pb_module = module_manager.find_module(pb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(pb_module)); for (const size_t& child_instance : module_manager.child_module_instances(grid_module, pb_module)) { add_grid_module_nets_connect_duplicated_pb_type_ports(module_manager, grid_module, pb_module, child_instance, vpr_device_annotation, phy_block_type, border_side); } } } /* Add global ports to the pb_module: * This is a much easier job after adding sub modules (instances), * we just need to find all the global ports from the child modules and build a list of it */ add_module_global_ports_from_child_modules(module_manager, grid_module); /* Count GPIO ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ add_module_gpio_ports_from_child_modules(module_manager, grid_module); /* Count shared SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules(module_manager, grid_module); if (0 < module_num_shared_config_bits) { add_reserved_sram_ports_to_module_manager(module_manager, grid_module, module_num_shared_config_bits); } /* Count SRAM ports from the sub-modules under this Verilog module * This is a much easier job after adding sub modules (instances), * we just need to find all the I/O ports from the child modules and build a list of it */ size_t module_num_config_bits = find_module_num_config_bits_from_child_modules(module_manager, grid_module, circuit_lib, sram_model, sram_orgz_type); if (0 < module_num_config_bits) { add_sram_ports_to_module_manager(module_manager, grid_module, circuit_lib, sram_model, sram_orgz_type, module_num_config_bits); } /* Add module nets to connect memory cells inside * This is a one-shot addition that covers all the memory modules in this pb module! */ if (0 < module_manager.configurable_children(grid_module).size()) { add_module_nets_memory_config_bus(module_manager, decoder_lib, grid_module, sram_orgz_type, circuit_lib.design_tech_type(sram_model)); } VTR_LOGV(verbose, "Done\n"); } /***************************************************************************** * Create logic block modules in a compact way * This function will achieve this goal in two step: * - Build the modules for each logical tile which is based on pb_graph * Note that there the pin/port does not carry any fixed physical location * - Build the modules for each physical tile which is based on physical_tile_type_ptr * Here, multiple logical tiles can be considered and each port/pin has a fixed * physical location. This is where the feature of duplicate_pin_pin will be applied * - Only one module for each I/O on each border side (IO_TYPE) * - Only one module for each CLB (FILL_TYPE) * - Only one module for each heterogeneous block ****************************************************************************/ void build_grid_modules(ModuleManager& module_manager, DecoderLibrary& decoder_lib, const DeviceContext& device_ctx, const VprDeviceAnnotation& device_annotation, const CircuitLibrary& circuit_lib, const MuxLibrary& mux_lib, const e_config_protocol_type& sram_orgz_type, const CircuitModelId& sram_model, const bool& duplicate_grid_pin, const bool& verbose) { /* Start time count */ vtr::ScopedStartFinishTimer timer("Build grid modules"); /* Enumerate the types of logical tiles, and build a module for each * Build modules for all the pb_types/pb_graph_nodes * use a Depth-First Search Algorithm to print the sub-modules * Note: DFS is the right way. Do NOT use BFS. * DFS can guarantee that all the sub-modules can be registered properly * to its parent in module manager */ /* Build modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */ VTR_LOG("Building logical tiles..."); VTR_LOGV(verbose, "\n"); for (const t_logical_block_type& logical_tile : device_ctx.logical_block_types) { /* Bypass empty pb_graph */ if (nullptr == logical_tile.pb_graph_head) { continue; } rec_build_logical_tile_modules(module_manager, decoder_lib, device_annotation, circuit_lib, mux_lib, sram_orgz_type, sram_model, logical_tile.pb_graph_head, verbose); } VTR_LOG("Done\n"); /* Enumerate the types of physical tiles * Use the logical tile module to build the physical tiles */ VTR_LOG("Building physical tiles..."); VTR_LOGV(verbose, "\n"); for (const t_physical_tile_type& physical_tile : device_ctx.physical_tile_types) { /* Bypass empty type or nullptr */ if (true == is_empty_type(&physical_tile)) { continue; } else if (true == is_io_type(&physical_tile)) { /* Special for I/O block: * We will search the grids and see where the I/O blocks are located: * - If a I/O block locates on border sides of FPGA fabric: * i.e., one or more from {TOP, RIGHT, BOTTOM, LEFT}, * we will generate one module for each border side * - If a I/O block locates in the center of FPGA fabric: * we will generate one module with NUM_SIDES (same treatment as regular grids) */ std::set io_type_sides = find_physical_io_tile_located_sides(device_ctx.grid, &physical_tile); for (const e_side& io_type_side : io_type_sides) { build_physical_tile_module(module_manager, decoder_lib, device_annotation, circuit_lib, sram_orgz_type, sram_model, &physical_tile, io_type_side, duplicate_grid_pin, verbose); } } else { /* For CLB and heterogenenous blocks */ build_physical_tile_module(module_manager, decoder_lib, device_annotation, circuit_lib, sram_orgz_type, sram_model, &physical_tile, NUM_SIDES, duplicate_grid_pin, verbose); } } VTR_LOG("Done\n"); } } /* end namespace openfpga */