/******************************************************************** * This file includes functions to print Verilog modules for a Grid * (CLBs, I/Os, heterogeneous blocks etc.) *******************************************************************/ /* System header files */ #include #include /* Header files from external libs */ #include "util.h" #include "vtr_assert.h" #include "circuit_library_utils.h" /* Header files for VPR */ #include "vpr_types.h" #include "globals.h" /* Header files for FPGA X2P tool suite */ #include "fpga_x2p_naming.h" #include "fpga_x2p_types.h" #include "fpga_x2p_utils.h" #include "fpga_x2p_pbtypes_utils.h" #include "module_manager_utils.h" #include "fpga_x2p_globals.h" /* Header files for Verilog generator */ #include "verilog_global.h" #include "verilog_utils.h" #include "verilog_writer_utils.h" #include "verilog_grid.h" /******************************************************************** * Print Verilog modules of a primitive node in the pb_graph_node graph * This generic function can support all the different types of primitive nodes * i.e., Look-Up Tables (LUTs), Flip-flops (FFs) and hard logic blocks such as adders. * * The Verilog module will consist of two parts: * 1. Logic module of the primitive node * This module performs the logic function of the block * 2. Memory module of the primitive node * This module stores the configuration bits for the logic module * if the logic module is a programmable resource, such as LUT * * Verilog module structure: * * Primitive block * +---------------------------------------+ * | | * | +---------+ +---------+ | * in |----->| |--->| |<------|configuration lines * | | Logic |... | Memory | | * out|<-----| |--->| | | * | +---------+ +---------+ | * | | * +---------------------------------------+ * *******************************************************************/ static void print_verilog_primitive_block(std::fstream& fp, ModuleManager& module_manager, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, t_pb_graph_node* primitive_pb_graph_node, const e_side& io_side, const bool& use_explicit_mapping) { /* Ensure a valid file handler */ check_file_handler(fp); /* Ensure a valid pb_graph_node */ if (NULL == primitive_pb_graph_node) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d]) Invalid primitive_pb_graph_node!\n", __FILE__, __LINE__); exit(1); } /* Find the circuit model id linked to the pb_graph_node */ CircuitModelId& primitive_model = primitive_pb_graph_node->pb_type->circuit_model; /* Generate the module name for this primitive pb_graph_node*/ std::string primitive_module_name_prefix(grid_verilog_file_name_prefix); /* Add side string to the name if it is valid, this is mainly for I/O block */ if (NUM_SIDES != io_side) { Side side_manager(io_side); primitive_module_name_prefix += std::string(side_manager.to_string()); primitive_module_name_prefix += std::string("_"); } std::string primitive_module_name = generate_physical_block_module_name(primitive_module_name_prefix, primitive_pb_graph_node->pb_type); /* Create a module of the primitive LUT and register it to module manager */ ModuleId primitive_module = module_manager.add_module(primitive_module_name); /* Ensure that the module has been created and thus unique! */ VTR_ASSERT(ModuleId::INVALID() != primitive_module); /* Find the global ports required by the primitive node, and add them to the module */ std::vector primitive_model_global_ports = circuit_lib.model_global_ports(primitive_model, true); for (auto port : primitive_model_global_ports) { /* The global I/O of the FPGA has a special name */ BasicPort module_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port)); module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Find the inout ports required by the primitive node, and add them to the module * This is mainly due to the I/O blocks, which have inout ports for the top-level fabric */ if (SPICE_MODEL_IOPAD == circuit_lib.model_type(primitive_model)) { std::vector primitive_model_inout_ports = circuit_lib.model_ports_by_type(primitive_model, SPICE_MODEL_PORT_INOUT); for (auto port : primitive_model_inout_ports) { BasicPort module_port(generate_fpga_global_io_port_name(std::string(gio_inout_prefix), circuit_lib, primitive_model), circuit_lib.port_size(port)); module_manager.add_port(primitive_module, module_port, ModuleManager::MODULE_INOUT_PORT); } } /* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here. * Since