/******************************************************************** * This file include most utilized functions for building connections * inside the module graph for FPGA fabric *******************************************************************/ /* Headers from vtrutil library */ #include "vtr_assert.h" /* Headers from openfpgautil library */ #include "openfpga_side_manager.h" #include "openfpga_reserved_words.h" #include "openfpga_naming.h" #include "pb_type_utils.h" #include "rr_gsb_utils.h" #include "openfpga_physical_tile_utils.h" #include "build_top_module_utils.h" #include "build_top_module_connection.h" /* begin namespace openfpga */ namespace openfpga { /******************************************************************** * Add module nets to connect a GSB to adjacent grid ports/pins * as well as connection blocks * This function will create nets for the following types of connections * between grid output pins of Switch block and adjacent grids * In this case, the net source is the grid pin, while the net sink * is the switch block pin * * +------------+ +------------+ * | | | | * | Grid | | Grid | * | [x][y+1] | | [x+1][y+1] | * | |----+ +----| | * +------------+ | | +------------+ * | v v | * | +------------+ | * +------>| |<-----+ * | Switch | * | Block | * +------>| [x][y] |<-----+ * | +------------+ | * | ^ ^ | * | | | | * +------------+ | | +------------+ * | |----+ +-----| | * | Grid | | Grid | * | [x][y] | | [x+1][y] | * | | | | * +------------+ +------------+ * *******************************************************************/ static void add_top_module_nets_connect_grids_and_sb(ModuleManager& module_manager, const ModuleId& top_module, const DeviceGrid& grids, const vtr::Matrix& grid_instance_ids, const RRGraph& rr_graph, const DeviceRRGSB& device_rr_gsb, const RRGSB& rr_gsb, const vtr::Matrix& sb_instance_ids, const bool& compact_routing_hierarchy) { /* Skip those Switch blocks that do not exist */ if (false == rr_gsb.is_sb_exist()) { return; } /* We could have two different coordinators, one is the instance, the other is the module */ vtr::Point instance_sb_coordinate(rr_gsb.get_sb_x(), rr_gsb.get_sb_y()); vtr::Point module_gsb_coordinate(rr_gsb.get_x(), rr_gsb.get_y()); /* If we use compact routing hierarchy, we should find the unique module of CB, which is added to the top module */ if (true == compact_routing_hierarchy) { vtr::Point gsb_coord(rr_gsb.get_x(), rr_gsb.get_y()); const RRGSB& unique_mirror = device_rr_gsb.get_sb_unique_module(gsb_coord); module_gsb_coordinate.set_x(unique_mirror.get_x()); module_gsb_coordinate.set_y(unique_mirror.get_y()); } /* This is the source cb that is added to the top module */ const RRGSB& module_sb = device_rr_gsb.get_gsb(module_gsb_coordinate); vtr::Point module_sb_coordinate(module_sb.get_sb_x(), module_sb.get_sb_y()); /* Collect sink-related information */ std::string sink_sb_module_name = generate_switch_block_module_name(module_sb_coordinate); ModuleId sink_sb_module = module_manager.find_module(sink_sb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(sink_sb_module)); size_t sink_sb_instance = sb_instance_ids[instance_sb_coordinate.x()][instance_sb_coordinate.y()]; /* Connect grid output pins (OPIN) to switch block grid pins */ for (size_t side = 0; side < module_sb.get_num_sides(); ++side) { SideManager side_manager(side); for (size_t inode = 0; inode < module_sb.get_num_opin_nodes(side_manager.get_side()); ++inode) { /* Collect source-related information */ /* Generate the grid module name by considering if it locates on the border */ vtr::Point grid_coordinate(rr_graph.node_xlow(rr_gsb.get_opin_node(side_manager.get_side(), inode)), rr_graph.node_ylow(rr_gsb.get_opin_node(side_manager.get_side(), inode))); std::string src_grid_module_name = generate_grid_block_module_name_in_top_module(std::string(GRID_MODULE_NAME_PREFIX), grids, grid_coordinate); ModuleId