#include <assert.h> #include "util.h" #include "vpr_types.h" #include "globals.h" #include "path_delay2.h" #include "read_xml_arch_file.h" /************* Variables (globals) shared by all path_delay modules **********/ int num_tnode_levels; /* Number of levels in the timing graph. */ struct s_ivec *tnodes_at_level; /* [0..num__tnode_levels - 1]. Count and list of tnodes at each level of * the timing graph, to make topological searches easier. Level-0 nodes are * sources to the timing graph (types TN_FF_SOURCE, TN_INPAD_SOURCE * and TN_CONSTANT_GEN_SOURCE). Level-N nodes are in the immediate fanout of * nodes with level at most N-1. */ /******************* Subroutines local to this module ************************/ static int *alloc_and_load_tnode_fanin_and_check_edges(int *num_sinks_ptr); static void show_combinational_cycle_candidates(); /************************** Subroutine definitions ***************************/ static int * alloc_and_load_tnode_fanin_and_check_edges(int *num_sinks_ptr) { /* Allocates an array and fills it with the number of in-edges (inputs) to * * each tnode. While doing this it also checks that each edge in the timing * * graph points to a valid tnode. Also counts the number of sinks. */ int inode, iedge, to_node, num_edges, error, num_sinks; int *tnode_num_fanin; t_tedge *tedge; tnode_num_fanin = (int *) my_calloc(num_tnodes, sizeof(int)); error = 0; num_sinks = 0; for (inode = 0; inode < num_tnodes; inode++) { num_edges = tnode[inode].num_edges; if (num_edges > 0) { tedge = tnode[inode].out_edges; for (iedge = 0; iedge < num_edges; iedge++) { to_node = tedge[iedge].to_node; if (to_node < 0 || to_node >= num_tnodes) { vpr_printf(TIO_MESSAGE_ERROR, "in alloc_and_load_tnode_fanin_and_check_edges:\n"); vpr_printf(TIO_MESSAGE_ERROR, "\ttnode #%d edge #%d goes to illegal node #%d.\n", inode, iedge, to_node); error++; } tnode_num_fanin[to_node]++; } } else if (num_edges == 0) { num_sinks++; } else { vpr_printf(TIO_MESSAGE_ERROR, "in alloc_and_load_tnode_fanin_and_check_edges:\n"); vpr_printf(TIO_MESSAGE_ERROR, "\ttnode #%d has %d edges.\n", inode, num_edges); error++; } } if (error != 0) { vpr_printf(TIO_MESSAGE_ERROR, "Found %d Errors in the timing graph. Aborting.\n", error); exit(1); } *num_sinks_ptr = num_sinks; return (tnode_num_fanin); } int alloc_and_load_timing_graph_levels(void) { /* Does a breadth-first search through the timing graph in order to levelize * * it. This allows subsequent traversals to be done topologically for speed. * * Also returns the number of sinks in the graph (nodes with no fanout). */ t_linked_int *free_list_head, *nodes_at_level_head; int inode, num_at_level, iedge, to_node, num_edges, num_sinks, num_levels, i; t_tedge *tedge; /* [0..num_tnodes-1]. # of in-edges to each tnode that have not yet been * * seen in this traversal. */ int *tnode_fanin_left; tnode_fanin_left = alloc_and_load_tnode_fanin_and_check_edges(&num_sinks); free_list_head = NULL; nodes_at_level_head = NULL; /* Very conservative -> max number of levels = num_tnodes. Realloc later. * * Temporarily need one extra level on the end because I look at the first * * empty level. */ tnodes_at_level = (struct s_ivec *) my_malloc( (num_tnodes + 1) * sizeof(struct s_ivec)); /* Scan through the timing graph, putting all the primary input nodes (no * * fanin) into level 0 of the level structure. */ num_at_level = 0; for (inode = 0; inode < num_tnodes; inode++) { if (tnode_fanin_left[inode] == 0) { num_at_level++; nodes_at_level_head = insert_in_int_list(nodes_at_level_head, inode, &free_list_head); } } alloc_ivector_and_copy_int_list(&nodes_at_level_head, num_at_level, &tnodes_at_level[0], &free_list_head); num_levels = 0; while (num_at_level != 0) { /* Until there's nothing in the queue. */ num_levels++; num_at_level = 0; for (i = 0; i < tnodes_at_level[num_levels - 1].nelem; i++) { inode = tnodes_at_level[num_levels - 1].list[i]; tedge = tnode[inode].out_edges; num_edges = tnode[inode].num_edges; for (iedge = 0; iedge < num_edges; iedge++) { to_node = tedge[iedge].to_node; tnode_fanin_left[to_node]--; if (tnode_fanin_left[to_node] == 0) { num_at_level++; nodes_at_level_head = insert_in_int_list( nodes_at_level_head, to_node, &free_list_head); } } } alloc_ivector_and_copy_int_list(&nodes_at_level_head, num_at_level, &tnodes_at_level[num_levels], &free_list_head); } tnodes_at_level = (struct s_ivec *) my_realloc(tnodes_at_level, num_levels * sizeof(struct