we have linked pb_type ports to circuit models when setting up FPGA-X2P, * no ports of the circuit model will be missing here */ add_pb_type_ports_to_module_manager(module_manager, primitive_module, primitive_pb_graph_node->pb_type); /* Add configuration ports */ /* Shared SRAM ports*/ size_t num_shared_config_bits = find_circuit_num_shared_config_bits(circuit_lib, primitive_model, cur_sram_orgz_info->type); if (0 < num_shared_config_bits) { /* Check: this SRAM organization type must be memory-bank ! */ VTR_ASSERT( SPICE_SRAM_MEMORY_BANK == cur_sram_orgz_info->type ); /* Generate a list of ports */ add_reserved_sram_ports_to_module_manager(module_manager, primitive_module, num_shared_config_bits); } /* TODO: this should be added to the cur_sram_orgz_info !!! */ t_spice_model* mem_model = NULL; get_sram_orgz_info_mem_model(cur_sram_orgz_info, & mem_model); CircuitModelId sram_model = circuit_lib.model(mem_model->name); VTR_ASSERT(CircuitModelId::INVALID() != sram_model); /* Regular (independent) SRAM ports */ size_t num_config_bits = find_circuit_num_config_bits(circuit_lib, primitive_model); if (0 < num_config_bits) { add_sram_ports_to_module_manager(module_manager, primitive_module, circuit_lib, sram_model, cur_sram_orgz_info->type, num_config_bits); /* Add ports only visible during formal verification to the module */ add_formal_verification_sram_ports_to_module_manager(module_manager, primitive_module, circuit_lib, sram_model, std::string(verilog_formal_verification_preproc_flag), num_config_bits); } /* Print the module definition for the top-level Verilog module of physical block */ print_verilog_module_declaration(fp, module_manager, primitive_module); /* Finish printing ports */ /* TODO: Create local wires as configuration bus */ /* TODO: Create a bus wire for the inputs of the LUT */ /* TODO: Instanciate LUT MUX module */ /* TODO: Instanciate associated memory module for the LUT */ /* Print an end to the Verilog module */ print_verilog_module_end(fp, module_manager.module_name(primitive_module)); /* Add an empty line as a splitter */ fp << std::endl; } /******************************************************************** * Print Verilog modules of physical blocks inside a grid (CLB, I/O. etc.) * This function will traverse the graph of complex logic block (t_pb_graph_node) * in a recursive way, using a Depth First Search (DFS) algorithm. * As such, primitive physical blocks (LUTs, FFs, etc.), leaf node of the pb_graph * will be printed out first, while the top-level will be printed out in the last * * Note: this function will print a unique Verilog module for each type of * t_pb_graph_node, i.e., t_pb_type, in the graph, in order to enable highly * hierarchical Verilog organization as well as simplify the Verilog file sizes. * * Note: DFS is the right way. Do NOT use BFS. * DFS can guarantee that all the sub-modules can be registered properly * to its parent in module manager *******************************************************************/ static void print_verilog_physical_blocks_rec(std::fstream& fp, ModuleManager& module_manager, const CircuitLibrary& circuit_lib, const MuxLibrary& mux_lib, t_sram_orgz_info* cur_sram_orgz_info, t_pb_graph_node* physical_pb_graph_node, const e_side& io_side, const bool& use_explicit_mapping) { /* Check the file handler*/ check_file_handler(fp); /* Check cur_pb_graph_node*/ if (NULL == physical_pb_graph_node) { vpr_printf(TIO_MESSAGE_ERROR, "(File:%s,[LINE%d]) Invalid cur_pb_graph_node.\n", __FILE__, __LINE__); exit(1); } /* Get the pb_type definition related to the node */ t_pb_type* physical_pb_type = physical_pb_graph_node->pb_type; /* Find the mode that physical implementation of a pb_type */ int physical_mode_index = find_pb_type_physical_mode_index((*physical_pb_type)); /* For non-leaf node in the pb_type graph: * Recursively Depth-First Generate all the child pb_type at the level */ if (FALSE == is_primitive_pb_type(physical_pb_type)) { for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ++ipb) { /* Go recursive to visit the children */ print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib, cur_sram_orgz_info, &(physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][0]), io_side, use_explicit_mapping); } } /* For