src_grid_module = module_manager.find_module(src_grid_module_name); VTR_ASSERT(true == module_manager.valid_module_id(src_grid_module)); size_t src_grid_instance = grid_instance_ids[grid_coordinate.x()][grid_coordinate.y()]; size_t src_grid_pin_index = rr_graph.node_pin_num(rr_gsb.get_opin_node(side_manager.get_side(), inode)); size_t src_grid_pin_width = grids[grid_coordinate.x()][grid_coordinate.y()].type->pin_width_offset[src_grid_pin_index]; size_t src_grid_pin_height = grids[grid_coordinate.x()][grid_coordinate.y()].type->pin_height_offset[src_grid_pin_index]; std::string src_grid_port_name = generate_grid_port_name(grid_coordinate, src_grid_pin_width, src_grid_pin_height, rr_graph.node_side(rr_gsb.get_opin_node(side_manager.get_side(), inode)), src_grid_pin_index, false); ModulePortId src_grid_port_id = module_manager.find_module_port(src_grid_module, src_grid_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(src_grid_module, src_grid_port_id)); BasicPort src_grid_port = module_manager.module_port(src_grid_module, src_grid_port_id); /* Collect sink-related information */ vtr::Point sink_sb_port_coord(rr_graph.node_xlow(module_sb.get_opin_node(side_manager.get_side(), inode)), rr_graph.node_ylow(module_sb.get_opin_node(side_manager.get_side(), inode))); size_t sink_grid_pin_index = rr_graph.node_pin_num(module_sb.get_opin_node(side_manager.get_side(), inode)); std::string sink_sb_port_name = generate_sb_module_grid_port_name(side_manager.get_side(), rr_graph.node_side(module_sb.get_opin_node(side_manager.get_side(), inode)), sink_grid_pin_index); ModulePortId sink_sb_port_id = module_manager.find_module_port(sink_sb_module, sink_sb_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(sink_sb_module, sink_sb_port_id)); BasicPort sink_sb_port = module_manager.module_port(sink_sb_module, sink_sb_port_id); /* Source and sink port should match in size */ VTR_ASSERT(src_grid_port.get_width() == sink_sb_port.get_width()); /* Create a net for each pin */ for (size_t pin_id = 0; pin_id < src_grid_port.pins().size(); ++pin_id) { ModuleNetId net = module_manager.create_module_net(top_module); /* Configure the net source */ module_manager.add_module_net_source(top_module, net, src_grid_module, src_grid_instance, src_grid_port_id, src_grid_port.pins()[pin_id]); /* Configure the net sink */ module_manager.add_module_net_sink(top_module, net, sink_sb_module, sink_sb_instance, sink_sb_port_id, sink_sb_port.pins()[pin_id]); } } } } /******************************************************************** * Add module nets to connect a GSB to adjacent grid ports/pins * as well as connection blocks * This function will create nets for the following types of connections * between grid output pins of Switch block and adjacent grids * In this case, the net source is the grid pin, while the net sink * is the switch block pin * * In particular, this function considers the duplicated output pins of grids * when creating the connecting nets. * The follow figure shows the different pin postfix to be considered when * connecting the grid pins to SB inputs * * +------------+ +------------+ * | | | | * | Grid | | Grid | * | [x][y+1] |lower lower| [x+1][y+1] | * | |----+ +----| | * +------------+ | | +------------+ * |lower v v |upper * | +------------+ | * +------>| |<-----+ * | Switch | * | Block | * +------>| [x][y] |<-----+ * | +------------+ | * | ^ ^ | * |lower | | |upper * +------------+ | | +------------+ * | |----+ +-----| | * | Grid |upper upper | Grid | * | [x][y] | | [x+1][y] | * | | | | * +------------+ +------------+ * *******************************************************************/ static void add_top_module_nets_connect_grids_and_sb_with_duplicated_pins(ModuleManager& module_manager, const ModuleId& top_module, const DeviceGrid& grids, const