s_ivec)); num_tnode_levels = num_levels; free(tnode_fanin_left); free_int_list(&free_list_head); return (num_sinks); } void check_timing_graph(int num_sinks) { /* Checks the timing graph to see that: (1) all the tnodes have been put * * into some level of the timing graph; */ /* Addition error checks that need to be done but not yet implemented: (2) the number of primary inputs * * to the timing graph is equal to the number of input pads + the number of * * constant generators; and (3) the number of sinks (nodes with no fanout) * * equals the number of output pads + the number of flip flops. */ int num_tnodes_check, ilevel, error; error = 0; num_tnodes_check = 0; /* TODO: Rework error checks for I/Os*/ for (ilevel = 0; ilevel < num_tnode_levels; ilevel++) num_tnodes_check += tnodes_at_level[ilevel].nelem; if (num_tnodes_check != num_tnodes) { vpr_printf(TIO_MESSAGE_ERROR, "Error in check_timing_graph: %d tnodes appear in the tnode level structure. Expected %d.\n", num_tnodes_check, num_tnodes); vpr_printf(TIO_MESSAGE_INFO, "Check the netlist for combinational cycles.\n"); if (num_tnodes > num_tnodes_check) { show_combinational_cycle_candidates(); } error++; } /* Todo: Add error checks that # of flip-flops, memories, and other black boxes match # of sinks/sources*/ if (error != 0) { vpr_printf(TIO_MESSAGE_ERROR, "Found %d Errors in the timing graph. Aborting.\n", error); exit(1); } } float print_critical_path_node(FILE * fp, t_linked_int * critical_path_node) { /* Prints one tnode on the critical path out to fp. Returns the delay to the next node. */ int inode, iblk, inet, downstream_node; t_pb_graph_pin * pb_graph_pin; e_tnode_type type; static const char *tnode_type_names[] = { "TN_INPAD_SOURCE", "TN_INPAD_OPIN", "TN_OUTPAD_IPIN", "TN_OUTPAD_SINK", "TN_CB_IPIN", "TN_CB_OPIN", "TN_INTERMEDIATE_NODE", "TN_PRIMITIVE_IPIN", "TN_PRIMITIVE_OPIN", "TN_FF_IPIN", "TN_FF_OPIN", "TN_FF_SINK", "TN_FF_SOURCE", "TN_FF_CLOCK", "TN_CONSTANT_GEN_SOURCE" }; t_linked_int *next_crit_node; float Tdel; inode = critical_path_node->data; type = tnode[inode].type; iblk = tnode[inode].block; pb_graph_pin = tnode[inode].pb_graph_pin; fprintf(fp, "Node: %d %s Block #%d (%s)\n", inode, tnode_type_names[type], iblk, block[iblk].name); if (pb_graph_pin == NULL) { assert( type == TN_INPAD_SOURCE || type == TN_OUTPAD_SINK || type == TN_FF_SOURCE || type == TN_FF_SINK); } if (pb_graph_pin != NULL) { fprintf(fp, "Pin: %s.%s[%d] pb (%s)", pb_graph_pin->parent_node->pb_type->name, pb_graph_pin->port->name, pb_graph_pin->pin_number, block[iblk].pb->rr_node_to_pb_mapping[pb_graph_pin->pin_count_in_cluster]->name); } if (type != TN_INPAD_SOURCE && type != TN_OUTPAD_SINK) { fprintf(fp, "\n"); } fprintf(fp, "T_arr: %g T_req: %g ", tnode[inode].T_arr, tnode[inode].T_req); next_crit_node = critical_path_node->next; if (next_crit_node != NULL) { downstream_node = next_crit_node->data; Tdel = tnode[downstream_node].T_arr - tnode[inode].T_arr; fprintf(fp, "Tdel: %g\n", Tdel); } else { /* last node, no Tdel. */ Tdel = 0.; fprintf(fp, "\n"); } if (type == TN_CB_OPIN) { inet = block[iblk].pb->rr_graph[pb_graph_pin->pin_count_in_cluster].net_num; inet = vpack_to_clb_net_mapping[inet]; fprintf(fp, "External-to-Block Net: #%d (%s). Pins on net: %d.\n", inet, clb_net[inet].name, (clb_net[inet].num_sinks + 1)); } else if (pb_graph_pin != NULL) { inet = block[iblk].pb->rr_graph[pb_graph_pin->pin_count_in_cluster].net_num; fprintf(fp, "Internal Net: #%d (%s). Pins on net: %d.\n", inet, vpack_net[inet].name, (vpack_net[inet].num_sinks + 1)); } fprintf(fp, "\n"); return (Tdel); } /* Display nodes that are likely in combinational cycles */ static void show_combinational_cycle_candidates() { boolean *found_tnode; int ilevel, i, inode; found_tnode = (boolean*) my_calloc(num_tnodes, sizeof(boolean)); for (ilevel = 0; ilevel < num_tnode_levels; ilevel++) { for (i = 0; i < tnodes_at_level[ilevel].nelem; i++) { inode = tnodes_at_level[ilevel].list[i]; found_tnode[inode] = TRUE; } } vpr_printf(TIO_MESSAGE_INFO, "\tProblematic nodes:\n"); for (i = 0; i < num_tnodes; i++) { if (found_tnode[i] == FALSE) { vpr_printf(TIO_MESSAGE_INFO, "\t\ttnode %d ", i); if (tnode[i].pb_graph_pin == NULL) { vpr_printf(TIO_MESSAGE_INFO, "block %s port %d pin %d\n", logical_block[tnode[i].block].name, tnode[i].prepacked_data->model_port, tnode[i].prepacked_data->model_pin); } else { vpr_printf(TIO_MESSAGE_INFO, "\n"); } } } free(found_tnode); }