leaf node, a primitive Verilog module will be generated */ if (TRUE == is_primitive_pb_type(physical_pb_type)) { print_verilog_primitive_block(fp, module_manager, circuit_lib, cur_sram_orgz_info, physical_pb_graph_node, io_side, use_explicit_mapping); /* Finish for primitive node, return */ return; } /* Generate the name of the Verilog module for this pb_type */ std::string pb_module_name_prefix(grid_verilog_file_name_prefix); /* Add side string to the name if it is valid */ if (NUM_SIDES != io_side) { Side side_manager(io_side); pb_module_name_prefix += std::string(side_manager.to_string()); pb_module_name_prefix += std::string("_"); } std::string pb_module_name = generate_physical_block_module_name(pb_module_name_prefix, physical_pb_type); /* Register the Verilog module in module manager */ ModuleId pb_module = module_manager.add_module(pb_module_name); VTR_ASSERT(ModuleId::INVALID() != pb_module); /* TODO: Add ports to the Verilog module */ /* TODO: Count I/O (INOUT) ports from the sub-modules under this Verilog module */ /* TODO: Count shared SRAM ports from the sub-modules under this Verilog module */ /* TODO: Count SRAM ports from the sub-modules under this Verilog module */ /* TODO: Count formal verification ports from the sub-modules under this Verilog module */ /* Print Verilog module declaration */ print_verilog_module_declaration(fp, module_manager, pb_module); /* Comment lines */ print_verilog_comment(fp, std::string("----- BEGIN Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----")); /* TODO: Print local wires (bus wires for memory configuration) */ /* dump_verilog_sram_config_bus_internal_wires(fp, cur_sram_orgz_info, stamped_sram_cnt, stamped_sram_cnt + num_conf_bits - 1); */ /* TODO: Instanciate all the child Verilog modules */ for (int ipb = 0; ipb < physical_pb_type->modes[physical_mode_index].num_pb_type_children; ipb++) { /* Each child may exist multiple times in the hierarchy*/ for (int jpb = 0; jpb < physical_pb_type->modes[physical_mode_index].pb_type_children[ipb].num_pb; jpb++) { /* we should make sure this placement index == child_pb_type[jpb] */ VTR_ASSERT(jpb == physical_pb_graph_node->child_pb_graph_nodes[physical_mode_index][ipb][jpb].placement_index); } } /* TODO: Print programmable/non-programmable interconnections inside the Verilog module */ /* dump_verilog_pb_graph_interc(cur_sram_orgz_info, fp, subckt_name, cur_pb_graph_node, mode_index, is_explicit_mapping); */ /* Print an end to the Verilog module */ print_verilog_module_end(fp, module_manager.module_name(pb_module)); print_verilog_comment(fp, std::string("----- END Physical programmable logic block Verilog module: " + std::string(physical_pb_type->name) + " -----")); /* Add an empty line as a splitter */ fp << std::endl; } /***************************************************************************** * This function will create a Verilog file and print out a Verilog netlist * for a type of physical block * * For IO blocks: * The param 'border_side' is required, which is specify which side of fabric * the I/O block locates at. *****************************************************************************/ static void print_verilog_grid(ModuleManager& module_manager, const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, const std::string& verilog_dir, const std::string& subckt_dir, t_type_ptr phy_block_type, const e_side& border_side, const bool& use_explicit_mapping) { /* Check code: if this is an IO block, the border side MUST be valid */ if (IO_TYPE == phy_block_type) { VTR_ASSERT(NUM_SIDES != border_side); } /* Give a name to the Verilog netlist */ /* Create the file name for Verilog */ std::string verilog_fname(subckt_dir + generate_grid_block_netlist_name(std::string(phy_block_type->name), IO_TYPE == phy_block_type, border_side, std::string(verilog_netlist_file_postfix)) ); /* TODO: remove the bak file when the file is ready */ verilog_fname += ".bak"; /* Echo status */ if (IO_TYPE == phy_block_type) { Side side_manager(border_side); vpr_printf(TIO_MESSAGE_INFO, "Writing FPGA Verilog Netlist (%s) for logic block %s at %s side ...\n", verilog_fname.c_str(), phy_block_type->name, side_manager.c_str()); } else { vpr_printf(TIO_MESSAGE_INFO, "Writing FPGA Verilog Netlist (%s) for logic block %s...