vtr::Matrix& grid_instance_ids, const RRGraph& rr_graph, const DeviceRRGSB& device_rr_gsb, const RRGSB& rr_gsb, const vtr::Matrix& sb_instance_ids, const bool& compact_routing_hierarchy) { /* Skip those Switch blocks that do not exist */ if (false == rr_gsb.is_sb_exist()) { return; } /* We could have two different coordinators, one is the instance, the other is the module */ vtr::Point instance_sb_coordinate(rr_gsb.get_sb_x(), rr_gsb.get_sb_y()); vtr::Point module_gsb_coordinate(rr_gsb.get_x(), rr_gsb.get_y()); /* If we use compact routing hierarchy, we should find the unique module of CB, which is added to the top module */ if (true == compact_routing_hierarchy) { vtr::Point gsb_coord(rr_gsb.get_x(), rr_gsb.get_y()); const RRGSB& unique_mirror = device_rr_gsb.get_sb_unique_module(gsb_coord); module_gsb_coordinate.set_x(unique_mirror.get_x()); module_gsb_coordinate.set_y(unique_mirror.get_y()); } /* This is the source cb that is added to the top module */ const RRGSB& module_sb = device_rr_gsb.get_gsb(module_gsb_coordinate); vtr::Point module_sb_coordinate(module_sb.get_sb_x(), module_sb.get_sb_y()); /* Collect sink-related information */ std::string sink_sb_module_name = generate_switch_block_module_name(module_sb_coordinate); ModuleId sink_sb_module = module_manager.find_module(sink_sb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(sink_sb_module)); size_t sink_sb_instance = sb_instance_ids[instance_sb_coordinate.x()][instance_sb_coordinate.y()]; /* Create a truth table for the postfix to be used regarding to the different side of switch blocks */ std::map sb_side2postfix_map; /* Boolean variable "true" indicates the upper postfix in naming functions * Boolean variable "false" indicates the lower postfix in naming functions */ sb_side2postfix_map[TOP] = false; sb_side2postfix_map[RIGHT] = true; sb_side2postfix_map[BOTTOM] = true; sb_side2postfix_map[LEFT] = false; /* Connect grid output pins (OPIN) to switch block grid pins */ for (size_t side = 0; side < module_sb.get_num_sides(); ++side) { SideManager side_manager(side); for (size_t inode = 0; inode < module_sb.get_num_opin_nodes(side_manager.get_side()); ++inode) { /* Collect source-related information */ /* Generate the grid module name by considering if it locates on the border */ vtr::Point grid_coordinate(rr_graph.node_xlow(rr_gsb.get_opin_node(side_manager.get_side(), inode)), rr_graph.node_ylow(rr_gsb.get_opin_node(side_manager.get_side(), inode))); std::string src_grid_module_name = generate_grid_block_module_name_in_top_module(std::string(GRID_MODULE_NAME_PREFIX), grids, grid_coordinate); ModuleId src_grid_module = module_manager.find_module(src_grid_module_name); VTR_ASSERT(true == module_manager.valid_module_id(src_grid_module)); size_t src_grid_instance = grid_instance_ids[grid_coordinate.x()][grid_coordinate.y()]; size_t src_grid_pin_index = rr_graph.node_pin_num(rr_gsb.get_opin_node(side_manager.get_side(), inode)); size_t src_grid_pin_width = grids[grid_coordinate.x()][grid_coordinate.y()].type->pin_width_offset[src_grid_pin_index]; size_t src_grid_pin_height = grids[grid_coordinate.x()][grid_coordinate.y()].type->pin_height_offset[src_grid_pin_index]; /* Pins for direct connection are NOT duplicated. * Follow the traditional recipe when adding nets! * Xifan: I assume that each direct connection pin must have Fc=0. * For other duplicated pins, we follow the new naming */ std::string src_grid_port_name; if (0. == find_physical_tile_pin_Fc(grids[grid_coordinate.x()][grid_coordinate.y()].type, src_grid_pin_index)) { src_grid_port_name = generate_grid_port_name(grid_coordinate, src_grid_pin_width, src_grid_pin_height, rr_graph.node_side(rr_gsb.get_opin_node(side_manager.get_side(), inode)), src_grid_pin_index, false); } else { src_grid_port_name = generate_grid_duplicated_port_name(src_grid_pin_width, src_grid_pin_height, rr_graph.node_side(rr_gsb.get_opin_node(side_manager.get_side(), inode)), src_grid_pin_index, sb_side2postfix_map[side_manager.get_side()]); } ModulePortId src_grid_port_id = module_manager.find_module_port(src_grid_module, src_grid_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(src_grid_module, src_grid_port_id)); BasicPort src_grid_port = module_manager.module_port(src_grid_module, src_grid_port_id); /* Collect sink-related information */ vtr::Point sink_sb_port_coord(rr_graph.node_xlow(module_sb.get_opin_node(side_manager.get_side(), inode)), rr_graph.node_ylow(module_sb.get_opin_node(side_manager.get_side(), inode))); size_t sink_grid_pin_index = rr_graph.node_pin_num(module_sb.get_opin_node(side_manager.get_side(), inode)); std::string sink_sb_port_name = generate_sb_module_grid_port_name(side_manager.get_side(), rr_graph.node_side(module_sb.get_opin_node(side_manager.get_side(), inode)), sink_grid_pin_index); ModulePortId sink_sb_port_id = module_manager.find_module_port(sink_sb_module, sink_sb_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(sink_sb_module, sink_sb_port_id)); BasicPort sink_sb_port = module_manager.module_port(sink_sb_module, sink_sb_port_id); /* Source and sink port should match in size */ VTR_ASSERT(src_grid_port.get_width() == sink_sb_port.get_width()); /* Create a net for each pin */ for (size_t pin_id = 0; pin_id < src_grid_port.pins().size(); ++pin_id) { ModuleNetId net = module_manager.create_module_net(top_module); /* Configure the net source */ module_manager.add_module_net_source(top_module, net, src_grid_module, src_grid_instance, src_grid_port_id, src_grid_port.pins()[pin_id]); /* Configure the net sink */ module_manager.add_module_net_sink(top_module, net, sink_sb_module, sink_sb_instance, sink_sb_port_id, sink_sb_port.pins()[pin_id]); } } } } /******************************************************************** * This function will create nets for the connections * between grid input pins and connection blocks * In this case, the net source is the connection block pin, * while the net sink is the grid input * * +------------+ +------------------+ +------------+ * | | | | | | * | Grid |<-----| Connection Block |----->| Grid | * | [x][y+1] | | Y-direction | | [x+1][y+1] | * | | | [x][y+1] | | | * +------------+ +------------------+ +------------+ * ^ * | * +------------+ +------------------+ * | Connection | | | * | Block | | Switch Block | * | X-direction| | [x][y] | * | [x][y] | | | * +------------+ +------------------+ * | * v * +------------+ * | | * | Grid | * | [x][y] | * | | * +------------+ * * * Relationship between source connection block and its unique module * Take an example of a CBY * * grid_pin name should follow unique module of Grid[x][y+1] * cb_pin name should follow unique module of CBY[x][y+1] * * However, instace id should follow the origin Grid and Connection block * * * +------------+ +------------------+ * | | | | * | Grid |<------------| Connection Block | * | [x][y+1] | | Y-direction | * | | | [x][y+1] | * +------------+ +------------------+ * ^ * || unique mirror * +------------+ +------------------+ * | | | | * | Grid |<------------| Connection Block | * | [i][j+1] | | Y-direction | * | | | [i][j+1] | * +------------+ +------------------+ * *******************************************************************/ static void add_top_module_nets_connect_grids_and_cb(ModuleManager& module_manager, const ModuleId& top_module, const DeviceGrid& grids, const vtr::Matrix& grid_instance_ids, const RRGraph& rr_graph, const DeviceRRGSB& device_rr_gsb, const RRGSB& rr_gsb, const t_rr_type& cb_type, const vtr::Matrix& cb_instance_ids, const bool& compact_routing_hierarchy) { /* We could have two different coordinators, one is the instance, the other is the module */ vtr::Point instance_cb_coordinate(rr_gsb.get_cb_x(cb_type), rr_gsb.get_cb_y(cb_type)); vtr::Point module_gsb_coordinate(rr_gsb.get_x(), rr_gsb.get_y()); /* Skip those Connection blocks that do not exist */ if (false == rr_gsb.is_cb_exist(cb_type)) { return; } /* Skip if the cb does not contain any configuration bits! */ if (true == connection_block_contain_only_routing_tracks(rr_gsb, cb_type)) { return; } /* If we use compact routing hierarchy, we should find the unique module of CB, which is added to the top module */ if (true == compact_routing_hierarchy) { vtr::Point gsb_coord(rr_gsb.get_x(), rr_gsb.get_y()); const RRGSB& unique_mirror = device_rr_gsb.get_cb_unique_module(cb_type, gsb_coord); module_gsb_coordinate.set_x(unique_mirror.get_x()); module_gsb_coordinate.set_y(unique_mirror.get_y()); } /* This is the source cb that is added to the top module */ const RRGSB& module_cb = device_rr_gsb.get_gsb(module_gsb_coordinate); vtr::Point module_cb_coordinate(module_cb.get_cb_x(cb_type), module_cb.get_cb_y(cb_type)); /* Collect source-related information */ std::string src_cb_module_name = generate_connection_block_module_name(cb_type, module_cb_coordinate); ModuleId src_cb_module = module_manager.find_module(src_cb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(src_cb_module)); /* Instance id should follow the instance cb coordinate */ size_t src_cb_instance = cb_instance_ids[instance_cb_coordinate.x()][instance_cb_coordinate.y()]; /* Iterate over the output pins of the Connection Block */ std::vector cb_ipin_sides = module_cb.get_cb_ipin_sides(cb_type); for (size_t iside = 0; iside < cb_ipin_sides.size(); ++iside) { enum e_side cb_ipin_side = cb_ipin_sides[iside]; for (size_t inode = 0; inode < module_cb.get_num_ipin_nodes(cb_ipin_side); ++inode) { /* Collect source-related information */ RRNodeId module_ipin_node = module_cb.get_ipin_node(cb_ipin_side, inode); vtr::Point cb_src_port_coord(rr_graph.node_xlow(module_ipin_node), rr_graph.node_ylow(module_ipin_node)); std::string src_cb_port_name = generate_cb_module_grid_port_name(cb_ipin_side, rr_graph.node_pin_num(module_ipin_node)); ModulePortId src_cb_port_id = module_manager.find_module_port(src_cb_module, src_cb_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(src_cb_module, src_cb_port_id)); BasicPort src_cb_port = module_manager.module_port(src_cb_module, src_cb_port_id); /* Collect sink-related information */ /* Note that we use the instance cb pin here!!! * because it has the correct coordinator for the grid!!! */ RRNodeId instance_ipin_node = rr_gsb.get_ipin_node(cb_ipin_side, inode); vtr::Point grid_coordinate(rr_graph.node_xlow(instance_ipin_node), rr_graph.node_ylow(instance_ipin_node)); std::string sink_grid_module_name = generate_grid_block_module_name_in_top_module(std::string(GRID_MODULE_NAME_PREFIX), grids, grid_coordinate); ModuleId sink_grid_module = module_manager.find_module(sink_grid_module_name); VTR_ASSERT(true == module_manager.valid_module_id(sink_grid_module)); size_t sink_grid_instance = grid_instance_ids[grid_coordinate.x()][grid_coordinate.y()]; size_t sink_grid_pin_index = rr_graph.node_pin_num(instance_ipin_node); size_t sink_grid_pin_width = grids[grid_coordinate.x()][grid_coordinate.y()].type->pin_width_offset[sink_grid_pin_index]; size_t sink_grid_pin_height = grids[grid_coordinate.x()][grid_coordinate.y()].type->pin_height_offset[sink_grid_pin_index]; std::string sink_grid_port_name = generate_grid_port_name(grid_coordinate, sink_grid_pin_width, sink_grid_pin_height, rr_graph.node_side(rr_gsb.get_ipin_node(cb_ipin_side, inode)), sink_grid_pin_index, false); ModulePortId sink_grid_port_id = module_manager.find_module_port(sink_grid_module, sink_grid_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(sink_grid_module, sink_grid_port_id)); BasicPort sink_grid_port = module_manager.module_port(sink_grid_module, sink_grid_port_id); /* Source and sink port should match in size */ VTR_ASSERT(src_cb_port.get_width() == sink_grid_port.get_width()); /* Create a net for each pin */ for (size_t pin_id = 0; pin_id < src_cb_port.pins().size(); ++pin_id) { ModuleNetId net = module_manager.create_module_net(top_module); /* Configure the net source */ module_manager.add_module_net_source(top_module, net, src_cb_module, src_cb_instance, src_cb_port_id, src_cb_port.pins()[pin_id]); /* Configure the net sink */ module_manager.add_module_net_sink(top_module, net, sink_grid_module, sink_grid_instance, sink_grid_port_id, sink_grid_port.pins()[pin_id]); } } } } /******************************************************************** * This function will create nets for the connections * between connection block and switch block pins * Two cases should be considered: * a. The switch block pin denotes an input of a routing track * The net source is an output of a routing track of connection block * while the net sink is an input of a routing track of switch block * b. The switch block pin denotes an output of a routing track * The net source is an output of routing track of switch block * while the net sink is an input of a routing track of connection block * * +------------+ +------------------+ +------------+ * | | | | | | * | Grid | | Connection Block | | Grid | * | [x][y+1] | | Y-direction | | [x+1][y+1] | * | | | [x][y+1] | | | * +------------+ +------------------+ +------------+ * | ^ * v | * +------------+ +------------------+ +------------+ * | Connection |----->| |----->| Connection | * | Block | | Switch Block | | Block | * | X-direction|<-----| [x][y] |<-----| X-direction| * | [x][y] | | | | [x+1][y] | * +------------+ +------------------+ +------------+ * | ^ * v | * +------------+ +------------------+ +------------+ * | | | | | | * | Grid | | Connection Block | | Grid | * | [x][y] | | Y-direction | | [x][y+1] | * | | | [x][y] | | | * +------------+ +------------------+ +------------+ * * Here, to achieve the purpose, we can simply iterate over the * four sides of switch block and make connections to adjancent * connection blocks * *******************************************************************/ static void add_top_module_nets_connect_sb_and_cb(ModuleManager& module_manager, const ModuleId& top_module, const RRGraph& rr_graph, const DeviceRRGSB& device_rr_gsb, const RRGSB& rr_gsb, const vtr::Matrix& sb_instance_ids, const std::map>& cb_instance_ids, const bool& compact_routing_hierarchy) { /* We could have two different coordinators, one is the instance, the other is the module */ vtr::Point instance_sb_coordinate(rr_gsb.get_sb_x(), rr_gsb.get_sb_y()); vtr::Point module_gsb_sb_coordinate(rr_gsb.get_x(), rr_gsb.get_y()); /* Skip those Switch blocks that do not exist */ if (false == rr_gsb.is_sb_exist()) { return; } /* If we use compact routing hierarchy, we should find the unique module of CB, which is added to the top module */ if (true == compact_routing_hierarchy) { vtr::Point gsb_coord(rr_gsb.get_x(), rr_gsb.get_y()); const RRGSB& unique_mirror = device_rr_gsb.get_sb_unique_module(gsb_coord); module_gsb_sb_coordinate.set_x(unique_mirror.get_x()); module_gsb_sb_coordinate.set_y(unique_mirror.get_y()); } /* This is the source cb that is added to the top module */ const RRGSB& module_sb = device_rr_gsb.get_gsb(module_gsb_sb_coordinate); vtr::Point module_sb_coordinate(module_sb.get_sb_x(), module_sb.get_sb_y()); std::string sb_module_name = generate_switch_block_module_name(module_sb_coordinate); ModuleId sb_module_id = module_manager.find_module(sb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(sb_module_id)); size_t sb_instance = sb_instance_ids[instance_sb_coordinate.x()][instance_sb_coordinate.y()]; /* Connect grid output pins (OPIN) to switch block grid pins */ for (size_t side = 0; side < module_sb.get_num_sides(); ++side) { SideManager side_manager(side); /* Iterate