\n", verilog_fname.c_str(), phy_block_type->name); } /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_handler(fp); print_verilog_file_header(fp, std::string("Verilog modules for physical block: " + std::string(phy_block_type->name) + "]")); /* Print preprocessing flags */ print_verilog_include_defines_preproc_file(fp, verilog_dir); /* TODO: Print Verilog modules for all the pb_types/pb_graph_nodes */ /* TODO: use a Depth-First Search Algorithm to print the sub-modules * Note: DFS is the right way. Do NOT use BFS. * DFS can guarantee that all the sub-modules can be registered properly * to its parent in module manager */ print_verilog_comment(fp, std::string("---- BEGIN Sub-module of physical block:" + std::string(phy_block_type->name) + " ----")); /* Print Verilog modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */ print_verilog_physical_blocks_rec(fp, module_manager, circuit_lib, mux_lib, cur_sram_orgz_info, phy_block_type->pb_graph_head, border_side, use_explicit_mapping); print_verilog_comment(fp, std::string("---- END Sub-module of physical block:" + std::string(phy_block_type->name) + " ----")); /* TODO: Create a Verilog Module for the top-level physical block, and add to module manager */ std::string module_name = generate_grid_block_module_name(std::string(grid_verilog_file_name_prefix), phy_block_type->name, IO_TYPE == phy_block_type, border_side); ModuleId module_id = module_manager.add_module(module_name); VTR_ASSERT(ModuleId::INVALID() != module_id); /* TODO: Add ports to the module */ /* TODO: Print the module definition for the top-level Verilog module of physical block */ print_verilog_module_declaration(fp, module_manager, module_id); /* Finish printing ports */ /* Print an empty line a splitter */ fp << std::endl; /* TODO: instanciate all the sub modules */ for (int iz = 0; iz < phy_block_type->capacity; ++iz) { } /* Put an end to the top-level Verilog module of physical block */ print_verilog_module_end(fp, module_manager.module_name(module_id)); /* Add an empty line as a splitter */ fp << std::endl; /* Close file handler */ fp.close(); /* Add fname to the linked list */ /* TODO: add it when it is ready grid_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(grid_verilog_subckt_file_path_head, verilog_fname.c_str()); */ } /***************************************************************************** * Create logic block modules in a compact way: * 1. Only one module for each I/O on each border side (IO_TYPE) * 2. Only one module for each CLB (FILL_TYPE) * 3. Only one module for each heterogeneous block ****************************************************************************/ void print_verilog_grids(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, const MuxLibrary& mux_lib, t_sram_orgz_info* cur_sram_orgz_info, const std::string& verilog_dir, const std::string& subckt_dir, const bool& is_explicit_mapping) { /* Enumerate the types, dump one Verilog module for each */ for (int itype = 0; itype < num_types; itype++) { if (EMPTY_TYPE == &type_descriptors[itype]) { /* Bypass empty type or NULL */ continue; } else if (IO_TYPE == &type_descriptors[itype]) { /* Special for I/O block, generate one module for each border side */ for (int iside = 0; iside < NUM_SIDES; iside++) { Side side_manager(iside); print_verilog_grid(module_manager, mux_lib, circuit_lib, cur_sram_orgz_info, verilog_dir, subckt_dir, &type_descriptors[itype], side_manager.get_side(), is_explicit_mapping); } continue; } else if (FILL_TYPE == &type_descriptors[itype]) { /* For CLB */ print_verilog_grid(module_manager, mux_lib, circuit_lib, cur_sram_orgz_info, verilog_dir, subckt_dir, &type_descriptors[itype], NUM_SIDES, is_explicit_mapping); continue; } else { /* For heterogenenous blocks */ print_verilog_grid(module_manager, mux_lib, circuit_lib, cur_sram_orgz_info, verilog_dir, subckt_dir, &type_descriptors[itype], NUM_SIDES, is_explicit_mapping); } } /* Output a header file for all the logic blocks */ vpr_printf(TIO_MESSAGE_INFO, "Generating header file for grid Verilog modules...\n"); std::string grid_verilog_fname(logic_block_verilog_file_name); /* TODO: remove .bak when it is ready */ grid_verilog_fname += ".bak"; dump_verilog_subckt_header_file(grid_verilog_subckt_file_path_head, subckt_dir.c_str(), grid_verilog_fname.c_str()); }