over the routing tracks on this side */ /* Early skip: if there is no routing tracks at this side */ if (0 == module_sb.get_chan_width(side_manager.get_side())) { continue; } /* Find the Connection Block module */ /* We find the original connection block and then spot its unique mirror! * Do NOT use module_sb here!!! */ t_rr_type cb_type = find_top_module_cb_type_by_sb_side(side_manager.get_side()); vtr::Point instance_gsb_cb_coordinate = find_top_module_gsb_coordinate_by_sb_side(rr_gsb, side_manager.get_side()); vtr::Point module_gsb_cb_coordinate = find_top_module_gsb_coordinate_by_sb_side(rr_gsb, side_manager.get_side()); /* Skip those Connection blocks that do not exist: * 1. The CB does not exist in the device level! We should skip! * 2. The CB does exist but we need to make sure if the GSB includes such CBs * For TOP and LEFT side, check the existence using RRGSB method is_cb_exist() * FOr RIGHT and BOTTOM side, find the adjacent RRGSB and then use is_cb_exist() */ if ( TOP == side_manager.get_side() || LEFT == side_manager.get_side() ) { if ( false == rr_gsb.is_cb_exist(cb_type)) { continue; } } if ( RIGHT == side_manager.get_side() || BOTTOM == side_manager.get_side() ) { const RRGSB& adjacent_gsb = device_rr_gsb.get_gsb(module_gsb_cb_coordinate); if ( false == adjacent_gsb.is_cb_exist(cb_type)) { continue; } } /* If we use compact routing hierarchy, we should find the unique module of CB, which is added to the top module */ if (true == compact_routing_hierarchy) { const RRGSB& unique_mirror = device_rr_gsb.get_cb_unique_module(cb_type, module_gsb_cb_coordinate); module_gsb_cb_coordinate.set_x(unique_mirror.get_x()); module_gsb_cb_coordinate.set_y(unique_mirror.get_y()); } const RRGSB& module_cb = device_rr_gsb.get_gsb(module_gsb_cb_coordinate); vtr::Point module_cb_coordinate(module_cb.get_cb_x(cb_type), module_cb.get_cb_y(cb_type)); std::string cb_module_name = generate_connection_block_module_name(cb_type, module_cb_coordinate); ModuleId cb_module_id = module_manager.find_module(cb_module_name); VTR_ASSERT(true == module_manager.valid_module_id(cb_module_id)); const RRGSB& instance_cb = device_rr_gsb.get_gsb(instance_gsb_cb_coordinate); vtr::Point instance_cb_coordinate(instance_cb.get_cb_x(cb_type), instance_cb.get_cb_y(cb_type)); size_t cb_instance = cb_instance_ids.at(cb_type)[instance_cb_coordinate.x()][instance_cb_coordinate.y()]; for (size_t itrack = 0; itrack < module_sb.get_chan_width(side_manager.get_side()); ++itrack) { std::string sb_port_name = generate_sb_module_track_port_name(rr_graph.node_type(module_sb.get_chan_node(side_manager.get_side(), itrack)), side_manager.get_side(), itrack, module_sb.get_chan_node_direction(side_manager.get_side(), itrack)); /* Prepare SB-related port information */ ModulePortId sb_port_id = module_manager.find_module_port(sb_module_id, sb_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(sb_module_id, sb_port_id)); BasicPort sb_port = module_manager.module_port(sb_module_id, sb_port_id); /* Prepare CB-related port information */ PORTS cb_port_direction = OUT_PORT; /* The cb port direction should be opposite to the sb port !!! */ if (OUT_PORT == module_sb.get_chan_node_direction(side_manager.get_side(), itrack)) { cb_port_direction = IN_PORT; } else { VTR_ASSERT(IN_PORT == module_sb.get_chan_node_direction(side_manager.get_side(), itrack)); } std::string cb_port_name = generate_cb_module_track_port_name(cb_type, itrack, cb_port_direction); ModulePortId cb_port_id = module_manager.find_module_port(cb_module_id, cb_port_name); VTR_ASSERT(true == module_manager.valid_module_port_id(cb_module_id, cb_port_id)); BasicPort cb_port = module_manager.module_port(cb_module_id, cb_port_id); /* Source and sink port should match in size */ VTR_ASSERT(cb_port.get_width() == sb_port.get_width()); /* Create a net for each pin */ for (size_t pin_id = 0; pin_id < cb_port.pins().size(); ++pin_id) { ModuleNetId net = module_manager.create_module_net(top_module); /* Configure the net source and sink: * If sb port is an output (source), cb port is an input (sink) * If sb port is an input (sink), cb port is an output (source) */ if (OUT_PORT == module_sb.get_chan_node_direction(side_manager.get_side(), itrack)) { module_manager.add_module_net_sink(top_module, net, cb_module_id, cb_instance, cb_port_id, cb_port.pins()[pin_id]); module_manager.add_module_net_source(top_module, net, sb_module_id, sb_instance, sb_port_id, sb_port.pins()[pin_id]); } else { VTR_ASSERT(IN_PORT == module_sb.get_chan_node_direction(side_manager.get_side(), itrack)); module_manager.add_module_net_source(top_module, net, cb_module_id, cb_instance, cb_port_id, cb_port.pins()[pin_id]); module_manager.add_module_net_sink(top_module, net, sb_module_id, sb_instance, sb_port_id, sb_port.pins()[pin_id]); } } } } } /******************************************************************** * Add module nets to connect the grid ports/pins to Connection Blocks * and Switch Blocks * To make it easy, this function will iterate over all the General * Switch Blocks (GSBs), through which we can obtain the coordinates * of all the grids, connection blocks and switch blocks that are * supposed to be connected tightly. * * As such, we have completed all the connection for each grid. * There is no need to iterate over the grids * * +-------------------------+ +---------------------------------+ * | | | Y-direction CB | * | Grid[x][y+1] | | [x][y + 1] | * | | +---------------------------------+ * +-------------------------+ * TOP SIDE * +-------------+ +---------------------------------+ * | | | OPIN_NODE CHAN_NODES OPIN_NODES | * | | | | * | | | OPIN_NODES OPIN_NODES | * | X-direction | | | * | CB | LEFT SIDE | Switch Block | RIGHT SIDE * | [x][y] | | [x][y] | * | | | | * | | | CHAN_NODES CHAN_NODES | * | | | | * | | | OPIN_NODES OPIN_NODES | * | | | | * | | | OPIN_NODE CHAN_NODES OPIN_NODES | * +-------------+ +---------------------------------+ * BOTTOM SIDE *******************************************************************/ void add_top_module_nets_connect_grids_and_gsbs(ModuleManager& module_manager, const ModuleId& top_module, const DeviceGrid& grids, const vtr::Matrix& grid_instance_ids, const RRGraph& rr_graph, const DeviceRRGSB& device_rr_gsb, const vtr::Matrix& sb_instance_ids, const std::map>& cb_instance_ids, const bool& compact_routing_hierarchy, const bool& duplicate_grid_pin) { vtr::Point gsb_range = device_rr_gsb.get_gsb_range(); for (size_t ix = 0; ix < gsb_range.x(); ++ix) { for (size_t iy = 0; iy < gsb_range.y(); ++iy) { vtr::Point gsb_coordinate(ix, iy); const RRGSB& rr_gsb = device_rr_gsb.get_gsb(ix, iy); /* Connect the grid pins of the GSB to adjacent grids */ if (false == duplicate_grid_pin) { add_top_module_nets_connect_grids_and_sb(module_manager, top_module, grids, grid_instance_ids, rr_graph, device_rr_gsb, rr_gsb, sb_instance_ids, compact_routing_hierarchy); } else { VTR_ASSERT_SAFE(true == duplicate_grid_pin); add_top_module_nets_connect_grids_and_sb_with_duplicated_pins(module_manager, top_module, grids, grid_instance_ids, rr_graph, device_rr_gsb, rr_gsb, sb_instance_ids, compact_routing_hierarchy); } add_top_module_nets_connect_grids_and_cb(module_manager, top_module, grids, grid_instance_ids, rr_graph, device_rr_gsb, rr_gsb, CHANX, cb_instance_ids.at(CHANX), compact_routing_hierarchy); add_top_module_nets_connect_grids_and_cb(module_manager, top_module, grids, grid_instance_ids, rr_graph, device_rr_gsb, rr_gsb, CHANY, cb_instance_ids.at(CHANY), compact_routing_hierarchy); add_top_module_nets_connect_sb_and_cb(module_manager, top_module, rr_graph, device_rr_gsb, rr_gsb, sb_instance_ids, cb_instance_ids, compact_routing_hierarchy); } } } } /* end namespace openfpga */